

A Brief Overview of UML

For those of you unfamiliar with Unified Modeling Language (UML), this appendix provides a quick tour
of some of the terms, concepts and diagrams that are used throughout the book.

What Exactly is a Model?
UML is a set of standard models that we use to design object-oriented programming projects. But what do
we mean by a model, and what, accordingly, does that mean a modeling language is?

A model is a description of the problem we are set to solve. It simplifies the reality by capturing a subset of
entities and relationships in the problem domain.

A problem domain describes not only a particular problem but also the conditions under
which the problem occurs. It's therefore a description of a problem and the relevant context
of that problem.

A model shows us what the problem is and how we are going to tackle it. We may use diagrams, text, or
any other agreed form of communication to present the model.

Models visualize the system we are about to build.

A modeling language, therefore, is a language for describing models. Modeling languages generally use
diagrams to represent various entities and their relationships within the model.

Appendix A – Extract from Professional Visual Basic 6
Project Management

408

UML was created to fulfill these tasks:

� To represent all parts of a project being built with object-oriented techniques

� To establish a way to connect ideas, concepts and general design techniques with the creation of object-
oriented code

� To create a model that can be understood by humans and also by computers - so that a computer can
generate a major portion of the application automatically

UML accomplishes these tasks by having a series of different models. Each model represents a different
view of the project. Some models are built from others, so there is a logical sequence in which the models
are built.

The building blocks of the UML are things and relationships:

� Things in the UML describe conceptual and physical elements in the application domain

� Relationships connect things together

These two elements are brought together in UML diagrams to help us visualize things and their
relationships in a well-structured format.

UML Diagrams
There are quite a few UML diagrams that we can use when designing our applications, and we can pick and
choose those which will be of most use to us. However, there is a basic core set of diagrams that we will
almost certainly use. This core set of diagrams includes:

� Use Case Models

� Interaction Diagrams

� Activity Diagrams

� Class Diagrams

We’ll now run through these types of diagram at whirlwind pace. You’ll notice, as we run through them,
that some diagram types have sub-types themselves (such as collaboration and sequence diagrams). This
may be your first clue as to the richness and diversity of UML as an analytical design tool.

Notice that as we progress through this sequence of UML diagrams, we will also be
progressing towards an ever more focused and clearly defined idea of the project we
are designing and planning to develop. This is one of the fundamental points of the
UML approach.

A Brief Overview of UML

409

Use Case Models
This is the first step on our journey towards a clear definition of the project we are designing with UML.
We go straight to the people who will use the system we’re building. The use case model translates the
user’s needs into an easy to understand model. The user may be an individual or an external system and is
known as an actor. So in a nutshell, the use case model is a representation of how the system, or part of the
system, works from the actor’s point of view.

Use case models can be built from interviews with the user, and are the first step in converting the user’s
needs and requirements into a useful model.

Use cases are more like a model than a diagram because they describe the system, or parts
of the system, with words rather than with pictures.

Use cases are detailed enough to include all of the information on the project, but simple enough for even
the most technically challenged user to understand. Use cases can also be associated with business rules,
which explain special rules, related to the use case.

Let’s take an example. In an order entry application, the use cases could include descriptions of various
sub-parts of the system. These sub-parts, that together could make up the whole system, could be such
things such as Taking an Order, Creating a New Customer, etc. For the use case Create New
Customer, there could be a verbal description of the process of creating a new customer that looked as
follows:

USE CASE: CREATE NEW CUSTOMER

Overview
The main purpose of this use case is to create a new Customer

Primary Actor
Sales Representative

Secondary Actor
None

Starting Point
The use case starts when the actor makes a request to create a new Customer

End Point
The actor's request to create a Customer is either completed or cancelled

Flow of Events
The actor is prompted to enter information that defines the Customer, such as Name,
Address, etc. The actor will then enter the information on the Customer.

The actor can choose to save the information or cancel the operation. If the actor decides
to save the information the new Customer is created in the system, and the list of
Customers is updated.

Appendix A – Extract from Professional Visual Basic 6
Project Management

410

Alternative Flow of Events
The actor attempts to add a Customer that already exists. The system will notify the user
and cancel the create operation.

