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Abstract—The increased integration of wind power into the elec-
tric grid, as it occurs today in Portugal, poses new challenges due
to its intermittency and volatility. Wind power forecasting plays
a key role in tackling these challenges. A novel hybrid approach,
combining wavelet transform, particle swarm optimization, and an
adaptive-network-based fuzzy inference system, is proposed in this
paper for short-term wind power forecasting in Portugal. A thor-
ough comparison is carried out, taking into account the results ob-
tained with seven other approaches. Finally, conclusions are duly
drawn.

Index Terms—Forecasting, fuzzy logic, neural networks, swarm
optimization, wavelet transform, wind power.

1. INTRODUCTION

IND generation is the fastest growing source of renew-
W able energy [1], [2]. In Portugal, the wind power goal
foreseen for 2010 was established by the government as 3750
MW, representing about 25% of the total installed capacity in
2010. This value has been raised to 5100 MW by the most re-
cent governmental goals for the wind sector. Hence, Portugal
has one of the most ambitious goals in terms of wind power
[3], [4], and in 2006 was the second country in Europe with the
highest wind power growth.

The wind energy is free, so all wind-generated electric en-
ergy is accepted as it comes, i.e., as it is available. However, the
availability of the power supply generated from wind energy is
not known in advance. Hence, the integration of a large share
of wind power in an electricity system leads to some important
challenges [5]. Wind power forecasting plays a key role in tack-
ling these challenges [6].

Wind power prediction is a primary requirement for efficient
large-scale integration of wind generation in power systems and
electricity markets [7]-[12]. The time scales concerning short-
term prediction are in the order of some days (for the forecast
horizon) and from minutes to hours (for the time-step) [13].

In the technical literature, several methods to predict wind
power have been reported, namely physical [14] and statistical
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methods. A comprehensive report on the state-of-the-art in
short-term prediction of wind power can be found in [15].

The physical method requires a lot of physical considera-
tions to reach the best prediction precision. Supercomputers are
usually required to run numerical weather prediction (NWP)
models [16]. For a physical model, the input variables will be
the physical or meteorology information, such as description of
orography, roughness, obstacles, pressure, and temperature. The
statistical method aims at finding the relationship of the on-line
measured power data. For a statistical model, the historical wind
power data may be used. The physical method has advantages
in long-term prediction while the statistical method does well in
short-term prediction [17].

The conventional statistical models are time-series-based
models [18], including autoregressive (AR), and autoregressive
integrated moving average (ARIMA) [19] models. The persis-
tence models are considered as the simplest time-series models,
but they can surpass many other models in very short-term
prediction [17]. Particularly, persistence beats the NWP-based
model for short prediction horizons (ca 3-6 hours) [15]. The
persistence model is a useful first approximation for short-term
wind power forecasting. A new reference model (NRM) was
proposed in [20], which can be used instead of the persistence
model.

Some new methods are catching researcher’s attention,
namely data mining [21], neural networks (NNs) [22]-[26],
fuzzy logic and neuro-fuzzy (NF) [27]-[29], evolutionary algo-
rithms [30], and some hybrid methods [31]-[33]. The accurate
comparison of all the methods is quite difficult because these
methods depend on different situations and the data collection
is a formidable task. However, it has been reported that arti-
ficial intelligence methods outperformed others in short-term
prediction [17].

In this paper, a novel hybrid approach is proposed for
short-term wind power forecasting in Portugal. The proposed
approach is based on the combination of wavelet transform
(WT), particle swarm optimization (PSO), and adaptive-net-
work-based fuzzy inference system (ANFIS). Our hybrid WPA
approach is compared with persistence, NRM, ARIMA, NN,
NNWT, NF, and wavelet-neuro-fuzzy (WNF) approaches, to
demonstrate its effectiveness regarding forecasting accuracy
and computation time.

The contributions of this paper are threefold:

1) to propose a novel hybrid approach for short-term wind

power forecasting;
2) to improve forecasting accuracy, taking into account the
results obtained with seven other approaches;
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3) to offer a practical solution in terms of computational
burden.

This paper is organized as follows. Section II presents the
proposed approach to forecast wind power. Section III provides
the different criterions used to evaluate the forecasting accuracy.
Section IV provides the numerical results from a real-world case
study. Section V outlines the conclusions.

II. PROPOSED APPROACH

The proposed approach is based on the combination of WT,
PSO, and ANFIS. The WT is used to decompose the wind power
series into a set of better-behaved constitutive series. Then, the
future values of these constitutive series are forecasted using
ANFIS. The PSO is used to improve the performance of ANFIS,
tuning the membership functions required to achieve a lower
error. Finally, the ANFIS forecasts allow, through the inverse
WT, reconstructing the future behavior of the wind power series,
and therefore, to forecast wind power.

A. Wavelet Transform

The WT convert a wind power series in a set of constitutive
series. These constitutive series present a better behavior than
the original wind power series, and therefore, they can be pre-
dicted more accurately. The reason for the better behavior of the
constitutive series is the filtering effect of the WT.

WTs can be divided in two categories: continuous wavelet
transform (CWT) and discrete wavelet transform (DWT). The
CWT W (a,b) of signal f(z) with respect to a mother wavelet
¢(x) is given by [34]

Wb == [ roe()a o

where the scale parameter a controls the spread of the wavelet
and translation parameter b determines its central position.
DWT is more efficient and just as accurate as the CWT [35].
DWT is defined as

_ s t — n2m
W(m,n) =22 3" f(t)¢ (—) )

2m
t=0

where T is the length of the signal f(¢). The scaling and trans-
lation parameters are functions of the integer variables m and
n(a = 2™,b = n2™);t is the discrete time index.

A fast DWT algorithm based on the four filters (decompo-
sition low-pass, decomposition high-pass, reconstruction low-
pass, and reconstruction high-pass filters) was developed by
Mallat [36].

Multiresolution via Mallat’s algorithm is a procedure to ob-
tain “approximations” and “details” from a given signal. By suc-
cessive decomposition of the approximations (Fig. 1), a multi-
level decomposition process can be achieved where the original
signal is broken down into lower resolution components.

A wavelet function of type Daubechies of order 4 (abbrevi-
ated as Db4) is used as the mother wavelet ¢(t). This wavelet
offers an appropriate trade-off between wavelength and smooth-
ness, resulting in an appropriate behavior for short-term wind
power forecasting. Similar wavelets have been considered by
previous researchers for load forecasting [34], [35] and price
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Fig. 1. Multilevel decomposition process.

forecasting [37], [38]. Also, three decomposition levels are con-
sidered, as in [38], since it describes the wind power series in a
thorough and meaningful way.

B. PFarticle Swarm Optimization

PSO is a heuristic approach first proposed by Kennedy and
Eberhart in 1995 [39] as an evolutionary computational method.
The PSO algorithm is based on the biological and sociological
behavior of animals searching for their food [40].

