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Abstract— Accurate and practical load modeling plays a
critical role in the power system studies including stability,
control, and protection. Recently, wide-area measurement sys-
tems (WAMSs) are utilized to model the static and dynamic
behavior of the load consumption pattern in real-time, simul-
taneously. In this article, a WAMS-based load modeling method
is established based on a multi-residual deep learning structure.
To do so, a comprehensive and efficient load model founded
on combination of impedance–current–power and induction
motor (IM) is constructed at the first step. Then, a deep learning-
based framework is developed to understand the time-varying
and complex behavior of the composite load model (CLM).
To do so, a residual convolutional neural network (ResCNN) is
developed to capture the spatial features of the load at different
location of the large-scale power system. Then, gated recurrent
unit (GRU) is used to fully understand the temporal features from
highly variant time-domain signals. It is essential to provide a
balance between fast and slow variant parameters. Thus, the
designed structure is implemented in a parallel manner to fulfill
the balance and moreover, weighted fusion method is used to
estimate the parameters, as well. Consequently, an error-based
loss function is reformulated to improve the training process
as well as robustness in the noisy conditions. The numerical
experiments on IEEE 68-bus and Iranian 95-bus systems verify
the effectiveness and robustness of the proposed load modeling
approach. Furthermore, a comparative study with some relevant
methods demonstrates the superiority of the proposed structure.
The obtained results in the worst-case scenario show error

Manuscript received November 6, 2020; revised September 3, 2021 and
November 17, 2021; accepted December 4, 2021. (Corresponding authors:
Miadreza Shafie-Khah; João P. S. Catalão.)

Shahabodin Afrasiabi is with the Department of Electrical and Computer
Engineering, University of Saskatchewan, Saskatoon, SK S7N5A9, Canada.

Mousa Afrasiabi and Jamshid Aghaei are with the Department of Electrical
Engineering, School of Energy Systems, Lappeenranta University of Technol-
ogy (LUT), 53850 Lappeenranta, Finland.

Mohammad Amin Jarrahi and Mohammad Mohammadi are with
the School of Electrical and Computer Engineering, Shiraz University,
Shiraz 71348-14336, Iran.

Mohammad Sadegh Javadi is with the Institute for Systems and Com-
puter Engineering, Technology and Science (INESC TEC), 4200-465 Porto,
Portugal.

Miadreza Shafie-Khah is with the School of Technology and Innovations,
University of Vaasa, 65200 Vaasa, Finland (e-mail: miadreza@gmail.com).

João P. S. Catalão is with the Faculty of Engineering of the University
of Porto (FEUP), 4200-465 Porto, Portugal, and also with the Institute for
Systems and Computer Engineering, Technology and Science (INESC TEC),
4200-465 Porto, Portugal (e-mail: catalao@fe.up.pt).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2021.3133350.

Digital Object Identifier 10.1109/TNNLS.2021.3133350

lower than 0.055% considering noisy condition and at least 50%
improvement comparing the several state-of-art methods.

Index Terms— Composite load model (CLM), deep learning,
gated recurrent unit (GRU), pseudo-Huber loss function, residual
convolutional neural network (ResCNN).

I. INTRODUCTION

A. Motivation

ELECTRICAL load modeling is essential in the analy-
sis of the traditional and reconstructed power systems.

In load modeling studies, the main goal is to construct a
mathematical description to describe the consumption pattern
throughout a specific time interval [1]–[3]. Due to emergence
of new concepts such as smart grids, renewable energies,
active distribution networks, demand-side management, and
so on, electrical load modeling has faced new challenges
such as complicated characteristics and random time vari-
ance trends [4]–[6]. This study aims to resolve these chal-
lenges that still require a comprehensive and general solution.
In this regard, the desired approach must have the following
features.

1) It must be fast and accurate to track highly variant load
characteristics.

2) It must be robust to handle highly noisy conditions.
3) It must have the ability to understand the spatial and

temporal features for providing suitable knowledge on
load consumption pattern.

4) It must be capable to identify a large number of
unknown parameters with regard to the emergence of
advanced measurement devices such as phasor measure-
ment units (PMUs) and smart meters provide.

