#### FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Departamento de Engenharia Electrotécnica e de Computadores



### Sistema de Recuperação da Energia de Deslizamento aplicado ao Aproveitamento da Energia das Ondas Marítimas

Carlos João Rodrigues Costa Ramos

Licenciado em Engenharia Electrotécnica e de Computadores pela Faculdade de Engenharia da Universidade do Porto

Dissertação submetida para satisfação parcial dos requisitos do grau de mestre em Engenharia Electrotécnica e de Computadores (Área de especialização de Automação Industrial)

Porto, Novembro de 1997

Carlos João Rodrigues Costa Ramos cjr@tormentas.fe.up.pt

### Sistema de Recuperação da Energia de Deslizamento aplicado ao Aproveitamento da Energia das Ondas Marítimas

Dissertação realizada sob a supervisão do Prof. Dr. Adriano da Silva Carvalho do Departamento de Engenharia Electrotécnica e de Computadores da Faculdade de Engenharia da Universidade do Porto

Dissertação realizada com o apoio do Gabinete PRAXIS XXI e da JNICT

Escrever a página de agradecimentos é uma tarefa ingrata porque existe sempre o perigo de se esquecer alguém que tenha contribuído para o sucesso do trabalho.

Estando ciente do perigo, gostaria de destacar algumas das pessoas que mais contribuíram para a realização deste trabalho:

O Prof. Dr. Adriano da Silva Carvalho, pela orientação do trabalho.

Os meus amigos e colegas no Instituto de Sistemas e Robótica, em particular o Armando Sousa, o Carlos Martins, o Paulo Costa e o Joaquim Alves pelas "dicas", e pela sua amizade.

Aos vários elementos da Efacec, em particular o Eng. Pedro Silva.

Os meus pais, por todo o apoio e incentivo que me deram durante toda a minha vida, sem os quais este trabalho nunca teria sido iniciado.

A Faculdade de Engenharia da Universidade do Porto e o Instituto de Sistemas e Robótica, pela cedência de instalações e equipamento.

Ao Gabinete PRAXIS XXI da JNICT pelo financiamento.

Na sequência do cada vez maior interesse pelo aproveitamento dos recursos energéticos alternativos e não poluentes, foi construída nos Açores uma central para produção de electricidade a partir da energia das ondas marítimas.

Para optimizar o recurso energético das ondas marítimas o gerador eléctrico deve funcionar com uma velocidade dependente da potência gerada. Para que a energia possa ser enviada para a rede de distribuição pública, tem de possuir tensão e frequência constantes.

Deste modo, os tradicionais geradores síncronos não são apropriados para enviar à rede a electricidade produzida a partir da energia das ondas marítimas.

Das várias alternativas para o gerador eléctrico, o Sistema de Recuperação de Energia de Deslizamento (SRED) é o que apresenta melhores argumentos, quer a nível técnico, quer a nível de custos.

O SRED consiste numa máquina assíncrona de rótor bobinado e num conjunto de conversores electrónicos de potência. Os conversores estão ligados entre o rótor da máquina e a rede. Controlam a máquina variando a quantidade de energia retirada ao rótor e entregue à rede.

A sua principal vantagem é conseguir produzir o dobro da potência para a qual, quer a máquina, quer os conversores são dimensionados. Isto acontece porque a potência gerada é enviada à rede, repartida pelo estátor e pelo rótor.

Devido à utilização dos conversores electrónicos ligados ao rótor, a máquina assíncrona adquire características de funcionamento semelhantes a uma máquina de corrente contínua de excitação separada.

Nesta dissertação é estudado o SRED para o gerador da referida central, sendo apresentadas as diversas fases do projecto dos subsistemas que constituem o SRED.

En conséquence de l'accroissement de l'intérêt sur l'exploitation des ressources alternatifs et non polluants, une centrale a été construite aux Açores pour la production d'énergie électrique à partir des ondes maritimes.

En vue de l'optimisation du ressource énergétique des ondes maritimes, le générateur électrique doit fonctionner à vitesse variable et dépendante de la puissance générée. Pour que l'énergie générée puisse être injectée sur le réseau de distribution publique, la maîtrise de la tension et de la fréquence devient un aspect important à prendre en compte.

Ainsi, les traditionnels générateurs synchrones ne se révèlent pas bien adaptés pour envoyer l'électricité générée à partir des ondes maritimes au réseau publique.

Parmi les diverses solutions envisageables pour la mise en oeuvre du générateur électrique, le Système de Récupération de l'Energie de Glissement (SRED) présente les argumentations les plus convaincantes, soit au niveau technique, soit au niveau économique.

Le SRED est constitué par une machine asynchrone à rotor bobiné et par un ensemble de convertisseurs statiques de puissance. Les convertisseurs sont connectés d'un coté au rotor de la machine, et de l'autre coté au réseau électrique. De cette manière, l'énergie transmise au rotor par le stator de la machine (énergie de glissement) est récupérée et renvoyée vers le réseau.

Son principal avantage est de permettre la production d'une puissance double par rapport à la puissance nominale de la machine et des convertisseurs. Ceci, parce que la puissance générée est envoyée au réseau aussi par le stator que par le rotor.

Grâces à l'utilisation des convertisseurs statiques connectées au rotor, la machine asynchrone possède des caractéristiques de fonctionnement qui ressemblent celles de la machine à courant continu à excitation séparée.

Au cours de cette dissertation, le SRED pour le générateur de la centrale mentionnée ci-dessus est étudié, et les diverses étapes du travail de projet de ses sous-systèmes constitutifs sont présentés.

As a consequence of the increasingly interest for taking advantage of the energetic non pollutant renewable resources, a wave energy plant for electricity production as been built in Azores.