Measurable Result
A Customer is added to the system

Business Rules
Customer
Customer Fields
Restrict Customer Create

Use Case Extensions
None

Without getting too heavily involved right in the details of this use case, what we’re seeing here is a verbal
description of what happens when a potential user of the program we want to design needs to create a new
customer. Possible flows of events are identified to explain how the system can get from the start point to a
definite end point. Measurable results are defined, and some business rules are created. One of these
business rules is called Restrict Customer Create and might be written as follows:

BUSINESS RULE: RESTRICT CUSTOMER CREATE

Overview
This rule is for when a Customer is added to the system

Business Rule Type
Requirement

Business Rule
Each Customer must have a unique CustomerID

Each Customer should only be listed once in the system

Derived Business Rules
None

Depending on the size of the system we’re working one, we may actually need to create quite a few of these
use case statements and business rules before we have captured the key aspects of the system we’re
designing. It’s crucial, however, that we draw up these statements from the people who will be using the
system, and the people who want to see the system in place. It’s the first step in our design process.

A Brief Overview of UML

411

Interaction Diagrams
Interaction diagrams are the next step of the UML design process. Interaction diagrams concentrate on
showing how objects or things in the system interact with each other to give a dynamic view of the system.
There are two basic types of interaction diagram:

� sequence diagrams

� collaboration diagrams

Essentially these both model the same information, except that sequence diagrams emphasize time ordering
whereas collaboration diagrams spatial or structural organization.

For the most part, you choose to create either collaboration diagrams or sequence
diagrams. For the sake of completeness, this appendix discusses both but we only use
sequence diagrams in this book.

Sequence Diagrams

This type of diagram can be used to convert the written use case models that we saw in the previous section
into a clearer visual model. This visual model will show how the objects associated with a particular use
case communicate with each other and with users over time. Sequence diagrams are very general. For
example, they may show that some Object 1 passes a message to some other Object 2, and that Object 2
then performs some operation within itself and finally returns the message back:

The internal workings of Object 1 that led to the creation of the message, and the internal workings of
Object 2 that led to the return message, are not shown in sequence diagrams. (Details of the inner workings
of the objects are represented in another type of diagram called an activity diagram - which we’ll see in the
next phase of the UML design process.)

Sequence diagrams map out every possible sequence of events that can be performed within each use case,
including correct and incorrect paths. The correct paths in the sequence diagrams can be used to design the
GUI of the project as they show what the user will need to do to interact with the application. Incorrect
sequences will later be used to map out errors and how to handle these errors.

Appendix A – Extract from Professional Visual Basic 6
Project Management

412

Sequence diagrams also show what public methods and properties our components must have. You can
compare the sequence diagrams for one or more components and attempt to find patterns that exist that can
be used to simplify the coding of the components.

Collaboration Diagrams

Collaboration diagrams are also built from the use cases - but this time the emphasis is on the spatial
distribution of the objects involved. This is not to say that there are no temporal elements in collaboration
diagrams, since the sequence of events is mapped using numbers:

Personally, I often find this type of diagram quite confusing in comparison with the equivalent sequence
diagrams. This particular collaboration diagram presents the same situation as the sequence diagram we just
looked at - Object 1 and Object 2 with exactly the same relationships as before. However, it should be said
that there are times when collaboration diagrams can make good sense - especially if we find that we want
to emphasize a set of objects themselves rather than any sequence of events between them.

Activity Diagrams
Activity diagrams take the information available from the collaboration and sequence diagrams that we’ve
just looked at, and present that information in a more detailed fashion. The purpose of activity diagrams is
now to show the inner workings for a particular object.

As you may have noticed, we are gradually moving towards more and more detail
about our project design as we proceed through the different UML diagrams.

A Brief Overview of UML

413

Activity diagrams can map out a method or
property showing what that method or property
has to do in a step-by-step manner. Activity
diagrams will look very similar to mapping out a
method or property using pseudo-code. This
detailed map can then be used to explore the best
method of coding a method or property, check for
missing or unnecessary sections, and as a guide to
writing the code. Here is a sample activity
diagram:

This activity diagram simply specifies what Activity is to be initiated at a certain Decision point,
depending on the outcome of that Decision. This is a step-by-step definition of certain situations that
pertain to the project we are designing and about to develop in VB, and is a considerable way forward in
our journey towards defining a project and preparing it for development and implementation. We’re still not
finished yet though - the final stage in the overall UML design process is to move on to our class diagrams.

Class Diagrams
Class diagrams ultimately represent the classes that we will build in Visual Basic. They are the most
detailed part of the whole UML design definition, inasmuch as they begin to map directly to code objects
that we will be writing in Visual Basic. This is where we’ve been heading all along, and demonstrates how
well UML maps our design considerations to the programming language we’re using.