So, the main motivation of this article is to develop a multi-
residual deep network to establish a general framework for the
wide-area load parameter identification.

B. Brief Literature Review

Load modeling has been conducted in two main stages,
including: 1) choosing a proper load model based on
measurement-based or physical-based models and 2) designing
a parameter estimation approach to identify the selected load
model parameters [7], [8]. Physical-based models provide a
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Fig. 1. Load modeling approaches.

detailed description of physical behavior and functioning of
electrical devices, however, they are not applicable in prac-
tical conditions due to lack of required detailed information
[9], [10]. Therefore, measurement-based load models are more
preferred as they offer more practical models. The main
principle in measurement-based models is collecting a dataset
from measurement equipment and directly implemented for
load modeling. Based on the behavior, load can be modeled as
static type or can be formulated as dynamic model. However,
composite models involve the patterns of both static and
dynamic models [11].

Fig. 1 presents a classification of load modeling approaches.
In this figure, various schemes for each group of load modeling
techniques are depicted. The load models in the static category
have the ability to represent the active and reactive consump-
tion as the functions of bus frequency and voltage. Several
models such as impedance–current–power (ZIP), exponential
and frequency-dependent models are most common static load
models [12], [13]. Dynamic load models can model the time-
variant relationship between active and reactive power based
on bus voltage throughout a time interval [14]–[16]. Induction
motor (IM) and exponential recovery load model (ERLM)
are two widely used dynamic load models in previous liter-
ature [17]. However, one single static/dynamic model cannot
fully represent a behavior of actual electrical load. Composite
load model (CLM) aggregates dynamic and static characteris-
tics which can sufficiently represent the actual load model [18].
Therefore, CLM is one of the most preferable load model in
previous studies [19], [20]. To this end, this article proposes
an approach to identify parameters of CLM.

In terms of identification approach, the CLM parameter
identification approaches can be divided into three follow-
ing groups: 1) optimization-based techniques; 2) state-space
model-based techniques; and 3) data-driven-based approaches.
In the following, it is tried to introduce these groups in more
detail with the highlights from some papers in each area. The
summary of this classification are tabulated in Table I. In this
table, the cons and pros of each group are declared.

1) Optimization-Based Techniques: The methods of this
group first determine an objective function founded on error
that is the difference between measurement and estimated

TABLE I

DESCRIPTIONS OF CLM METHODS

values. Then, they employ different techniques such as
Lagrangian-based algorithm [9], particle swarm optimiza-
tion [21], and heuristic search algorithm [22] to optimize
the objective function. The main disadvantages of these
approaches are related to high computational complexity and
considering only measurement data at current time. As load
consumption is a time-series data that depend on the previous
time steps, ignoring last data can adversely affect the accuracy.

2) State-Space Model-Based Techniques: The approaches in
this group attempt to estimate the parameters using measure-
ment data and state-space load model. For instance, a CLM
parameter identification is formulated as weighted least-
square problem in [23]. Moreover, Kalman filter (KF)-based
approaches such as extended KF (EKF) and unscented
KF (UKF) are also presented in [24] and [25] for CLM and
dynamic load models parameter identification, respectively.
Generally, the correlation between the loads of the system at
various locations cannot be taken into account in this group.
So, this shortcoming considerably affects the performance of
the methods. That is why the correlation between loads must
be observed in the methods to improve their accuracy.

3) Data-Driven-Based Techniques: Data-driven-based
approaches are fast and capable of considering the impact
of load at different locations, which are included two main
subcategories, that is, shallow and deep structures. The
shallow-based structure such as support vector machines
(SVMs) [14], artificial neural networks (ANNs) [26], and
fuzzy logic [27] are developed in recent years for load
parameter estimation. However, these structures are not
able to properly realize the nature and characteristics of the
measurement raw data. Also, another major shortcoming of
these approaches that makes them unusable due to their small
hypothesis space is high sensitivity to measurement noise
and suffering from lack of generality [28]. Moreover, a large
share of previously presented approaches can only utilized
for a single bus, and therefore, they are not suitable. Deep
learning emergence as an evolutionary concept in machine
learning has attended a large number of researchers due
to the ability in capturing complex and nonlinear features
from the raw time signals [2], [3], [6]. A deep recurrent
neural network-based approach, namely long short-term
memory (LSTM) is developed in [4]. Although it offers
suitable performance, it does not have proper efficiency in
learning spatial features and noisy environments. Moreover,
single or multimodal LSTM networks are not fully compatible
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with different dynamic behaviors for tracking various load
patterns.