In order to optimize the energetic resources of the ocean waves, the electric generator must work at variable speed depending on the generated power. For the energy to be injected in the electric public distribution network a particular interest as to be focused on both voltage magnitude and frequency control.

Hence, traditional systems based on the synchronous generator are not suitable for transmitting the ocean waves energy toward the electric network.

Between several possibilities for the implementation of the electric generator, the Slip Energy Recuperation System (SRED) seems to present the most interesting arguments not only in the technical field, but also in the economical one.

SRED system set consists in an induction wound-rotor machine and electronic static converters connected between the rotor windings and the electric network. The machine is controlled by acting on the quantity of energy delivered by the stator to the rotor (slip energy) which then will be injected in the network.

Its major advantage consists in the possibility for producing twice the nominal power of the induction machine and converters. This happens because the generated power is delivered to the distribution network spread by the stator and by the rotor.

Due to the use of electronic converters connected to the rotor the induction machine reveals behavioral characteristics very close to the separately excited DC machine ones.

In this dissertation, the SRED system for the above mentioned wave energy plant is deeply studied as also the several steps for its sub-systems design.

## Índice

| Agradecimentos                                                             | <i>v</i> |
|----------------------------------------------------------------------------|----------|
| Resumo                                                                     | vii      |
| Résumé                                                                     | ix       |
| Abstract                                                                   | xi       |
| Índice                                                                     | riii     |
| Índias da figuras                                                          |          |
|                                                                            |          |
| Capítulo 1                                                                 |          |
| Introdução                                                                 | 1        |
| 1 Objectivos                                                               | 3        |
| 2 Estrutura da dissertação                                                 | 3        |
| Capítulo 2                                                                 |          |
| Cupuno 2<br>SPED enligede en enrovaitemente de energie des endes merítimes | 5        |
| SKED apricado ao aprovenamento da "energia das ondas martimas              | J        |
| 1 Breve descrição das energias renovaveis                                  | 5        |
| 2 O aproveitamento da energia das ondas oceânicas.                         | 7        |
| 3 Central construída                                                       | 8        |
| 4 Armazenamento e disponibilidade de energia                               | 9        |
| 5 Requisitos para o gerador                                                | 11       |
| 5.1 Escolha do gerador                                                     | 13       |
| 6 O sistema de recuperação de energia de deslizamento (SRED)               | 15       |
| 6.1 Princípio de funcionamento do SRED                                     | 19       |
| 7 Sistema de recuperação de energia de deslizamento utilizado              | 27       |
| Capítulo 3                                                                 |          |
| Conversão de tensão alternada em corrente contínua                         | 31       |
| 1 Fonte de tensão: Rótor da máquina assíncrona                             | 32       |
| 2 Topologia dos rectificadores                                             |          |
| 2.1 Cálculo da bobine interfásica do paralelo dos rectificadores           | 41       |
| 3 Análise harmónica das correntes no estátor                               | 44       |
| 4 Indutância de alisamento                                                 | 46       |
| 5 Conclusões                                                               | 50       |
| Capítulo A                                                                 |          |
| Conversão de corrente contínua em alternada                                | 51       |
| 1 Inversor de corrente                                                     | 52       |
| 1 1 Introducão                                                             | 32<br>52 |
| 1.2 Regras para o controlo                                                 |          |
|                                                                            |          |

| 1.3 Base de PWM                                                            | 55    |
|----------------------------------------------------------------------------|-------|
| 1.4 Implementação do PWM                                                   | 60    |
| 1.5 Comando do inversor                                                    | 64    |
| 1.5.1 Organização e armazenamento das tabelas de PWM                       | 66    |
| 1.5.2 Mudança de estado                                                    | 68    |
| 1.5.3 Mudança de índice de modulação                                       | 72    |
| 1.5.4 Adaptação do PWM às variações de frequência da rede eléctrica        | 73    |
| 1.5.4.1 Solução adoptada                                                   | 74    |
| 1.5.4.2 Rotina calcula_correcao_periodo()                                  | 75    |
| 1.5.5 Sincronismo com a rede e controlo da fase.                           | 76    |
| 1.5.5.1 Rotina muda_fase_pwm(fase)                                         | 79    |
| 1.5.5.2 Rotina calcula_tempo_fase_atribui_T3()                             | 81    |
| 1.5.5.3 Rotina <i>acerta_fase_pwm()</i>                                    | 82    |
| 1.5.5.4 Inicialização, arrangue e paragem do inversor                      | 86    |
| 1.5.5.5 Comando do IGBT da protecção DC                                    | 86    |
| 1.6 Características do PWM                                                 | 87    |
| 1.6.1 Harmónicos da corrente de saída                                      | 87    |
| 1.6.2 Tensão à entrada                                                     |       |
| 1.6.3 Tensões aos terminais dos interruptores                              |       |
| 1.7 Características do PWM implementado                                    | 98    |
| 2 Trânsita de energie active a reactive                                    | 100   |
| 2 1 Corrente L <sub>pg</sub> independente do inversor                      | 102   |
| 2.2 Corrente Ipc independente do inversor                                  | 102   |
| 2.2 Contente IDC controlada pero inversor                                  | 104   |
| 2 Descrição do monte com utilizado                                         | 104   |
| 3 Descrição da montagem utilizada                                          | 100   |
|                                                                            | 100   |
| Canítulo 5                                                                 |       |
| Modelação do SRED. Conjunto Máquina assíncrona - Conversores               | 111   |
| 1 Introducão                                                               | 111   |
| 1 Introdução                                                               | 112   |
| 2 Modelo da maquina assincrona                                             | 112   |
| 3 Modelo do inversor e do filtro AC                                        | 113   |
| 4 Modelo dos rectificadores e do filtro DC                                 | 114   |
| 5 Modelo do SRED                                                           | 116   |
| 5.1 Diagrama das potências em jogo no modelo                               | 117   |
| 5.2 Potência transferida do estátor para o rótor (P <sub>2</sub> )         | 117   |
| 5.3 Binário electromagnético                                               | 118   |
| 6 Características do SRED com imposição da tensão no barramento DC         | 118   |
| 6.1 Analise do sistema a partir do modelo                                  | 119   |
| 6.2 Características de funcionamento com imposição da tensão no barramento | DC121 |
| 6.2.1 Conclusões                                                           | 128   |
| 7 Características do SRED com imposição da corrente no barramento DC       | 129   |
| 7.1 Análise do sistema a partir do modelo                                  | 129   |
| 7.2 Características de funcionamento sem limitação de Vdc                  | 131   |
| 7.2.1 Conclusões                                                           | 134   |
| 7.3 Características de funcionamento com limitação de Vdc                  | 134   |
| 7.3.1 Conclusões                                                           | 138   |
|                                                                            | 120   |
| ð Arranque da maquina assincrona                                           | 138   |