Empirical evidence has been accumulated to show that the
algorithm is a useful tool for optimization [41]. PSO has been
applied to many optimization problems in engineering, for in-
stance [42].

Consider an optimization problem of D variables. A swarm
of N particles is initialized in which each particle is assigned a
random position in the D -dimensional hyperspace. Let x denote
a particle’s position and v denote the particle’s flight velocity
over a solution space.

The best previous position of a particle is Pbest. The index
of the best particle among all particles in the swarm is Gbest.
Velocity and position of a particle are updated by the following
update rules:

) — (Zpbest; — Zi(t))
vi(t) = wvi(t — 1) + p1 N

(xG})est — T (t))
+ P2 T (3)

zi(t) = z;(t — 1) + v;(t) At 4

where w is an inertia weight, At is the time-step value, p; and
p2 are random variables defined as p; = r1C1 and py = r2C5,
with 71,79 ~ U(0, 1), and Cy and C5 are positive acceleration
constants. The time-step is necessary to make the algorithm di-
mensionally correct. Also, constants C'y and C5 are both set at
2.0, following the typical practice in [43].

Fig. 2 illustrates a search mechanism of a PSO technique
using the velocity update rule (3) and the position update rule
4).

An inertia correction function called “inertia weight approach
(IWA)” is also used in this work [43]. During the IWA, the in-
ertia weight w is modified according to the following equation:

Wmax — Wmin Ttr (5)

W = Wmax —
Ttr max
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Fig. 2. Updating the position mechanism of PSO.
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Fig. 3. ANFIS architecture.

where wpax and wp;, are the initial and final inertia weights,
Itrnax 1s the maximum number of iteration, and Itr is the current
number of iteration.

C. ANFIS

ANFIS is a class of adaptive multilayer feedforward net-
works, applied to nonlinear forecasting where past samples
are used to forecast the sample ahead. ANFIS incorporates
the self-learning ability of NN with the linguistic expression
function of fuzzy inference [44].

The ANFIS architecture is shown in Fig. 3. The ANFIS net-
work is composed of five layers. Each layer contains several
nodes described by the node function. Let O/ denote the output
of the 7th node in layer j.

Inlayer 1, every node 7 is an adaptive node with node function

O; = pAi(z), i=1,2 (6)
or

O; = uBi—s(y), i=3,4 )

where = (or y) is the input to the ¢th node and A; (or B;_2)
is a linguistic label associated with this node. The membership
functions for A and B are usually described by generalized bell
functions, e.g.,

1
pAi(x) = - ®)

rT—r;
Pi

1+

where {p;,q;,r;} is the parameter set. Any continuous and
piecewise differentiable functions, such as triangular-shaped
membership functions, are also qualified candidates for node
functions in this layer [45]. Parameters in this layer are referred
to as premise parameters.

In layer 2, each node [] multiplies incoming signals and
sends the product out

0} = w; = pAi(x)uB;(y), i=1,2. 9

Each node output represents the firing strength of a rule.

In layer 3, each node IV computes the ratio of the sth rules’s
firing strength to the sum of all rules’ firing strengths

3 Wy

Oi:wi:

i=1,2. (10)

w1 + wo ’
The outputs of this layer are called normalized firing strengths.

In layer 4, each node computes the contribution of the ¢th rule
to the overall output

O?:’Lﬁizi :wi(ai1‘~|—biy—|—ci)7 1 =1,2 (11)

where w; is the output of layer 3 and {a;, b;, ¢; } is the param-
eter set. Parameters of this layer are referred to as consequent
parameters.

In layer 5, the single node ) | computes the final output as the
summation of all incoming signals

i i Wi

Thus, an adaptive network is functionally equivalent to a
Sugeno-type fuzzy inference system.

In this paper, ANFIS employs the PSO method to adjust the
parameters of the membership functions, as in [46]. The PSO
techniques have the advantage of being less computationally ex-
pensive for a given size of network topology. The membership
functions considered in this study are triangular-shaped.

12)

D. Hybrid Approach

In this section, the algorithm used to implement the proposed
approach is described step-by-step.

As depicted in Fig. 4, wavelet techniques are implemented
in the first and last stages. The actual time-series (wind power
data) are first decomposed into a number of wavelet coefficient
signals and one approximation signal.

The original wind power series is decomposed into four com-
ponents by the WT and each subseries is separately predicted by
the ANFIS. Finally, the predicted signals are recombined in the
last stage to form the final predicted wind power series.

1) First step: Form a matrix with a set of historical wind
power data, arranged in C' columns of a matrix thereof.
Each column of the array has an associated profile of wind
power for a 3-hour interval with a time-step of 15 min (12
measured power values). In this first step, the matrix has
four columns, corresponding to 12 hours.

2) Second step: Select a number of columns of the previous
array so that the set of values derived from it represents the
real input data.
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Fig. 4. Structure of the proposed wind power forecast strategy.

3) Third step: Decompose the input data using the WT tool

available in MATLAB. The operation mode of this process
is to decompose the vector with the input data selected.
The decomposition is made from the choice of basis func-
tions (wavelet family of functions), and the number of
levels wanted to split the series. The signal is divided into
three levels, namely, a level of approximation (A) and de-
tails (D). Fig. 1 illustrates the decomposition process. The
wavelet function used is the Db4 type, which offers a good
approach and ability to use a relatively small number of
coefficients, making the code faster. Subsequently, in the
level of decomposition, the detail series (for high frequen-
cies) obtained is analyzed, so that they make a selection
of coefficients in this series. This selection procedure is
known as thresholding, because the purpose is to eliminate

4)

5)

0)

7
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TABLE 1
PARAMETERS OF PSO

Parameters Value
Number of particles 25
Number of iterations 2000
Cognitive acceleration C 2.0
Social acceleration C, 2.0
Initial inertia weight @, .. 0.9
Final inertia weight o, 0.4

the coefficients smaller than a given value, with the aim of
improving signal quality by removing noise. Finally, there
is the process of reconstruction of the series (from the se-
ries of approximate level with the V series about the mod-
ified thresholding process—levels 1 to V).

Fourth step: Get the signal from the Wavelet reorganized
so that it can be submitted to the entrance of the ANFIS
structure.

Fifth step: Train the ANFIS with the data from the im-
plementation of the previous step. The ANFIS uses a
combination of the least-squares method (to determine
consequent parameters) and the backpropagation gradient
descent method (to learn the premise parameters). The
training process allows the system to adjust its parameters
as inputs/outputs submitted. The knowledge acquired
through the learning process is tested by applying new
data that it has never seen before, called the testing set.
The network should be able to generalize and have an
accurate output for this unseen data [47]. It is undesirable
to overtrain the network, meaning that it would only work
well on the training set, and would not generalize well to
new data outside the training set. Thus, very large training
sets should not be used to avoid overtraining during the
learning process. The PSO is used to train the parameters
associated with the membership functions of fuzzy infer-
ence system. This process allows obtaining more accurate
results.