A Class diagram is a simple static picture of a class; as such, it will include all of the public and private
methods and properties of that class. Class diagrams are, of course, built from use cases, sequence and
activity diagrams that we’ve been developing throughout the UML design process.

Appendix A – Extract from Professional Visual Basic 6
Project Management

414

Here’s a sample class diagram:

This sample class diagram is simply a schematic layout of the relevant information that we would need to
go away and create the objects we’ve developed in our UML design process straight into the VB
programming environment.

Naturally, for a larger project we would probably need to derive many such class diagrams
in order to complete the design of all the objects involved in our system.

Other Diagrams
The diagrams we’ve looked at so far (use cases-sequence-activity-class diagrams) form the essential parts
of UML that we need to build a Visual Basic project, and are the ones we use in this book. There are,
however, other models that I will mention now for sake of completeness for the interested reader. These
other diagrams include:

� Statechart Diagrams: A model of the different possible states of a system's objects

� Component Diagrams: A model showing how different objects will be combined to make a component

� Deployment Diagrams: A model showing how each component will be placed on various hardware

� Object Diagrams: A simplified collaboration diagram.

UML Notation
We have covered the fundamental terms and most important diagrams, but before we move on to
demonstrate how to map the UML constructs into VB code (Appendix B) we need to have a look at some
more advanced UML notation, including how to depict relationships between classes.

Classes and Objects
As we saw previously, a class is represented in UML
like this:

The rectangle representing the class is divided into three compartments, the top one showing the class
name, the second showing the attributes and the third showing the methods.

A Brief Overview of UML

415

If the class is abstract, then the class name in the first compartment is italicized.

An object looks very similar to a class, except that its name is
underlined:

Relationships
Relationships between classes are generally represented in class diagrams by a line or an arrow joining the
two classes. UML can represent the following, different sorts of object relationships.

Dependency

If A depends on B, then this is shown by a dashed arrow
between A and B, with the arrowhead pointing at B:

Association

An association between A and B is shown by a line joining
the two classes:

If there is no arrow on the line, the association is taken to
be bi-directional. A unidirectional association is indicated
like this:

Aggregation

An aggregation relationship is indicated by placing a white
diamond at the end of the association next to the aggregate
class. If B aggregates A, then A is a part of B, but their
lifetimes are independent:

Composition

Composition, on the other hand, is shown by a black
diamond on the end of association next to the composite
class. If B is composed of A, then B controls the lifetime of
A.

Appendix A – Extract from Professional Visual Basic 6
Project Management

416

Multiplicity

The multiplicity of a relationship is indicated by a number (or *) placed at the end of an association.

The following diagram indicates a one-to-one relationship
between A and B:

This next diagram indicates a one-to-many relationship:

A multiplicity can also be a range of values. Some examples are shown in the table below:

1 One and only one

* Any number from 0 to infinity

0..1 Either 0 or 1

n..m Any number in the range n to m inclusive

1..* Any positive integer

Naming an Association

To improve the clarity of a class diagram, the association
between two objects may be named:

Inheritance

An inheritance (generalization/specialization) relationship is indicated in the UML by an arrow with a
triangular arrowhead pointing towards the generalized class.

If A is a base class, and B and C are classes derived from A, then
this would be represented by the following class diagram:

Multiple Inheritance

The next diagram represents the case where class C is derived
from classes A and B:

A Brief Overview of UML

417

States

States of objects are represented as rectangles with rounded
corners. The transition between different states is represented as
an arrow between states, and a condition of that transition
occurring may be added between square braces. This condition is
called a guard.

Object Interactions

Interactions between objects are represented by
interaction diagrams — both sequence and
collaboration diagrams. An example of a
collaboration diagram is shown here: Objects are
drawn as rectangles and the lines between them
indicate links — a link is an instance of an
association. The number at the head of the
message indicates the order of the messages
along the links between the objects.

Sequence diagrams show essentially the same
information, but concentrate on the time-ordered
communication between objects, rather than their
relationships. An example of a sequence diagram
is shown here:
The dashed vertical lines represent the lifeline of
the object (starting at the top).

Appendix A – Extract from Professional Visual Basic 6
Project Management

418

Use Cases

A use case is a description of an interaction between an actor
(person or external system) and system under design. In UML it is
denoted like this:

Design Patterns

Design patterns are represented in the UML notation by
collaborations (shown as dotted elipses) between classes. Each class
that is part of the pattern is joined to it by a dotted line labeled with
the particular role played by the class:

A Brief Overview of UML

419

Appendix A – Extract from Professional Visual Basic 6
Project Management

420