| 9 Gama de funcionamento como gerador                       | 139        |
|------------------------------------------------------------|------------|
| Capítulo 6                                                 |            |
| Sistema de Comando                                         | 141        |
| 1 Especificação do Sistema de Comando                      | 141        |
| 1.1 Autómato                                               | 142        |
| 1.2 Computador Pessoal                                     | 143        |
| 1.3 Operador local                                         | 143        |
| 1.4 Interacção com o SRED                                  | 144        |
| 1.4.1 Sensores                                             | 146        |
| 1.4.2 Actuadores                                           | 147        |
| 2 Plataforma de hardware                                   | 147        |
| 2.1 Plataforma utilizada                                   | 148        |
| 2.1.1 Microcontrolador SAB80C167                           | 149        |
| 2.1.1.1 Endereçamento                                      | 150        |
| 2.1.1.2 Registos de processamento                          | 151        |
| 2.1.1.3 Stack                                              | 152        |
| 2.1.1.4 Sistema de interrupções                            | 153        |
| 2.1.1.4.1 Interrupções de sistema                          | 154        |
| 2.1.1.4.2 Processamento normal de interrupções             | 155        |
| 2.1.1.4.3 PEC                                              | 155        |
| 2.1.1.5 Conversor analógico/digital                        | 156        |
| 2.1.1.6 Entradas / Saídas digitais                         | 157        |
| 2.1.2 MM167                                                | 157        |
| 2.1.3 Placa de interface                                   | 158        |
| 2.1.3.1 Condicionamento dos sinais analógicos              | 159        |
| 2.1.3.1.1 Tensão de referencia do conversor Analógico/Digi | tal 160    |
| 2.1.3.1.2 Tensão e corrente DC                             | 160        |
| 2.1.3.1.3 Tensões da rede                                  | 161        |
| 2.1.3.1.4 Correntes na rede e Correntes no rótor           | 162        |
| 2.1.3.2 Sinal de velocidade                                | 163        |
| 2.1.3.3 Detecção da passagem por zero da tensão da rede    | 164        |
| 2.1.3.4 Comando dos disjuntores e contactores              | 165        |
| 2.1.3.5 Consola local para operador                        | 166        |
| 2.1.3.6 Interfaces de comunicação                          | 16/        |
| 2.1.3./ Sinais de alarme/protecção da maquina assincrona   | 168        |
| 2.1.3.8 Alimentação do sistema de controlo                 | 168        |
| 2.1.3.9 Inversor e circuito de protecção                   | 169        |
| 3 Software.                                                | 170        |
| 3.1 Sistema Operativo                                      | 1/1        |
| 5.2 Estrutura do soltware                                  | 172        |
| 3.2.1 Pre-escalonador e aquisição de medidas analogicas    | 173        |
| 3.2.2 Escalonador                                          | 170        |
| 3.2.3 UUIISUIA IUUAI                                       | 1//<br>177 |
| 3.2.3.2 Sinalização                                        | 1770       |
| 3.2.3.2 Sinanzayau<br>3.2.3.3 Visualizador                 | 179<br>170 |
| J.2.3.3 v ISUAIIZAUUI                                      | 1/7<br>100 |
| 4 Conclusoes                                               | 190        |

| Capítulo 7                                                                        |         |
|-----------------------------------------------------------------------------------|---------|
| Controladores do SRED                                                             |         |
| 1 Introdução                                                                      | 181     |
| 2 Controlo da corrente no barramento DC                                           |         |
| 3 Controlo da potência trocada com a rede                                         |         |
| 4 Definição da potência a ser entregue à rede                                     |         |
| 4.1 Controlador para definição da potência a entregar à rede                      |         |
| Capítulo 8                                                                        |         |
| Conclusões e Desenvolvimento futuro                                               | 195     |
| Bibliografia / Referências                                                        |         |
| <i>Anexo A</i><br>Adaptação do Controlador PID analógico a um controlador Digital | 201     |
| Anexo B                                                                           |         |
| Multiplicações não inteiras                                                       |         |
| Anexo C                                                                           |         |
| Código mais relevante                                                             |         |
| 1 PWM.h Várias definições e prototipagem das funções que controlam o inver        | sor 211 |
| 2 PWM.c Funções escritas em C para comando do inversor                            |         |
| 3 PWM_V8.A66 Procedimentos escritos em assembly para comando do invers            | or 219  |
| 4 Exemplificação das tabelas para o PWM                                           |         |

