A Survey on Serious Games for Rehabilitation

Paula Rego1,2, Pedro Moreira1, Luís Paulo Reis2

1Instituto Politécnico de Viana do Castelo
2Faculdade de Engenharia da Universidade do Porto
A Survey on Serious Games For Rehabilitation

- Overview
- Serious Games
- Serious Games for Rehabilitation
- Proposed Classification
 - Criteria
 - Comparison
- RehaCom - A Case Study
- Conclusions and Future Work
Motivation

- Rehabilitation results in high social costs
- Effective rehabilitation must be *early, intensive* and *repetitive*
- It is difficult to maintain patient motivation and interest
- High rehabilitation costs at hospitals/clinics

Approach

- Computer assisted Rehabilitation
- Use of Game Design and Technologies can be effective in augmenting motivation

Our Research

- Focus on rehabilitation
- Identify features relevant to design more effective rehabilitation games
- Develop a classification framework
Serious Games (SG) : definitions

- Zyda (2005):
 - “a mental contest, played with a computer in accordance with specific rules, which uses entertainment to further government or corporate training, education, health, public policy, and strategic communication objectives. “

- Michael and Chen (2006):
 - games that do not have entertainment, enjoyment or fun as their primary purpose

- Our definition:
 - games that engage the user, and contribute to the achievement of a defined purpose other than pure entertainment (whether or not the user is consciously aware of it)
SG: A Recent and Active Research Topic

- In 2002 was formed the Serious Games Initiative

- In 2009 was organized the first Conference specialized in SG: VS-GAMES’09 - First IEEE Int. Conf. in Games and Virtual Worlds for Serious Applications

- Recent Advances in game platforms

- High availability of new forms of interaction
• SG: Surveys

• Zyda (2005): SG technology can be applied to domains as diverse as healthcare, public policy, strategic communication, defense, training, and education

• Michael and Chen (2006): SG can have a number of markets: military games, government games, educational games, corporate games, healthcare games, and political, religious and art games

• Sawyer and Smith (2008) introduced a Serious Games taxonomy
 ▪ Start point to further contributions
SG for Rehabilitation: Problems

- Impairments:
 - attention and concentration deficiencies, balance loss, pain, weakness and paralysis

- Tasks often repetitive and boring
- Can cause depression and fatigue

- Rehabilitation can require patients to travel to specialised units
 - High healthcare costs

- Early and intensive practice of functional tasks in an enriched environment show more positive outcomes for motor and cognitive rehabilitation
SG for Rehabilitation: Related Works

- Classifications:
 - Flores et al. (2008): classification for elderly rehabilitation
 - Criteria: entertainment for elderly + stroke rehabilitation
 - Subjective comparison
 - Burke et al. (2009): classification for upper limb stroke rehabilitation
 - Game design principles: meaningful play and challenge
 - Developed games based on the criteria
 - Evaluation using questionnaires
 - Small number of participants

- Applications:
 - Balance rehabilitation
 - Upper limb stroke rehabilitation
 - Behavioral and addictive disorders
 - Traumatic brain injury (TBI)
Application Area

- **Two main areas:** Cognitive Rehabilitation and Motor Rehabilitation

- Cognitive Rehabilitation
 - Goal: to achieve most independent/highest level of functioning
 - How: individualized goals according to strengths and weaknesses
 - Examples: brain injury, cognitive impairments from chronically illness

- Motor Rehabilitation
 - Stroke rehabilitation
 - Balance training
 - Acquired brain injury
 - Wheelchair mobility
 - Parkinson’s disease
 - Orthopaedic rehabilitation
 - Functional activities of daily living training
 - Telerehabilitation
Interaction Technology

- Body Weight Movement
- WiiMote and Wii Balance Board
- Motion Tracking
- HMD
- Speech + Touch + Motion Tracking + Biosensors
- Special Keyboard
- Joystick
- Web cam
● Game Genre
● Game Interface

● 2D

● 3D
Proposed Classification ➔ Criteria

- **Adaptability**
 - Capacity to adapt dynamically game difficulty/challenge according to patient performance and abilities
 - Speed and position of game elements adjusted according to player’s successive hits or misses
 - Speed, position and size of game elements can set level of challenge
 - Many games use levels to structure difficulty
- Progress Monitoring

- Performance Feedback

Congratulations! You scored: **90%**

Play again?