Considering the presented discussion, this article focuses
to present a data-driven-based technique for CLM parameter
identification.

C. Contributions

This article, aiming to provide an accurate and fast CLM
parameter identification approach, proposes a deep residual-
based structure to fully understand robust, spatial, and tempo-
ral features. In the designed structure, a convolutional neural
network (CNN) is used to realize the spatial features, however,
in contrast with RNN-based networks, CNN is weakened to
learn spatial features, especially in long-tailed time series
associated with high variations. To this end, first a CNN unit
converts to residual CNN units and then a gated recurrent
unit (GRU) as a time efficient and stronger temporal feature
learner than LSTM is added to the designed network. Then,
to make a balance between different dynamic behaviors of
the load parameter in CLM, the designed network converted
into three parallel networks and also improve the computa-
tional efficiency. Consequently, an error-based loss function
is adopted to improve the method performance in noisy
conditions. Furthermore, it can help the method to increase
its training ability.

To sum up, the main novelties of the current work are
presented as follows.

1) A multi-residual deep network is developed to accurately
identify the CLM parameters through strong spatial and
temporal learners.

2) An error-based loss function is suggested to enhance
the method capability in training process which can
provide accurate estimation for CLM parameters in
noisy environments.

3) The slow/fast dynamic behavior of CLM parameters are
realized using three parallel deep networks, which can
improve the time efficiency, as well.

D. Organizations

The organization for the following content is as follows.
The mathematical descriptions of the wide-area CLM model
are provided in Section II. Section III describes the developed
multi-residual deep network in detail. The numerical results
and experiments are given in Section IV. At the end, the
conclusions are drawn in Section V.

II. WIDE-AREA LOAD MODELING

A. Composite Load Model

The CLM involves the static and dynamic components
which are modeled as ZIP and IM models, respectively. The
ZIP model consists of three main parts which are constant
impedance shown as Z , constant current shown as I , and
constant power as P , which are formulated as follows [4]:

PZIP
t = αP
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the ZIP model, the static reflection of loads is dependent on
the voltage variation.

The dynamic component of the CLM is formulated as
a three-order IM model with taking into account of the
meteorological impacts and consuming load patterns [11]
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where v t
d/q and st show d/q-axis transient voltage and rotor

slip as state variables, while parameters r t
R , x t

R , x t
m , H t , and

Tm represent rotor resistance, rotor reactance, magnetizing
reactance, motor inertia, and mechanical torque, respectively.
The IM model is described by voltage, current, and slip of
IM as the state variables, while the parameters need to be
identified are resistance/reactance of the stator/rotor, motor
inertial, and magnetizing reactance.

In addition, d/q-axis stator currents are shown by v t
d/q and

computed, as
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where d/q-axis bus voltage, stator resistance, and short-circuit
reactance are, respectively, depicted by ut

d/q , r t
s , and x t

s . The
measured bus voltage V t

b consists of d and q-axis compo-
nents, as
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The consuming active and reactive power of the IMs as
time-varying parameters is modeled as

Pt
IM

=



r t
S

��
ut

d

�2 + �
ut

q

�2 − ut
dv

t
d − ut

qv
t
q

�
− x t

sh

�
ut

dv
t
q − ut

qv
t
d

���
r t

s

�2 + �
x t

sh

�2
�

(9)

Qt
IM

=



x t
sh

��
ut

d

�2 + �
ut

q

�2 − ut
dv

t
d − ut

qv
t
q

�
− r t

s

�
ut

dv
t
q − ut

qv
t
d

���
r t

s

�2 + �
x t

sh

�2� .