# Índice de figuras

| Figura 2.1 - Esquema do sistema de coluna de água oscilante [5].                                                             | 7  |
|------------------------------------------------------------------------------------------------------------------------------|----|
| Figura 2.2 - Perfil da central [9].                                                                                          | 8  |
| Figura 2.3 - Esquema do conjunto turbina - gerador [9].                                                                      | 9  |
| Figura 2.4 - Utilização de baterias de acumuladores para armazenar energia                                                   | 10 |
| Figura 2.5 - A rede vista como um sistema de armazenagem para o gerador G1                                                   | 10 |
| Figura 2.6 - Binário transmitido pela turbina ao gerador. (retirada da referência [5])                                       | 11 |
| Figura 2.7 - Binário da turbina e velocidade (retirada da referência [5])                                                    | 12 |
| Figura 2.8 - Alternativas para um gerador de velocidade variável e frequência constante (VSCF)                               | 14 |
| Figura 2.9 - Esquemas para controlo de velocidade da máquina assíncrona de rótor bobinado                                    |    |
| através da variação da resistência rotórica.                                                                                 | 15 |
| Figura 2.10 - Características binário - velocidade em função da resistência rotórica.                                        | 16 |
| Figura 2.11 - Princípio do sistema de recuperação da energia de deslizamento                                                 | 17 |
| Figura 2.12 - SRED com ponte de díodos como conversor AC/DC e ponte a tirístores como                                        |    |
| conversor DC/AC.                                                                                                             | 18 |
| Figura 2.13 - Arranque do SRED através de uma resistência auxiliar.                                                          | 19 |
| Figura 2.14 - Modelo por fase da máquina assíncrona.                                                                         | 19 |
| Figura 2.15 - Modelo dos conversores                                                                                         | 20 |
| Figura 2.16 - Modelação do SRED.                                                                                             | 20 |
| Figura 2.17 - Relação entre as potências do estátor e do rótor face à mecânica                                               | 22 |
| Figura 2.18 - Relação entre as potências do estátor e do rótor face à potência mecânica absoluta                             | 23 |
| Figura 2.19 - Relação entre a potência mecânica e a potência absoluta do estátor (eq.2.13)                                   | 24 |
| Figura 2.20 - Relação entre a potência mecânica e a potência absoluta do estátor (eq.2.15)                                   | 24 |
| Figura 2.21 - Potências entregues à rede pela máquina (Pmec), pelo estátor (P1) e pelo rótor (P2)                            | 25 |
| Figura 2.22 - Curva ideal de binário para o SRED.                                                                            |    |
| Figura 2.23 - Curva de binário para o SRED.                                                                                  | 26 |
| Figura 2.24 - Regime de funcionamento se os conversores permitirem a injecção de energia no                                  |    |
| rótor.                                                                                                                       | 27 |
| Figura 2.25 - Esquema global do sistema de recuperação de energia de deslizamento usado neste                                |    |
| projecto para o aproveitamento da energia das ondas                                                                          | 27 |
| Figura 3.1 - Esquema genérico da conversão da tensão com amplitude e frequência variáveis em                                 |    |
| corrente contínua                                                                                                            | 32 |
| Figura 3.2 - Esquema da montagem Paralela Dupla 3 (PD3) e respectivas formas de onda                                         | 33 |
| Figura 3.3 - Esquema da Série 3 (S3) e respectivas formas de onda.                                                           | 34 |
| Figura 3.4 - Harmónicos da corrente nos enrolamentos das montagens S3 e PD3                                                  | 34 |
| Figura 3.5 - A montagem dos díodos de um rectificador trifásico é igual no caso de ser uma montagem Paralela Dupla ou Série. | 35 |
| Figura 3.6 - Esquema do efeito das correntes dos enrolamentos secundários no enrolamento primário                            | 35 |
| Figura 3.7 - Associação de rectificadores para eliminar os 5º e 7º harmónicos da corrente po                                 |    |
| primário e forma de onda de corrente obtida                                                                                  | 36 |
| Figura 3.8 - Harmónicos da corrente no enrolamento primário de uma montagem rectificadora                                    |    |
| com um S3 e um PD3.                                                                                                          |    |
|                                                                                                                              |    |