Sixth step: Create a vector with N-dimension, where N
equals the number of membership functions. This vector
contains the parameters of membership function and will
be optimized by PSO algorithm. The fitness function is
defined as the mean squared error.

Seventh step: Define the parameters associated with the
PSO algorithm (Table I). Parameters are initialized ran-
domly in the first stage and then are being updated using
the PSO algorithm. In each iteration, one of the parameters
of membership function is being updated; i.e., in the first
iteration, for example, p; is updated, then in the second it-
eration, ¢; is updated, and then after updating all param-
eters again the first parameter update is considered, and
so on [48]. These parameters are grouped in a vector that
is being updated iteration to iteration. The PSO algorithm
used to optimize parameters of membership functions is
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described below: 1) initialize the population positions and
speeds. For each particle, the position and velocity vectors
are randomly initialized with the same size as presented
by the size of the problem. ii) Assess the ability of the in-
dividual particle (Pbest). If the value is better than the cur-
rent value of the individual particle, Pbest reset the current
position of the particle and update the individual value. If
the best of all the particles of individual values is better
than the overall value of current Gbest, reset the location
of the best particles. iii) Measure the fitness of each particle
(Pbest) and store the particles with the best value of fitness
(Gbest). iv) Modify the speed based on the position Pbest
and Gbest. v) Update the particles. vi) End if the condi-
tion is verified. If the current iteration number reaches the
maximum default number or the result reached a minimum
error set, then stop the iteration and collect the best solu-
tion.

8) Eighth step: Extract the output of the ANFIS using the
parameters found by the PSO.

9) Ninth step: Use wavelet again to reconstruct the wind
power series forecast given by ANFIS. The final output
corresponds to the prediction of our hybrid WPA approach.

III. FORECASTING ACCURACY EVALUATION

To evaluate the accuracy in forecasting wind power, the mean
absolute percentage error (MAPE) is considered.
The MAPE criterion is defined as follows:

N
100 Z |Dn — P

h=1 p

1 &
P=5 }Z:lph (14)

where p; and pj, are, respectively, the forecasted and actual
wind power at period h, p is the average wind power of the fore-
casting horizon, and N is the number of forecasted periods. For
daily MAPE, N is equal to 24.

A measure of the uncertainty of a model is the variability of
what is still unexplained after fitting the model, which can be
measured through the estimation of the variance of the error.
The smaller this variance, the more precise the prediction is [37].

Consistent with definition (13), daily error variance can be
estimated as

1o~ (1w = pal ’
O-Pz,,day = N Z <T - (eday)> (15)
h=1
N N
_ i Z |Ph —Ph| (16)
eday = N —]7 .
h=1

Additionally, the normalized mean absolute error (NMAE) cri-
terion is taken into account, given by

~
1 |Dn — P
NMAE = h§_1j 1Ph = Pr] 17)

Pinst
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Fig. 5. Wind power profile in Portugal, January 2008, in megawatts.

where p;,s¢ 1S the installed wind power capacity.

IV. RESULTS

The hybrid WPA approach has been applied for the predic-
tion of the whole wind power in Portugal. The numerical results
presented take into account the wind farms that have telemetry
with the National Electric Grid (REN). Historical wind power
data are the only inputs for training the ANFIS. For the sake of
clear comparison, no exogenous variables are considered. The
wind power profile in Portugal, at January 2008, is shown in
Fig. 5.

Our forecaster predicts the value of the wind power subseries
for 3 hours ahead, taking into account the wind power data of
the previous 12 hours with a time-step of 15 min (48 measured
power values: the first 36 values are used for training, while the
last 12 values are used for testing). This procedure is repeated
until the next 24 hour values are predicted. The following days
are randomly selected: July 3, 2007, October 31, 2007, January
14, 2008, and April 2, 2008, corresponding to the four seasons
of the year. Hence, days with particularly good wind power be-
havior are deliberately not chosen. This results in an uneven ac-
curacy distribution throughout the year that reflects reality.

Numerical results with the hybrid WPA approach are shown
in Figs. 6-9, respectively, for the winter, spring, summer, and
fall days.

Table II shows a comparison between the hybrid WPA
approach and seven other approaches (Persistence, NRM,
ARIMA, NN, NNWT, NF, and WNF), regarding the MAPE
criterion.

The proposed approach presents better forecasting accuracy:
the MAPE has an average value of 4.98%. Improvement in the
average MAPE of the proposed approach with respect to the
seven previous approaches is 73.9%, 73.8%, 51.8%, 31.4%,
28.6%, 25.0%, and 16.9%, respectively.
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Fig. 6. Winter day: actual wind power (gray line) together with the forecasted
wind power (black line), in megawatts; absolute value of forecast errors (bottom,
blue line).
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Fig. 7. Spring day: actual wind power (gray line) together with the forecasted
wind power (black line), in megawatts; absolute value of forecast errors (bottom,
blue line).

In addition to the MAPE, stability of results is another impor-
tant factor for the comparison of forecast approaches.

Table III shows a comparison between the hybrid WPA
approach and seven other approaches (Persistence, NRM,
ARIMA, NN, NNWT, NF, and WNF) regarding daily error
variance.

Note that the average error variance is smaller for the hybrid
WPA approach, indicating less uncertainty in the predictions.
Improvement in the average error variance of the proposed ap-
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Fig. 8. Summer day: actual wind power (gray line) together with the forecasted
wind power (black line), in megawatts; absolute value of forecast errors (bottom,
blue line).
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Fig. 9. Fall day: actual wind power (gray line) together with the forecasted
wind power (black line), in megawatts; absolute value of forecast errors (bottom,
blue line).

proach with respect to the seven previous approaches is 91.0%,
90.9%, 73.8%, 58.8%, 55.3%, 51.1%, and 34.4%, respectively.

Table IV illustrates the performance evaluation by the use
of the NMAE criterion, considering the hybrid WPA approach
and seven other approaches (Persistence, NRM, ARIMA, NN,
NNWT, NF, and WNF).