Yes No

Your Previous Scores:

- 70%
- 90%
- 50%
- 44%
- 55%
- 88%
- 63%
- 90%
● Portability

- The capacity of the game to be played in a clinic or at home
- In a clinic it requires hardware that cannot be used at home
- At home the therapist can analyse data remotely
Classification and Comparison of Rehabilitation Serious Games

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Weight Movement</td>
<td>Body Weight Movement</td>
<td>Motion Tracking + HMD</td>
<td>Speech + Touch+ Motion Tracking + Biosensors</td>
<td>Keyboard</td>
<td>Motion Tracking</td>
<td>Motion Tracking</td>
<td>WiiMote Wii Balance</td>
<td>Special Keyboard + Joystick</td>
</tr>
<tr>
<td>Game Interface</td>
<td>2D</td>
<td>3D</td>
<td>3D</td>
<td>3D</td>
<td>3D</td>
<td>2D</td>
<td>2D</td>
<td>2D</td>
</tr>
<tr>
<td>Competitive / Collaborative</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Game Genre</td>
<td>Memory + Simulation</td>
<td>Simulation</td>
<td>Strategy</td>
<td>Simulation</td>
<td>--</td>
<td>Simulation</td>
<td>Maze</td>
<td>Assorted</td>
</tr>
<tr>
<td>Adaptability</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>--</td>
<td>Yes</td>
</tr>
<tr>
<td>Progress Monitoring</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>--</td>
<td>Yes</td>
</tr>
<tr>
<td>Performance Feedback</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>--</td>
<td>Yes</td>
<td>Yes</td>
<td>--</td>
<td>Yes</td>
</tr>
<tr>
<td>Portability</td>
<td>Home</td>
<td>Clinic</td>
<td>Clinic</td>
<td>Clinic</td>
<td>Clinic/Home</td>
<td>Home</td>
<td>--</td>
<td>Clinic</td>
</tr>
</tbody>
</table>
RehaCom: Importance

- Modular computer system
- Widely used and tested in cognitive rehabilitation
- Installed in many clinics
- Effectiveness has been demonstrated in a number of studies all very well referenced
- It has many types of games
Training Procedures of System RehaCom by Application Area

<table>
<thead>
<tr>
<th>Attention Training</th>
<th>Memory Training</th>
<th>Executive Functions</th>
<th>Field of View Training</th>
<th>Visuomotor skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alertness</td>
<td>Topological Memory</td>
<td>Shopping</td>
<td>Saccadic Training</td>
<td>Visuomotor Coordination</td>
</tr>
<tr>
<td>Vigilance</td>
<td>Physiognomic Memory</td>
<td>Plan a Day</td>
<td>Exploration</td>
<td></td>
</tr>
<tr>
<td>Visuo-spatial</td>
<td>Memory of Words</td>
<td>Logical Reasoning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attention</td>
<td>Figural memory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selective Attent.</td>
<td>Verbal Memory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divided Attention</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RehaCom: Game Examples

Attention and Concentration

Plan a Day
Conclusions

- When compared to popular games:
 - Current therapeutic games lack qualities to be entertaining
 - Less motivating for patients

- Most applications are:
 - Prototypes
 - For a single-user player

- The evaluations made included a small number of participants
 - Effectiveness in rehabilitation is not well validated

- Most applications used only at clinics or hospitals

- Neither of the applications reviewed included the collaboration or competitiveness functionality
• Conclusions
 ▪ A review of the most important literature was made
 ▪ Relevant games characteristics were identified
 ▪ To distinguish different systems, a classification proposal was made
 ▪ The limitations and advantages of the systems were identified
 ▪ New opportunities for research were identified
• Future Research:

- Identify and measure the impact of more relevant aspects
- Explore automatic systems for monitoring patient performance
- Explore tele-rehabilitation
- Study the effectiveness of incorporating a social dimension: competitiveness or collaboration
- Competitiveness can be a positive feature
- Explore the use of artificial agents to simulate users' presence
- In the later, study how we can put those agents in the same level of abilities as real players and further problems
A Survey on Serious Games for Rehabilitation

Paula Rego1,2, Pedro Moreira1, Luís Paulo Reis2

1Instituto Politécnico de Viana do Castelo
2Faculdade de Engenharia da Universidade do Porto

Questions?

Porto, 28th and 29th January 2010