| Figura 3.9 - Montagem em paralelo dos dois rectificadores através de bobine interfásica para limitar a corrente de circulação.                                                                                                                                                                                      | 38 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figura 3.10 - Montagem em série dos dois rectificadores.                                                                                                                                                                                                                                                            | 39 |
| Figura 3.11 - Esquema do conversor AC/DC usado.                                                                                                                                                                                                                                                                     | 40 |
| Figura 3.12 - Forma de onda da tensão rectificada total (Vdc) e das tensões geradas pelos dois rectificadores: PD3 e S3. Vc é a tensão eficaz composta da alimentação do estátor e s é o deslizamento.                                                                                                              | 40 |
| Figura 3.13 - Modelação do paralelo de duas fontes de tensão                                                                                                                                                                                                                                                        | 41 |
| Figura 3.14 - Equivalente da associação das indutâncias L1 e L2.                                                                                                                                                                                                                                                    | 41 |
| Figura 3.15 - Forma de onda da tensão de saída dos dois rectificadores (PD3:V <sub>1</sub> (t) e S3:V <sub>2</sub> (t)),<br>diferença de tensão entre os dois (Vd(t)), e integral da diferença. Vc é a tensão<br>eficaz composta da alimentação do estátor, s é o deslizamento e fr a frequência de<br>alimentação. | 43 |
| Figura 3.16 - Corrente total equivalente dos dois enrolamentos rotóricos.                                                                                                                                                                                                                                           | 45 |
| Figura 3.17 - Frequência da corrente no estátor provocada pelo harmónico <i>nh</i> da corrente equivalente total dos dois enrolamentos do rótor                                                                                                                                                                     | 46 |
| Figura 3.18 - Esquema usado para obter o valor da indutância de alisamento                                                                                                                                                                                                                                          | 47 |
| Figura 3.19 - Forma de onda típica da tensão gerada pelo conversor DC/AC à sua entrada. $(im=0.5 e \theta=0^{\circ})$ .                                                                                                                                                                                             | 47 |
| Eiter 2 20. Example to the Let $(t) = \int (Edc(t) - Vdc) dt$                                                                                                                                                                                                                                                       | 40 |
| Figura 5.20 - Formas de onda de Edc(t) e $\cdot$                                                                                                                                                                                                                                                                    | 49 |
| Figura 3.21 - Andamento do valor de pico a pico ( $\Delta y$ ) de $\int (Edc(t) - Vdc) dt$ em função do índice de modulação.                                                                                                                                                                                        | 50 |
| Figura 4.1 - Esquema geral da conversão dc-ac.                                                                                                                                                                                                                                                                      | 51 |
| Figura 4.2 - Esquema básico do inversor de corrente.                                                                                                                                                                                                                                                                | 52 |
| Figura 4.3 - Utilização normal do inversor de corrente.                                                                                                                                                                                                                                                             | 52 |
| Figura 4.4 - Modelação do inversor de corrente.                                                                                                                                                                                                                                                                     | 53 |
| Figura 4.5 - Demonstração da necessidade de haver apenas 1 interruptor a conduzir nos grupos superior e inferior.                                                                                                                                                                                                   | 54 |
| Figura 4.6 - Construção das moduladoras $M_1$ e $M_2$                                                                                                                                                                                                                                                               | 55 |
| Figura 4.7 - Operação de modulação                                                                                                                                                                                                                                                                                  | 56 |
| Figura 4.8 - Inversor de corrente.                                                                                                                                                                                                                                                                                  | 57 |
| Figura 4.9 - Geração dos sinais de comando do inversor e correntes obtidas na saída para im=1                                                                                                                                                                                                                       | 58 |
| Figura 4.10 - Geração dos sinais de comando do inversor e correntes obtidas na saída para<br>im=0.5                                                                                                                                                                                                                 | 59 |
| Figura 4.11 - Geração dos sinais de comando do inversor e correntes obtidas na saída para<br>im=0.1                                                                                                                                                                                                                 | 60 |
| Figura 4.12 - Forma de onda das correntes de saída para um controlo em onda quadrada e respectiva sequência de estados de controlo                                                                                                                                                                                  | 61 |
| Figura 4.13 - Transições do sinal $S_1$ em função de $P_1$ e $M_1$                                                                                                                                                                                                                                                  | 61 |
| Tabela 4.1 - Sinais que devem ser aplicados no comando dos interruptores em função do intervalo de tempo respectivo.                                                                                                                                                                                                | 62 |
| Figura 4.14 - Obtenção do sinal de comando dos interruptores durante o primeiro $1/6$ de período $(T_1)$                                                                                                                                                                                                            | 62 |
| Tabela 4.2 - Constituição da tabela de controlo do inversor para o PWM usado neste trabalho. A                                                                                                                                                                                                                      |    |
| frequência das portadoras é de 45 vezes a frequência das correntes de referência. Os                                                                                                                                                                                                                                |    |
| tempos $d_1d_{15}$ são função do índice de modulação                                                                                                                                                                                                                                                                | 63 |
| Figura 4.15 - Modelo do módulo de <i>software</i> de comando do inversor                                                                                                                                                                                                                                            | 65 |
| Figura 4.16 - Tabela com a duração dos estados do PWM. Os 29 valores correspondem aos estados durante 1/6 de período que depois se repetem para os restantes 5/6. A tabela                                                                                                                                          |    |