The performance in terms of NMAE of the hybrid WPA ap-
proach is shown in Fig. 10, for the winter and spring days, and
in Fig. 11, for the summer and fall days.
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TABLE II
COMPARATIVE MAPE RESULTS
Winter Spring Summer Fall Average
Persistence 13.89 32.40 13.43 16.49 19.05
NRM 13.87 3238 13.43 16.43 19.03
ARIMA 10.93 12.05 11.04 7.35 10.34
NN 9.51 9.92 6.34 3.26 7.26
NNWT 9.23 9.55 5.97 3.14 6.97
NF 8.85 8.96 5.63 3.11 6.64
WNF 8.34 7.71 4.81 3.08 5.99
WPA 6.47 6.08 4.31 3.07 4.98
TABLE III
DAILY FORECASTING ERROR VARIANCE
Winter Spring Summer Fall Average
Persistence 0.0074 0.0592 0.0085 0.0179 0.0233
NRM 0.0074 0.0590 0.0079 0.0180 0.0231
ARIMA 0.0025 0.0164 0.0090 0.0039 0.0080
NN 0.0044 0.0106 0.0043 0.0010 0.0051
NNWT 0.0055 0.0083 0.0038 0.0012 0.0047
NF 0.0041 0.0086 0.0038 0.00075 0.0043
WNF 0.0046 0.0051 0.0021 0.0011 0.0032
WPA 0.0021 0.0035 0.0016 0.0011 0.0021
TABLE IV
COMPARATIVE NMAE RESULTS
Winter Spring Summer Fall Average
Persistence 7.64 12.15 4.98 10.88 8.91
NRM 7.62 12.14 4.98 10.84 8.90
ARIMA 6.01 4.52 4.09 4.85 4.87
NN 5.22 3.72 2.35 2.15 3.36
NNWT 5.07 3.58 221 2.07 3.23
NF 4.86 3.36 2.09 2.05 3.09
WNF 4.58 2.89 1.78 2.03 2.82
WPA 3.56 2.28 1.60 2.02 2.37

Regarding this NMAE criterion, the hybrid WPA approach
experienced an average error representing 2.37% of the installed
wind power capacity for its 3-hours ahead predictions, over the
whole forecasting horizon.

The four plots of Fig. 12 provide average errors considering
NRM, NN, NF, WEN, and the hybrid WPA approach, for the
four days analyzed.

In Fig. 12, the 24 hours of each day have been divided into
three intervals (1-8, 9-16, and 17-24 hours) to further elucidate

12 : — :

NMAE (% of Pinst)
o

12
Hour

Fig. 10. Performance in terms of NMAE of the hybrid WPA approach, for the
winter () and spring ( X) days.
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Fig. 11. Performance in terms of NMAE of the hybrid WPA approach, for the
summer (0) and fall (*) days.

the forecast performance of the proposed approach in compar-
ison with the other approaches.

It can be seen that the performance of the proposed approach
is generally better. The interval 1-8 hours for the spring day
[Fig. 12(b)] is especially hard to predict, due to a sudden in-
crease in wind power noticeable in Fig. 7 around hour 6. The
proposed approach presents a much smaller error within this in-
terval, reflecting its enhanced forecasting abilities.

For a more thorough comparison between the different
models used, statistically representative results for the year of
2009 are presented thereafter, in Tables V and VL.
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(a) TABLE VI
REPRESENTATIVE NMAE RESULTS FOR THE YEAR OF 2009
1nr .
H H I_I_I D ﬂ Persistence | NRM | ARIMA | NN | NNWT | NF | WNF | WpA
0 18 916 1724 January 3.23 302 | 297 | 253 | 226 | 198 | 1.51 | 1.24
70 (B) ' February 8.34 837 | 7.5l 531 | 471 | 427 | 3.16 | 2.58
35) _ March 1.91 184 | 126 | 117 | 1.07 | 085 | 073 | 0.60
—~ April 4.07 402 | 237 | 169 | 164 | 157 | 140 | 117
S —
5 18 916 1724 May 591 576 | 411 | 339 | 3.04 | 2.85 | 236 | 2.04
s 18 ‘ .
© June 7.86 779 | 599 | 3.04 | 268 | 248 | 1.89 | 1.55
9r H ] July 4.05 396 | 304 | 257 | 233 | 212 | 160 | 1.34
0 A in H August 473 460 | 405 | 286 | 254 | 210 | 173 | 1.58
18 916 17 24
30 . ‘ September | 4.85 479 | 329 | 210 | 203 | 197 | 1.64 | 1.45
d
@ October 536 531 | 377 | 262 | 229 | 212 | 176 | 147
15+ 1
November 7.02 690 | 4.08 | 520 | 497 | 465 | 354 | 2.86
0 FL il December 5.54 553 | 398 | 329 | 313 | 295|230 | 1.97
18 916 17 24
Hours Average 5.4 517 | 387 | 298| 272 | 249 | 1.97 | 1.65

Fig. 12. Average errors within three time intervals, considering NRM, NN,
NF, WNF, and the hybrid WPA approach, for the days analyzed: (a) Winter,
(b) Spring, (c) Summer, and (d) Fall.

TABLE V

REPRESENTATIVE MAPE RESULTS FOR THE YEAR OF 2009
Persistence | NRM | ARIMA | NN | NNWT | NF | WNF | WPA
January 17.44 16.83 | 16.03 | 13.62 | 1222 | 10.69 | 8.16 | 6.71
February 22.84 22.81| 20.56 | 14.55| 1292 | 11.68 | 8.64 | 7.05
March 19.70 18.99 | 13.01 | 12.04| 11.05 | 876 | 7.51 | 6.19
April 22.77 22.53| 1326 | 943 | 9.19 | 878 | 7.82 | 6.57
May 17.20 16,78 | 1198 | 9.86 | 885 | 829 | 6.87 | 5.94
June 36.70 36.37 | 2796 |14.18 | 1252 | 11.60 | 8.85 | 7.23
July 21.30 20.86 | 1598 |[13.53| 12.28 [11.16 | 8.42 | 7.06
August 13.94 13.55| 11.94 | 842 | 748 | 6.18 | 5.09 | 4.66
September 24.51 2420 | 16.65 |10.60 [ 1028 | 9.95 | 8.28 | 7.33
October 26.45 26.16 | 18.58 [12.92| 11.28 |10.44 | 8.67 | 7.26
November 17.16 16.88 | 14.47 | 12.72| 12.15 | 11.36 | 8.65 | 6.99
December 16.90 16.86 | 12.14 |10.03 | 9.54 | 898 | 7.02 | 5.99
Average 21.41 21.07 | 16.05 | 11.83| 10.81 | 9.82 | 7.83 | 6.58

Although the MAPE results have slightly worsened for all
methodologies, the NMAE results have improved significantly
due to the ever-increasing installed wind power capacity. Be-
sides, the hybrid WPA approach still clearly outperforms all
other approaches.

The proposed approach is both novel and effective for short-
term prediction of wind power. The average computation time
required by the hybrid WPA approach for each forecasted day

is less than 1 min using MATLAB on a PC with 1 GB of RAM
and a 2.0-GHz-based processor. Hence, the proposed approach
presents not only better forecasting accuracy, but also an accept-
able computation time, which is important for real-life applica-
tions.

V. CONCLUSION

A novel hybrid approach was proposed in this paper for
short-term wind power forecasting in Portugal. The proposed
approach is based on the combination of wavelet transform,
particle swarm optimization, and an adaptive-network-based
fuzzy inference system. The application of the proposed ap-
proach to wind power forecasting is both novel and effective.
The average MAPE and NMAE results outperform seven other
approaches, while the average computation time is acceptable.
Hence, the presented results validate the proficiency of the
proposed approach in short-term wind power forecasting.
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Hybrid Wavelet-PSO-ANFIS Approach for
Short-Term Wind Power Forecasting in Portugal

J. P. S. Cataldo, Member, IEEE, H. M. 1. Pousinho, Associate Member, IEEE, and V. M. F. Mendes

Abstract—The increased integration of wind power into the elec-
tric grid, as it occurs today in Portugal, poses new challenges due
to its intermittency and volatility. Wind power forecasting plays
a key role in tackling these challenges. A novel hybrid approach,
combining wavelet transform, particle swarm optimization, and an
adaptive-network-based fuzzy inference system, is proposed in this
paper for short-term wind power forecasting in Portugal. A thor-
ough comparison is carried out, taking into account the results ob-
tained with seven other approaches. Finally, conclusions are duly
drawn.

