Fully probabilistic optimization of reinforced concrete elements using heuristic algorithm and neural network

Venclovský J., Štěpánek P., Laníková I.

Brno University of Technology, Faculty of Civil Engineering
Introduction

Many mathematical programming applications in civil engineering, e.g.

• structural design
• water management
• reconstruction of transportation networks
• reliability related computations
Structural Design

Two ways of structural designing

• partial reliability factor method
 • all uncertainties are replaced with their characteristic values
 • calculation is simple
 • obtaining input data is easy

• fully probabilistic design
 • complex time-consuming computation
 • lack of input data
Design Optimization

Two ways to optimize structural design

• DBSO (Deterministic-Based Structural Optimization)
 • based on partial reliability factor method
 • provides suboptimal solution
 • quick

• RBSO (Reliability-Based Structural Optimization)
 • based on probabilistic design
 • „better“ solution
 • complex and time-consuming
DBSO Definition – Objective Function

Objective is to minimize beam’s price

\[
\min(C_C V_C(x) + C_S W_S(x))
\]

\(C_C, C_S\) – cost of concrete per m\(^3\), cost of steel per kg

\(V_C, W_S\) – volume of concrete [m\(^3\)], weight of steel [kg]

\(x\) – vector of design variables
DBSO Definition – Design Variables

The work focuses on beams

- e.g. simply supported beam with this scheme and cross section

- here then \(x = (b_1, b_2, b_3, h_1, h_2, h_3, A_{s1}, A_{s3}) \)
DBSO Definition – ULS

First constraint is ULS – ultimate limit state

• beam has to bear the prescribed load \Leftrightarrow strains in concrete and steel cannot exceed prescribed values

\[
\varepsilon \geq \varepsilon_{c,\text{min}} \quad \text{in cross section vertices}
\]

\[
\varepsilon \leq \varepsilon_{s,\text{max}} \quad \text{in reinforcing steel positions}
\]

ε – actual strain value

$\varepsilon_{c,\text{min}}$ – minimal allowed strain of concrete

$\varepsilon_{s,\text{max}}$ – maximal allowed strain of steel
DBSO Definition – SLS

Second constraint is SLS – serviceability limit state

• more possibilities, here it is limitation of deflection

• beam’s deflection cannot exceed prescribed maximum value

\[w \leq w_{\text{max}} \]

\(w \) – beam’s deflection
DBSO Definition – FEM

• Mathematical model is rather complex
• To be able to assess ULS and SLS it is necessary to proceed with matrix calculations

\[Ku = F \]

\(K \) – stiffness matrix; depends on \(x \)
\(F \) – vector of load; depends on load
\(u \) – vector of node deflections; strain \(\varepsilon \) and deflection \(w \) depend on it
RBSO Definition

• same as DBSO, except
 • some variables become random variables (such as load, material characteristics of concrete and steel, etc.)
 • ULS and SLS are redefined as probabilistic constraints
 • ULS
 \[
 P\left((\varepsilon(\text{vertices}) \geq \varepsilon_{c,\text{min}}) \land (\varepsilon(\text{steel}) \leq \varepsilon_{s,\text{max}}) \right) \geq p_{ULS}
 \]
 • SLS
 \[
 P(w \leq w_{max}) \geq p_{SLS}
 \]
Solution

• the probability \(p_{ULS} \) should reach the level from \(1-10^{-4} \) to \(1-10^{-6} \) (depending on chosen reliability class), which is obviously troublesome to achieve

• large number of scenarios makes the problem insolvable in a reasonable time horizon

• therefore a different approach is proposed
 • this is based on algorithm divided into inner deterministic optimization (based on Reduced Gradient Method) and outer stochastic optimization (based on Regression Analysis)
Example

• shown on the mentioned simply supported beam
Example

- normal force N and distributed load q are random variables with gamma distribution
Solution – 1. Initialization

• The calculation is initialized by choosing 12 initialization scenarios

\[\xi^{\text{init}}_k = (q^{\text{init}}_k, N^{\text{init}}_k), \quad k = 1, ..., 12 \]

• For these scenarios, the deterministic optimization is performed, giving design variables’ values \(x^{\text{init}}_k \) and values of objective function \(f^{\text{init}}_k \)

• Probabilities \(p^{\text{init}}_{U_k}, p^{\text{init}}_{S_k} \) that configuration \(x^{\text{init}}_k \) satisfies the ULS and SLS, are assessed using Neural Network on Monte Carlo Simulation
Solution – 2. Iteration

• Regression analysis is applied on known scenarios to approximate behavior of objective function values and probabilities with regards to values of q and N

• Next scenario ξ^iter_l is selected based on these approximations (so that it satisfies set probabilities and has minimal objective function value)
Solution – 2. Iteration
Solution – 2. Iteration
Solution – 2. Iteration
Solution – 2. Iteration

• The deterministic optimization is performed for the new scenario ξ^iter_l, giving design variables’ values x^iter_l and values of objective function f^iter_l

• Also, probabilities $p^\text{iter}_U l$, $p^\text{iter}_S l$ that configuration x^iter_l satisfies the ULS and SLS, are assessed using Neural Network on Monte Carlo Simulation

• If $p^\text{iter}_U l \geq p^\text{ULS}$ and $p^\text{iter}_S l \geq p^\text{SLS}$
 • than x^iter_l is solution, end
 • else, ξ^iter_l is added to regression and solution continues with next iteration
Solution – 2. Iteration
Solution – 2. Iteration
Solution – 2. Iteration
Results

• Results
 • desired probabilities $p_{ULS} = 99.99277 \%$, $p_{SLS} = 93.31928 \%$
 • obtained probabilities $p_U = 99.9928 \%$, $p_S = 99.9324 \%$
 • solution found for scenario $q = 34.4103 \text{ kN/m}$, $N = 5.3090 \text{ kN}$
The End

Thank you for your attention