|               | é percorrida no sentido descendente e o seu final é sinalizado com o valor FFFFh.                                                                                              |          |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|               | Cada <b>im</b> possui uma tabela deste tipo que ocupa 60bytes                                                                                                                  | 67       |
| Figura 4.17 - | - Organização das tabelas usadas na síntese do PWM.                                                                                                                            | 68       |
| Figura 4.18 - | - Esquema para realizar a sobreposição de condução                                                                                                                             | 69       |
| Figura 4.19   | - Fluxograma usado na rotina <i>gera_pwm()</i> . Esta rotina é executada por interrupção quando o contador T6 chega a zero                                                     | 71       |
| Figura 4.20 - | - Fluxograma usado para mudar o índice de modulação.                                                                                                                           | 73       |
| Figura 4.21 - | - Esquema básico para obtenção de frequência variável com um PWM tabelado.                                                                                                     | 74       |
| Tabela 4 3 -  | Valores de frequência obtida em função do valor de correcção                                                                                                                   | 75<br>75 |
| Figura 4.22   | - Atraso nas interrupções da detecção de passagem por zero da tensão da rede provocadas pela filtragem.                                                                        | 77       |
| Figura 4 23 - | - Controlo do esfasamento entre a tensão da rede e a corrente gerada pelo inversor                                                                                             | 77       |
| Figura 4 24 . | - Fluxograma da interrunção nassagem zero, rede()                                                                                                                              | 79       |
| Figure 4.25   | Correspondência entre o valor de T3 e a fase                                                                                                                                   | 80       |
| Figure 4.25   | Companyação devido no atraço provocado polo filtro no circuito de deteccão de                                                                                                  | .00      |
| Figura 4.20   | - Compensação devido do atraso provocado pelo mito no circunto de delecção de                                                                                                  | 80       |
| Eiguno 4 27   | Elywarrama da ratina muda fasa mum(fasa)                                                                                                                                       | 00       |
| Figura 4.27 - | - Fluxogrania da founta mudu_jase_pwm(jase)                                                                                                                                    | 01       |
| Figura 4.28 - | - Quantificação do nivel de dessincronização do P w M.                                                                                                                         | 83       |
| Figura 4.29 - | - Identificação do grupo do estado actual do PWM.                                                                                                                              | 84       |
| Figura 4.30 - | - Fluxograma da rotina <i>acerta_fase_pwm()</i>                                                                                                                                | 85       |
| Figura 4.31 - | - Espectro das correntes de saída do inversor para vários índices de modulação                                                                                                 | 88       |
| Figura 4.32   | - Espectro relativo das correntes de saída do inversor para vários índices de modulação                                                                                        | 89       |
| Figura 4.33   | - Espectro relativo das correntes de saída do inversor para vários índices de modulação (zoom das fig: 4.32)                                                                   | 90       |
| Figura 4.34   | - Evolução da componente fundamental e dos harmónicos $nfp \pm 2$ e $nfp \pm 4$ com o índice de modulação                                                                      | 91       |
| Figura 4.35   | - Evolução dos harmónicos <b>2. nfp</b> $\pm$ <b>1</b> , <b>2. nfp</b> $\pm$ <b>5</b> e <b>2. nfp</b> $\pm$ <b>7</b> .com o índice de modulação.                               | 91       |
| Figura 4 36 - | - Evolução dos harmónicos relativos (DB) do 13º até ao 49                                                                                                                      | 92       |
| Figura 4 37 - | - Evolução dos harmónicos relativos (DB) do 53º até ao 67                                                                                                                      | 92       |
| Figure 4.37   | - Evolução dos harmónicos relativos (DB) do 55° de do 67                                                                                                                       | 02       |
| Figure 4.30   | Esquema utilizado para analisar a tansão à antrada do inversor                                                                                                                 | 03       |
| Figura 4.39   | Esquema de anda da tanção Vda am função da tanção da rada o das comentas do                                                                                                    | 75       |
|               | Forma de onda da tensao vac em função da tensão da fede e das correntes do inversor                                                                                            | 94       |
| Figura 4.41   | - Comparação da tensão gerada a entrada do inversor para varios indices de modulação e esfasamentos                                                                            | 95       |
| Figura 4.42   | - Espectro e espectro relativo da tensão à entrada do inversor para fase=0° e vários índices de modulação.                                                                     | 96       |
| Figura 4.43   | <ul> <li>Evolução da componente contínua e dos principais harmónicos da tensão à entrada<br/>do inversor em função do índice de modulação para um esfasamento nulo.</li> </ul> | 96       |
| Figura 4.44   | - Evolução da componente contínua da tensão à entrada do inversor em função do esfasamento para vários índices de modulação                                                    | .97      |
| Figura 4.45 - | - Forma de onda da tensão aos terminais dos interruptores do inversor                                                                                                          | 98       |
| Figura 4.46 - | - Evolução dos harmónicos de corrente em função do índice de modulação                                                                                                         | 99       |
|               | - Evolução dos harmónicos relativos de corrente em função do índice de modulação1                                                                                              | 00       |
| Figura 4.48 - | - Alimentação do inversor com uma corrente independente.                                                                                                                       | 02       |
| Figura 4 49 - | - Alimentação do inversor por uma fonte de tensão não controlada                                                                                                               | 03       |
| Figura 4 50   | - Consumo de potência reactiva em função da corrente no harramento DC e em                                                                                                     | 55       |
| - 15uiu 7.50  | função da velocidade para vários valores de $V_{DC}$                                                                                                                           | 05       |