Index Terms—Forecasting, fuzzy logic, neural networks, swarm
optimization, wavelet transform, wind power.

1. INTRODUCTION

IND generation is the fastest growing source of renew-
W able energy [1], [2]. In Portugal, the wind power goal
foreseen for 2010 was established by the government as 3750
MW, representing about 25% of the total installed capacity in
2010. This value has been raised to 5100 MW by the most re-
cent governmental goals for the wind sector. Hence, Portugal
has one of the most ambitious goals in terms of wind power
[3], [4], and in 2006 was the second country in Europe with the
highest wind power growth.

The wind energy is free, so all wind-generated electric en-
ergy is accepted as it comes, i.e., as it is available. However, the
availability of the power supply generated from wind energy is
not known in advance. Hence, the integration of a large share
of wind power in an electricity system leads to some important
challenges [5]. Wind power forecasting plays a key role in tack-
ling these challenges [6].

Wind power prediction is a primary requirement for efficient
large-scale integration of wind generation in power systems and
electricity markets [7]-[12]. The time scales concerning short-
term prediction are in the order of some days (for the forecast
horizon) and from minutes to hours (for the time-step) [13].

In the technical literature, several methods to predict wind
power have been reported, namely physical [14] and statistical
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methods. A comprehensive report on the state-of-the-art in
short-term prediction of wind power can be found in [15].

The physical method requires a lot of physical considera-
tions to reach the best prediction precision. Supercomputers are
usually required to run numerical weather prediction (NWP)
models [16]. For a physical model, the input variables will be
the physical or meteorology information, such as description of
orography, roughness, obstacles, pressure, and temperature. The
statistical method aims at finding the relationship of the on-line
measured power data. For a statistical model, the historical wind
power data may be used. The physical method has advantages
in long-term prediction while the statistical method does well in
short-term prediction [17].

The conventional statistical models are time-series-based
models [18], including autoregressive (AR), and autoregressive
integrated moving average (ARIMA) [19] models. The persis-
tence models are considered as the simplest time-series models,
but they can surpass many other models in very short-term
prediction [17]. Particularly, persistence beats the NWP-based
model for short prediction horizons (ca 3-6 hours) [15]. The
persistence model is a useful first approximation for short-term
wind power forecasting. A new reference model (NRM) was
proposed in [20], which can be used instead of the persistence
model.

Some new methods are catching researcher’s attention,
namely data mining [21], neural networks (NNs) [22]-[26],
fuzzy logic and neuro-fuzzy (NF) [27]-[29], evolutionary algo-
rithms [30], and some hybrid methods [31]-[33]. The accurate
comparison of all the methods is quite difficult because these
methods depend on different situations and the data collection
is a formidable task. However, it has been reported that arti-
ficial intelligence methods outperformed others in short-term
prediction [17].

In this paper, a novel hybrid approach is proposed for
short-term wind power forecasting in Portugal. The proposed
approach is based on the combination of wavelet transform
(WT), particle swarm optimization (PSO), and adaptive-net-
work-based fuzzy inference system (ANFIS). Our hybrid WPA
approach is compared with persistence, NRM, ARIMA, NN,
NNWT, NF, and wavelet-neuro-fuzzy (WNF) approaches, to
demonstrate its effectiveness regarding forecasting accuracy
and computation time.

The contributions of this paper are threefold:

1) to propose a novel hybrid approach for short-term wind

power forecasting;
2) to improve forecasting accuracy, taking into account the
results obtained with seven other approaches;

1949-3029/$26.00 © 2010 IEEE



3) to offer a practical solution in terms of computational
burden.

This paper is organized as follows. Section II presents the
proposed approach to forecast wind power. Section III provides
the different criterions used to evaluate the forecasting accuracy.
Section IV provides the numerical results from a real-world case
study. Section V outlines the conclusions.

II. PROPOSED APPROACH

The proposed approach is based on the combination of WT,
PSO, and ANFIS. The WT is used to decompose the wind power
series into a set of better-behaved constitutive series. Then, the
future values of these constitutive series are forecasted using
ANFIS. The PSO is used to improve the performance of ANFIS,
tuning the membership functions required to achieve a lower
error. Finally, the ANFIS forecasts allow, through the inverse
WT, reconstructing the future behavior of the wind power series,
and therefore, to forecast wind power.

A. Wavelet Transform

The WT convert a wind power series in a set of constitutive
series. These constitutive series present a better behavior than
the original wind power series, and therefore, they can be pre-
dicted more accurately. The reason for the better behavior of the
constitutive series is the filtering effect of the WT.

WTs can be divided in two categories: continuous wavelet
transform (CWT) and discrete wavelet transform (DWT). The
CWT W (a,b) of signal f(z) with respect to a mother wavelet
¢(x) is given by [34]

W(a,b) = % /_:o )¢ <"” - b)dm (1)

where the scale parameter a controls the spread of the wavelet
and translation parameter b determines its central position.
DWT is more efficient and just as accurate as the CWT [35].
DWT is defined as

_ s t — n2m
W(m,n) =22 3" f(t)¢ (—) )

2m
t=0

where T is the length of the signal f(¢). The scaling and trans-
lation parameters are functions of the integer variables m and
n(a = 2™,b = n2™);t is the discrete time index.

A fast DWT algorithm based on the four filters (decompo-
sition low-pass, decomposition high-pass, reconstruction low-
pass, and reconstruction high-pass filters) was developed by
Mallat [36].

Multiresolution via Mallat’s algorithm is a procedure to ob-
tain “approximations” and “details” from a given signal. By suc-
cessive decomposition of the approximations (Fig. 1), a multi-
level decomposition process can be achieved where the original
signal is broken down into lower resolution components.

A wavelet function of type Daubechies of order 4 (abbrevi-
ated as Db4) is used as the mother wavelet ¢(¢). This wavelet
offers an appropriate trade-off between wavelength and smooth-
ness, resulting in an appropriate behavior for short-term wind
power forecasting. Similar wavelets have been considered by
previous researchers for load forecasting [34], [35] and price
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Original Signal f

La | [ |

Fig. 1. Multilevel decomposition process.

forecasting [37], [38]. Also, three decomposition levels are con-
sidered, as in [38], since it describes the wind power series in a
thorough and meaningful way.

B. PFarticle Swarm Optimization

PSO is a heuristic approach first proposed by Kennedy and
Eberhart in 1995 [39] as an evolutionary computational method.
The PSO algorithm is based on the biological and sociological
behavior of animals searching for their food [40].

Empirical evidence has been accumulated to show that the
algorithm is a useful tool for optimization [41]. PSO has been
applied to many optimization problems in engineering, for in-
stance [42].

Consider an optimization problem of D variables. A swarm
of N particles is initialized in which each particle is assigned a
random position in the D -dimensional hyperspace. Let x denote
a particle’s position and v denote the particle’s flight velocity
over a solution space.

The best previous position of a particle is Pbest. The index
of the best particle among all particles in the swarm is Gbest.
Velocity and position of a particle are updated by the following
update rules:

) — (Zpbest; — Zi(t))
vi(t) = wvi(t — 1) + p1 N

(:UGhest — T (t))
+ P2 T (3)

zi(t) = z;(t — 1) + v;(t) At 4

where w is an inertia weight, At is the time-step value, p; and
p2 are random variables defined as p; = r1C1 and py = r2CY5,
with 71,79 ~ U(0, 1), and Cy and C5 are positive acceleration
constants. The time-step is necessary to make the algorithm di-
mensionally correct. Also, constants C'y and C5 are both set at
2.0, following the typical practice in [43].

Fig. 2 illustrates a search mechanism of a PSO technique
using the velocity update rule (3) and the position update rule
4).

An inertia correction function called “inertia weight approach
(IWA)” is also used in this work [43]. During the IWA, the in-
ertia weight w is modified according to the following equation:

Wmax — Wmin Ttr (5)

W = Wmax —
Ttr max
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Fig. 2. Updating the position mechanism of PSO.
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Fig. 3. ANFIS architecture.

where wpax and wp;, are the initial and final inertia weights,
Itrnax 1s the maximum number of iteration, and Itr is the current
number of iteration.

C. ANFIS

ANFIS is a class of adaptive multilayer feedforward net-
works, applied to nonlinear forecasting where past samples
are used to forecast the sample ahead. ANFIS incorporates
the self-learning ability of NN with the linguistic expression
function of fuzzy inference [44].

The ANFIS architecture is shown in Fig. 3. The ANFIS net-
work is composed of five layers. Each layer contains several
nodes described by the node function. Let O/ denote the output
of the 7th node in layer j.

Inlayer 1, every node 7 is an adaptive node with node function

O; = pAi(z), i=1,2 (6)
or

O; = uBi—s(y), i=3,4 )

where = (or y) is the input to the ¢th node and A; (or B;_2)
is a linguistic label associated with this node. The membership
functions for A and B are usually described by generalized bell
functions, e.g.,

1
pAi(x) = - ®)

rT—r;
Pi

1+

where {p;,q;,r;} is the parameter set. Any continuous and
piecewise differentiable functions, such as triangular-shaped
membership functions, are also qualified candidates for node
functions in this layer [45]. Parameters in this layer are referred
to as premise parameters.

In layer 2, each node [] multiplies incoming signals and
sends the product out

0} = w; = pAi(x)uB;(y), i=1,2. 9

Each node output represents the firing strength of a rule.

In layer 3, each node IV computes the ratio of the sth rules’s
firing strength to the sum of all rules’ firing strengths

3 Wy

Oi:wi:

i=1,2. (10)

w1 + wo ’
The outputs of this layer are called normalized firing strengths.

In layer 4, each node computes the contribution of the ¢th rule
to the overall output

O?:’Lﬁizi :wi(ai1‘~|—biy—|—ci)7 1 =1,2 (11)

where w; is the output of layer 3 and {a;, b;, ¢; } is the param-
eter set. Parameters of this layer are referred to as consequent
parameters.

In layer 5, the single node ) | computes the final output as the
summation of all incoming signals

i i Wi

Thus, an adaptive network is functionally equivalent to a
Sugeno-type fuzzy inference system.

In this paper, ANFIS employs the PSO method to adjust the
parameters of the membership functions, as in [46]. The PSO
techniques have the advantage of being less computationally ex-
pensive for a given size of network topology. The membership
functions considered in this study are triangular-shaped.

12)

D. Hybrid Approach

In this section, the algorithm used to implement the proposed
approach is described step-by-step.

As depicted in Fig. 4, wavelet techniques are implemented
in the first and last stages. The actual time-series (wind power
data) are first decomposed into a number of wavelet coefficient
signals and one approximation signal.

The original wind power series is decomposed into four com-
ponents by the WT and each subseries is separately predicted by
the ANFIS. Finally, the predicted signals are recombined in the
last stage to form the final predicted wind power series.

1) First step: Form a matrix with a set of historical wind
power data, arranged in C' columns of a matrix thereof.
Each column of the array has an associated profile of wind
power for a 3-hour interval with a time-step of 15 min (12
measured power values). In this first step, the matrix has
four columns, corresponding to 12 hours.

2) Second step: Select a number of columns of the previous
array so that the set of values derived from it represents the
real input data.
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Fig. 4. Structure of the proposed wind power forecast strategy.

3) Third step: Decompose the input data using the WT tool

available in MATLAB. The operation mode of this process
is to decompose the vector with the input data selected.
The decomposition is made from the choice of basis func-
tions (wavelet family of functions), and the number of
levels wanted to split the series. The signal is divided into
three levels, namely, a level of approximation (A) and de-
tails (D). Fig. 1 illustrates the decomposition process. The
wavelet function used is the Db4 type, which offers a good
approach and ability to use a relatively small number of
coefficients, making the code faster. Subsequently, in the
level of decomposition, the detail series (for high frequen-
cies) obtained is analyzed, so that they make a selection
of coefficients in this series. This selection procedure is
known as thresholding, because the purpose is to eliminate

4)

5)

0)
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TABLE 1
PARAMETERS OF PSO

Parameters Value
Number of particles 25
Number of iterations 2000
Cognitive acceleration C 2.0
Social acceleration C, 2.0
Initial inertia weight @, .. 0.9
Final inertia weight o, 0.4

the coefficients smaller than a given value, with the aim of
improving signal quality by removing noise. Finally, there
is the process of reconstruction of the series (from the se-
ries of approximate level with the /V series about the mod-
ified thresholding process—levels 1 to V).

Fourth step: Get the signal from the Wavelet reorganized
so that it can be submitted to the entrance of the ANFIS
structure.

Fifth step: Train the ANFIS with the data from the im-
plementation of the previous step. The ANFIS uses a
combination of the least-squares method (to determine
consequent parameters) and the backpropagation gradient
descent method (to learn the premise parameters). The
training process allows the system to adjust its parameters
as inputs/outputs submitted. The knowledge acquired
through the learning process is tested by applying new
data that it has never seen before, called the testing set.
The network should be able to generalize and have an
accurate output for this unseen data [47]. It is undesirable
to overtrain the network, meaning that it would only work
well on the training set, and would not generalize well to
new data outside the training set. Thus, very large training
sets should not be used to avoid overtraining during the
learning process. The PSO is used to train the parameters
associated with the membership functions of fuzzy infer-
ence system. This process allows obtaining more accurate
results.