| Figura 4.51 - Dispositivos que implementam um interruptor: IGBT, díodo, supressor e <i>driver</i> isolado                      | 106 |
|--------------------------------------------------------------------------------------------------------------------------------|-----|
| Figura 4.52 - Esquema do inversor, protecção e envolvente de comando.                                                          | 107 |
| Figura 5.1 - Modelação do SRED.                                                                                                | 111 |
| Figura 5.2 - Modelo para representação da máquina assíncrona.                                                                  | 112 |
| Figura 5.3 - Modelação do inversor do lado contínuo.                                                                           | 114 |
| Figura 5.4 - Modelo mais completo do inversor do lado contínuo.                                                                | 114 |
| Figura 5.5 - Esquema do conjunto do paralelo dos rectificadores com o filtro DC                                                | 115 |
| Figura 5.6 - Equivalente visto pelo lado AC dos rectificadores                                                                 | 116 |
| Figura 5.7 - Modelo do SRED.                                                                                                   | 116 |
| Figura 5.8 - Diagrama das potências em jogo no modelo do SRED.                                                                 | 117 |
| Figura 5.9 - Separação do modelo em dois circuitos e equivalente <i>NORTON</i> do circuito A                                   | 119 |
| Figura 5.10 - Esquema eléctrico mais simples do modelo do SRED.                                                                | 120 |
| Figura 5 11 - Fasores com a origem em $\overline{I2}$                                                                          | 121 |
| Figure 5.12 - Easores com a origem na tensão da rede $\overline{V1}$                                                           | 121 |
| Figura 5.12 - Lasores com a origent na tensão da rede + 1                                                                      | 141 |
| valores de Vdc.                                                                                                                | 122 |
| Figura 5.14 - Andamento da corrente no estátor em função da velocidade para vários valores de Vdc                              | 122 |
| Figura 5.15 - Andamento da potência absorvida pelo estátor em função da velocidade para vários valores de Vdc                  | 123 |
| Figura 5.16 - Andamento da potência transferida do estátor para o rótor em função da velocidade                                |     |
| para vários valores de Vdc                                                                                                     | 123 |
| Figura 5.17 - Andamento da potência entregue à rede pelos conversores em função da velocidade<br>para vários valores de Vdc    | 123 |
| Figura 5.18 - Andamento da potência total retirada à rede em função da velocidade para vários valores de Vdc                   | 124 |
| Figura 5.19 - Andamento da potência mecânica em função da velocidade para vários valores de                                    |     |
| Vdc                                                                                                                            | 124 |
| Figura 5.20 - Andamento do binário electromagnético em função da velocidade para vários                                        |     |
| valores de Vdc.                                                                                                                | 124 |
| Figura 5.21 - Andamento do potência reactiva absorvida pelo estátor em função da velocidade para vários valores de Vdc         | 125 |
| Figura 5.22 - Andamento do factor de potência do estátor em função da velocidade para vários                                   |     |
| valores de Vdc.                                                                                                                | 125 |
| Figura 5.23 - Andamento da corrente do estátor em função da corrente no barramento DC                                          | 125 |
| Figura 5.24 - Andamento da velocidade em função da corrente no barramento DC para vários valores de Vdc.                       | 126 |
| Figura 5.25 - Andamento da potência total retirada à rede em função da corrente no barramento<br>DC para vários valores de Vdc | 126 |
| Figura 5.26 - Andamento da potência mecânica em função da corrente no barramento DC para                                       | 120 |
| Varios valores de vuc                                                                                                          | 120 |
| rigura 3.27 - Andamento da potencia absorvida pelo estator em função da corrente no barramento DC para vários valoros de Vda   | 177 |
| Figura 5.28 Andamento do binário em função de corrente no horremente DC                                                        | 127 |
| Figura 5.20 - Andamento da potância reactiva absorvida nalo astátor am função da corrente no                                   | 14/ |
| harramento DC                                                                                                                  | 127 |
| Figura 5.30 - Andamento do factor de potência do estátor em função da corrente no barramento                                   | 1   |
| DC para vários valores de Vdc.                                                                                                 | 128 |
| Figura 5.31 - Controlador de corrente no barramento DC.                                                                        | 129 |
| Figura 5.32 - Modelo simplificado do SRED                                                                                      | 130 |

| Figura 5.33 - Andamento de varias grandezas em função da velocidade para Idc <sub>ref</sub> =500A                                                                                                                       | 131 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figura 5.34 - Andamento da corrente no barramento DC em função da velocidade para vários valores de Idc <sub>ref</sub> .                                                                                                | 131 |
| Figura 5.35 - Andamento da tensão no barramento DC em função da velocidade para vários valores de Idc <sub>ref</sub> .                                                                                                  | 132 |
| Figura 5.36 - Andamento do binário em função da velocidade para vários valores de Idc <sub>ref</sub>                                                                                                                    | 132 |
| Figura 5.37 - Andamento da potência absorvida pelo estátor em função da velocidade para vários valores de Idc <sub>ref</sub> .                                                                                          | 132 |
| Figura 5.38 - Andamento da potência total absorvida à rede em função da velocidade para vários valores de Idc <sub>ref</sub> .                                                                                          | 133 |
| Figura 5.39 - Andamento da potência mecânica em função da velocidade para vários valores de Idc <sub>ref</sub> .                                                                                                        | 133 |
| Figura 5.40 - Andamento da corrente absorvida pelo estátor em função da velocidade para vários valores de Idc <sub>ref</sub> .                                                                                          | 133 |
| Figura 5.41 - Andamento da potência reactiva absorvida pelo estátor em função da velocidade para vários valores de Idc <sub>ref</sub> .                                                                                 | 134 |
| Figura 5.42 - Andamento de varias grandezas em função da velocidade para Idc <sub>ref</sub> =300A                                                                                                                       | 135 |
| Figura 5.43 - Andamento da corrente no barramento DC em função da velocidade para vários valores de Idc <sub>ref</sub> .                                                                                                | 135 |
| Figura 5.44 - Andamento da tensão no barramento DC em função da velocidade para vários valores de Idc <sub>ref</sub> .                                                                                                  | 135 |
| Figura 5.45 - Andamento do binário em função da velocidade para vários valores de Idc <sub>ref</sub>                                                                                                                    | 136 |
| Figura 5.46 - Andamento da potência absorvida pelo estátor em função da velocidade para vários valores de Idc <sub>ref</sub> .                                                                                          | 136 |
| Figura 5.47 - Andamento da potência total absorvida à rede em função da velocidade para vários valores de Idc <sub>ref</sub> .                                                                                          | 136 |
| Figura 5.48 - Andamento da potência mecânica em função da velocidade para vários valores de Idc <sub>ref</sub> .                                                                                                        | 137 |
| Figura 5.49 - Andamento da corrente absorvida pelo estátor em função da velocidade para vários valores de Idc <sub>ref</sub> .                                                                                          | 137 |
| Figura 5.50 - Andamento da potência reactiva absorvida pelo estátor em função da velocidade para vários valores de Idc <sub>ref</sub> .                                                                                 | 137 |
| Figura 5.51 - Corrente no barramento DC no arranque da máquina em função da resistência equivalente dos filtros AC e DC e impedância de ligação à rede (Valores estimados                                               | 120 |
| Figura 5.52 Limites da potência que o SPED pode fornecer à rede em função da valocidade                                                                                                                                 | 130 |
| Figura 5.52 - Emittes da potencia que o SRED pode fornecer à rede em função da velocidade<br>Figura 5.53 - Curvas limite de Idc para os limites da potência que o SRED pode fornecer à rede<br>em função da velocidade. | 140 |
| Figura 6.1 - Ambiente de interacção do Sistema de Comando do Sistema de Recuperação da                                                                                                                                  | 110 |
| Energia de Deslizamento para o aproveitamento da energia das ondas Oceânicas                                                                                                                                            | 142 |
| Figura 6.2 - Interface com o operador local.                                                                                                                                                                            | 144 |
| Figura 6.3 - Esquema geral dos sensores e actuadores existentes.                                                                                                                                                        | 146 |
| Figura 6.4 - Esquema de blocos do microcontrolador                                                                                                                                                                      | 150 |
| Figura 6.5 - Endereçamento via registos DPP                                                                                                                                                                             | 151 |
| Figura 6.6 - Estrutura dos registos de operação: SFR                                                                                                                                                                    | 152 |
| Figura 6.7 - Protecção da system stack a acessos ilegais.                                                                                                                                                               | 153 |
| Figura 6.8 - Registo individual de controlo das interrupções do C167 (interrupção nº xx).                                                                                                                               | 153 |
| Figura 6.9 - Registo especial PSW (Processor Status Word) do C167                                                                                                                                                       | 154 |
| Figura 6.10 - Registo de controlo do canal "x" de transferência via PEC                                                                                                                                                 | 155 |
| Figura 6.11 - Esquema de Blocos da Placa de Interface                                                                                                                                                                   | 159 |
| Figura 6.12 - Relações entre as medidas e as portas do conversor A/D do C167                                                                                                                                            | 159 |