Sixth step: Create a vector with N-dimension, where N
equals the number of membership functions. This vector
contains the parameters of membership function and will
be optimized by PSO algorithm. The fitness function is
defined as the mean squared error.

Seventh step: Define the parameters associated with the
PSO algorithm (Table I). Parameters are initialized ran-
domly in the first stage and then are being updated using
the PSO algorithm. In each iteration, one of the parameters
of membership function is being updated; i.e., in the first
iteration, for example, p; is updated, then in the second it-
eration, ¢; is updated, and then after updating all param-
eters again the first parameter update is considered, and
so on [48]. These parameters are grouped in a vector that
is being updated iteration to iteration. The PSO algorithm
used to optimize parameters of membership functions is
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described below: 1) initialize the population positions and
speeds. For each particle, the position and velocity vectors
are randomly initialized with the same size as presented
by the size of the problem. ii) Assess the ability of the in-
dividual particle (Pbest). If the value is better than the cur-
rent value of the individual particle, Pbest reset the current
position of the particle and update the individual value. If
the best of all the particles of individual values is better
than the overall value of current Gbest, reset the location
of the best particles. iii) Measure the fitness of each particle
(Pbest) and store the particles with the best value of fitness
(Gbest). iv) Modify the speed based on the position Pbest
and Gbest. v) Update the particles. vi) End if the condi-
tion is verified. If the current iteration number reaches the
maximum default number or the result reached a minimum
error set, then stop the iteration and collect the best solu-
tion.

8) Eighth step: Extract the output of the ANFIS using the
parameters found by the PSO.

9) Ninth step: Use wavelet again to reconstruct the wind
power series forecast given by ANFIS. The final output
corresponds to the prediction of our hybrid WPA approach.

III. FORECASTING ACCURACY EVALUATION

To evaluate the accuracy in forecasting wind power, the mean
absolute percentage error (MAPE) is considered.
The MAPE criterion is defined as follows:

N
100 Z |Dn — P

h=1 p

1 &
P=5 }Z:lph (14)

where p; and pj, are, respectively, the forecasted and actual
wind power at period h, p is the average wind power of the fore-
casting horizon, and N is the number of forecasted periods. For
daily MAPE, N is equal to 24.

A measure of the uncertainty of a model is the variability of
what is still unexplained after fitting the model, which can be
measured through the estimation of the variance of the error.
The smaller this variance, the more precise the prediction is [37].

Consistent with definition (13), daily error variance can be
estimated as

1o~ (1w = pal y
O-Pz,,day = N Z <T - (eday)> (15)
h=1
N N
_ i Z |Ph —Ph| (16)
eday = N —]7 .
h=1

Additionally, the normalized mean absolute error (NMAE) cri-
terion is taken into account, given by

~
1 |Dn — P
NMAE = h§_1j 1Ph = Pr] 17)
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Fig. 5. Wind power profile in Portugal, January 2008, in megawatts.

where p;,s¢ 1S the installed wind power capacity.

IV. RESULTS

The hybrid WPA approach has been applied for the predic-
tion of the whole wind power in Portugal. The numerical results
presented take into account the wind farms that have telemetry
with the National Electric Grid (REN). Historical wind power
data are the only inputs for training the ANFIS. For the sake of
clear comparison, no exogenous variables are considered. The
wind power profile in Portugal, at January 2008, is shown in
Fig. 5.

Our forecaster predicts the value of the wind power subseries
for 3 hours ahead, taking into account the wind power data of
the previous 12 hours with a time-step of 15 min (48 measured
power values: the first 36 values are used for training, while the
last 12 values are used for testing). This procedure is repeated
until the next 24 hour values are predicted. The following days
are randomly selected: July 3, 2007, October 31, 2007, January
14,2008, and April 2, 2008, corresponding to the four seasons
of the year. Hence, days with particularly good wind power be-
havior are deliberately not chosen. This results in an uneven ac-
curacy distribution throughout the year that reflects reality.

Numerical results with the hybrid WPA approach are shown
in Figs. 6-9, respectively, for the winter, spring, summer, and
fall days.

Table II shows a comparison between the hybrid WPA
approach and seven other approaches (Persistence, NRM,
ARIMA, NN, NNWT, NF, and WNF), regarding the MAPE
criterion.

The proposed approach presents better forecasting accuracy:
the MAPE has an average value of 4.98%. Improvement in the
average MAPE of the proposed approach with respect to the
seven previous approaches is 73.9%, 73.8%, 51.8%, 31.4%,
28.6%, 25.0%, and 16.9%, respectively.
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Fig. 6. Winter day: actual wind power (gray line) together with the forecasted
wind power (black line), in megawatts; absolute value of forecast errors (bottom,
blue line).
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Fig. 7. Spring day: actual wind power (gray line) together with the forecasted
wind power (black line), in megawatts; absolute value of forecast errors (bottom,
blue line).

In addition to the MAPE, stability of results is another impor-
tant factor for the comparison of forecast approaches.

Table III shows a comparison between the hybrid WPA
approach and seven other approaches (Persistence, NRM,
ARIMA, NN, NNWT, NF, and WNF) regarding daily error
variance.

Note that the average error variance is smaller for the hybrid
WPA approach, indicating less uncertainty in the predictions.
Improvement in the average error variance of the proposed ap-
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Fig. 8. Summer day: actual wind power (gray line) together with the forecasted
wind power (black line), in megawatts; absolute value of forecast errors (bottom,
blue line).
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Fig. 9. Fall day: actual wind power (gray line) together with the forecasted
wind power (black line), in megawatts; absolute value of forecast errors (bottom,
blue line).

proach with respect to the seven previous approaches is 91.0%,
90.9%, 73.8%, 58.8%, 55.3%, 51.1%, and 34.4%, respectively.

Table IV illustrates the performance evaluation by the use
of the NMAE criterion, considering the hybrid WPA approach
and seven other approaches (Persistence, NRM, ARIMA, NN,
NNWT, NF, and WNF).

The performance in terms of NMAE of the hybrid WPA ap-
proach is shown in Fig. 10, for the winter and spring days, and
in Fig. 11, for the summer and fall days.
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TABLE II
COMPARATIVE MAPE RESULTS
Winter Spring Summer Fall Average
Persistence 13.89 32.40 13.43 16.49 19.05
NRM 13.87 3238 13.43 16.43 19.03
ARIMA 10.93 12.05 11.04 7.35 10.34
NN 9.51 9.92 6.34 3.26 7.26
NNWT 9.23 9.55 5.97 3.14 6.97
NF 8.85 8.96 5.63 3.11 6.64
WNF 8.34 7.71 4.81 3.08 5.99
WPA 6.47 6.08 4.31 3.07 4.98
TABLE III
DAILY FORECASTING ERROR VARIANCE
Winter Spring Summer Fall Average
Persistence 0.0074 0.0592 0.0085 0.0179 0.0233
NRM 0.0074 0.0590 0.0079 0.0180 0.0231
ARIMA 0.0025 0.0164 0.0090 0.0039 0.0080
NN 0.0044 0.0106 0.0043 0.0010 0.0051
NNWT 0.0055 0.0083 0.0038 0.0012 0.0047
NF 0.0041 0.0086 0.0038 0.00075 0.0043
WNF 0.0046 0.0051 0.0021 0.0011 0.0032
WPA 0.0021 0.0035 0.0016 0.0011 0.0021
TABLE IV
COMPARATIVE NMAE RESULTS
Winter Spring Summer Fall Average
Persistence 7.64 12.15 4.98 10.88 8.91
NRM 7.62 12.14 4.98 10.84 8.90
ARIMA 6.01 4.52 4.09 4.85 4.87
NN 5.22 3.72 2.35 2.15 3.36
NNWT 5.07 3.58 221 2.07 3.23
NF 4.86 3.36 2.09 2.05 3.09
WNF 4.58 2.89 1.78 2.03 2.82
WPA 3.56 2.28 1.60 2.02 2.37

Regarding this NMAE criterion, the hybrid WPA approach
experienced an average error representing 2.37% of the installed
wind power capacity for its 3-hours ahead predictions, over the
whole forecasting horizon.

The four plots of Fig. 12 provide average errors considering
NRM, NN, NF, WEN, and the hybrid WPA approach, for the
four days analyzed.

In Fig. 12, the 24 hours of each day have been divided into
three intervals (1-8, 9-16, and 17-24 hours) to further elucidate

12 : — :
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Fig. 10. Performance in terms of NMAE of the hybrid WPA approach, for the
winter () and spring ( X) days.
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Fig. 11. Performance in terms of NMAE of the hybrid WPA approach, for the
summer (o) and fall (*) days.

the forecast performance of the proposed approach in compar-
ison with the other approaches.

It can be seen that the performance of the proposed approach
is generally better. The interval 1-8 hours for the spring day
[Fig. 12(b)] is especially hard to predict, due to a sudden in-
crease in wind power noticeable in Fig. 7 around hour 6. The
proposed approach presents a much smaller error within this in-
terval, reflecting its enhanced forecasting abilities.

For a more thorough comparison between the different
models used, statistically representative results for the year of
2009 are presented thereafter, in Tables V and VL.
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(a) TABLE VI
REPRESENTATIVE NMAE RESULTS FOR THE YEAR OF 2009
1nr .
H H I_I_I D ﬂ Persistence | NRM | ARIMA | NN | NNWT | NF | WNF | WpA
0 18 916 1724 January 3.23 302 | 297 | 253 | 226 | 198 | 1.51 | 1.24
70 (B) ' February 8.34 837 | 7.5l 531 | 471 | 427 | 3.16 | 2.58
35) _ March 1.91 184 | 126 | 117 | 1.07 | 085 | 073 | 0.60
—~ April 4.07 402 | 237 | 169 | 164 | 157 | 140 | 117
S —
5 18 916 1724 May 591 576 | 411 | 339 | 3.04 | 2.85 | 236 | 2.04
s 18 ‘ .
© June 7.86 779 | 599 | 3.04 | 268 | 248 | 1.89 | 1.55
9r H ] July 4.05 396 | 304 | 257 | 233 | 212 | 160 | 1.34
0 A in H August 473 460 | 405 | 286 | 254 | 210 | 173 | 1.58
18 916 17 24
30 . ‘ September | 4.85 479 | 329 | 210 | 203 | 197 | 1.64 | 1.45
d
@ October 536 531 | 377 | 262 | 229 | 212 | 176 | 147
15+ 1
November 7.02 690 | 4.08 | 520 | 497 | 465 | 354 | 2.86
0 FL il December 5.54 553 | 398 | 329 | 313 | 295|230 | 1.97
18 916 17 24
Hours Average 5.4 517 | 387 | 298| 272 | 249 | 1.97 | 1.65

Fig. 12. Average errors within three time intervals, considering NRM, NN,
NF, WNF, and the hybrid WPA approach, for the days analyzed: (a) Winter,
(b) Spring, (c) Summer, and (d) Fall.

TABLE V

REPRESENTATIVE MAPE RESULTS FOR THE YEAR OF 2009
Persistence | NRM | ARIMA | NN | NNWT | NF | WNF | WPA
January 17.44 16.83 | 16.03 | 13.62 | 1222 | 10.69 | 8.16 | 6.71
February 22.84 22.81| 20.56 | 14.55| 1292 | 11.68 | 8.64 | 7.05
March 19.70 18.99 | 13.01 | 12.04| 11.05 | 876 | 7.51 | 6.19
April 22.77 22.53| 1326 | 943 | 9.19 | 878 | 7.82 | 6.57
May 17.20 16,78 | 1198 | 9.86 | 885 | 829 | 6.87 | 5.94
June 36.70 36.37 | 2796 |14.18 | 1252 | 11.60 | 8.85 | 7.23
July 21.30 20.86 | 1598 |[13.53| 12.28 [11.16 | 8.42 | 7.06
August 13.94 13.55| 11.94 | 842 | 748 | 6.18 | 5.09 | 4.66
September 24.51 2420 | 16.65 |10.60 [ 1028 | 9.95 | 8.28 | 7.33
October 26.45 26.16 | 18.58 [12.92| 11.28 |10.44 | 8.67 | 7.26
November 17.16 16.88 | 14.47 | 12.72| 12.15 | 11.36 | 8.65 | 6.99
December 16.90 16.86 | 12.14 |10.03 | 9.54 | 898 | 7.02 | 5.99
Average 21.41 21.07 | 16.05 | 11.83| 10.81 | 9.82 | 7.83 | 6.58

Although the MAPE results have slightly worsened for all
methodologies, the NMAE results have improved significantly
due to the ever-increasing installed wind power capacity. Be-
sides, the hybrid WPA approach still clearly outperforms all
other approaches.

The proposed approach is both novel and effective for short-
term prediction of wind power. The average computation time
required by the hybrid WPA approach for each forecasted day

is less than 1 min using MATLAB on a PC with 1 GB of RAM
and a 2.0-GHz-based processor. Hence, the proposed approach
presents not only better forecasting accuracy, but also an accept-
able computation time, which is important for real-life applica-
tions.

V. CONCLUSION

A novel hybrid approach was proposed in this paper for
short-term wind power forecasting in Portugal. The proposed
approach is based on the combination of wavelet transform,
particle swarm optimization, and an adaptive-network-based
fuzzy inference system. The application of the proposed ap-
proach to wind power forecasting is both novel and effective.
The average MAPE and NMAE results outperform seven other
approaches, while the average computation time is acceptable.
Hence, the presented results validate the proficiency of the
proposed approach in short-term wind power forecasting.
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