| Figura 6.13 - Circuito gerador de referencias                                                      | 160 |
|----------------------------------------------------------------------------------------------------|-----|
| Figura 6.14 - Condicionamento da medida da corrente no barramento DC                               | 160 |
| Figura 6.15 - Diagrama de blocos do sistema de medida e relação entre a corrente Idc e a palavra   |     |
| digital (PD) resultante da conversão A/D                                                           | 160 |
| Figura 6.16 - Condicionamento da medida da tensão no barramento DC                                 | 161 |
| Figura 6.17 - Diagrama de blocos do sistema de medida e relação entre a tensão Udc e a palavra     |     |
| digital (PD) resultante da conversão A/D                                                           | 161 |
| Figura 6.18 - Condicionamento da medida da tensão na rede (por fase)                               | 161 |
| Figura 6.19 - Diagrama de blocos do sistema de medida e relação entre as tensões da rede e a       |     |
| palavra digital (PD) resultante da conversão A/D.                                                  | 162 |
| Figura 6.20 - Condicionamento das medidas de corrente.                                             | 162 |
| Figura 6.21 - Diagrama de blocos do sistema de medida                                              | 163 |
| Figura 6.22 - Relação entre as correntes do rótor e a palavra digital (PD) resultante da conversão |     |
| A/D                                                                                                | 163 |
| Figura 6.23 - Relação entre as correntes da rede e a palavra digital (PD) resultante da conversão  |     |
| A/D                                                                                                | 163 |
| Figura 6.24 - Esquema de condicionamento do sinal de medida de velocidade                          | 164 |
| Figura 6.25 - Circuito de detecção da passagem por zero da tensão da fase R da rede                | 164 |
| Figura 6.26 - Formas de onda do circuito de detecção da passagem por zero da tensão da fase R      |     |
| da rede                                                                                            | 165 |
| Figura 6.27 - Esquema genérico do comando e monitorização dos disjuntores e contactores            | 166 |
| Figura 6.28 - Ligação do display ao MM167                                                          | 166 |
| Figura 6.29 - Ligação dos leds ao MM167.                                                           | 167 |
| Figura 6.30 - Ligação dos botões ao MM167.                                                         | 167 |
| Figura 6.31 - Esquema das comunicações com o exterior.                                             | 168 |
| Figura 6.32 - Alarmes da máquina assíncrona.                                                       | 168 |
| Figura 6.33 - Circuito de alimentação DC.                                                          | 168 |
| Figura 6.34 - Mapa de memória para os resultados das conversões A/D.                               | 174 |
| Figura 6.35 - Sequência de execução do pré-escalonador e escalonador                               | 175 |
| Figura 6.36 - Fluxograma do pré-escalonador.                                                       | 176 |
| Figura 6.37 - Esquema do buffer utilizado para os botões da consola local                          | 177 |
| Figura 6.38 - Fluxograma para a captura dos botões e escrita no buffer                             | 178 |
| Figura 6.39 - Fluxograma para as rotinas acederem aos botões que foram premidos pelo operador.     | 179 |
| Figura 7.1 - Esquema equivalente do barramento DC.                                                 | 182 |
| Figura 7.2 - Evolução no tempo da aquisição das amostras, do calculo das medidas e da execução     |     |
| da rotina de controlo da corrente                                                                  | 182 |
| Figura 7.3 - Variação da corrente Idc em função de Vdc <sub>inv</sub> .                            | 183 |
| Figura 7.4 - Estrutura do controlador PID analógico aplicado ao SRED para controlo da corrente     |     |
| Idc                                                                                                | 183 |
| Figura 7.5 - Estrutura do controlador PID digital aplicado ao SRED para controlo da corrente Idc   | 184 |
| Figura 7.6 - Limitação de Vdcinv à zona estável da curva binário / velocidade                      | 185 |
| Figura 7.7 - Influência da largura da janela de limitação de im.                                   | 185 |
| Figura 7.8 - Influencia do sinal da potência trocada com a rede no controlo do SRED                | 188 |
| Figura 7.9 - Uso de um PID para calcular a corrente de referência.                                 | 189 |
| Figura 7.10 - Controlo da potência em malha aberta através do cálculo da corrente de referência    |     |
| no barramento DC                                                                                   | 189 |