(10)

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on December 23,2021 at 09:07:44 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Consequently, the consuming active and reactive power in
the CLM are

Pt
com = Pt

ZIP + Pt
IM (11)

Qt
com = Qt

ZIP + Qt
IM. (12)

B. Conventional Load Parameter Identification

To estimate the time-varying load parameters, two
sets of parameters including load and measurable
variables are considered which denoted as �t

d and
ϒ t

d , respectively. In this regard, these parameters are
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measured parameters by WAMS are, respectively, represented
by d� and dϒ .

Overall, the CLM shows a function depended on the mea-
sured variables associated with measurement/process noises,
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where k� represent the estimation time horizon of CLM
parameters. Similarity, the dependency of CLM parameters
and measurement variables can be described as
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where kϒ is a window length of measurement.

C. Wide-Area Load Parameter Identification

From the practical point of view, wide-area load modeling
is carried out based on the wide-area measurement systems.
First, the information in the whole power system should be
send to the centralized control center. Then, the control center
organized the received data as an input for the designed data-
driven-based load parameter identification block. The input
data activates the trained network. Formerly, the load parame-
ters of the system are estimated by the designed network. The
mentioned procedure is shown in Fig. 2.

The correlation of the electrical load consumption has taken
into account in the load parameter identification via WAMS.
Therefore, CLM load models are described based on Ft

dY
as

χ t
dχ ,i = Ft

dY

�
χ t

dχ,1
, . . . , χ t

dχ,N

	
. (15)

Fig. 2. Overall schematic on the practical implementation of the wide-area
measurement-based load parameter identification.

The bus number is represented by i , while N depicts the total
number of the buses in the network.

Considering (14) and (15), CLM based on WAMS can be
formulated as (16), shown at the bottom of the page, [4], where
�d�×k�

, χdχ×(kϒ+1), and χdχ×(kϒ +1) are written, respectively, as

�d�×k�
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An analytical model cannot estimate the parameter in (16),
and therefore, this article proposes a data-driven method to
identify the time-varying parameters.

III. WIDE-AREA CLM MODELING BASED ON

MULTI-TASK DEEP LEARNING APPROACH

In the data-driven load modeling, historical data includ-
ing �d�×k�,i ∈ R

d�×k� and χdχ ×(kY +1) ∈ R
dχ ×(kY +1) is

the basis to approximate a function with the output of
��

d�×k�,i ∈ R
d�×k� . The data-driven structure should be able

to generate the output with a minimum difference between
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and the output is
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��
in the data-driven load parameter estimation.

To design a structure to estimate CLM parameters, the squared
error loss function is usually used.

The conventional loss function is a squared error loss
function. The main shortcoming of this loss function is the
possibility of mean biased or estimation of minimum variance.
To address this issue, this article reformulates the loss function
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with a novel approach entitled as pseudo-Huber loss function
as follows [29]:

f pH
loss (Y ) =

T�
t=1

⎡⎣C2

�
c2 + (Yt )

2

C2

⎤⎦− C2 (20)

where f pH
loss represents the loss function and control parameter,

respectively. This loss function outputs the values lose to
(Y )2/2. Therefore, it is prevented the large values due to
producing the straight line with the slope (Y )2/2. Furthermore,
the performance of the suggested loss function would not
be significantly affected by external factors including noises.
Thus, the learning weights θl of each lth layer can be
obtained as

θ
pH

l (X) = θl(X)"
1 +

�#YpH−Yl
C

	2
. (21)

Moreover, the estimator of the proposed pseudo-Huber loss
function, ỸpH , is defined as follows:

ỸpH =
$T

t=1 θ
pH

l (X)Yl$T
t=1 θ

pH
l (X)

. (22)

The efficient and well-known gradient descent-based
Adam [30], [31] is utilized to find the optimal learning
weights. That is why, the developed loss function have
high degree of robustness against various noises such as
measurement and process ones in CLM.

Although a loss function plays a key role in designing
a strong approach in time-varying CLM, it is essential to
design a network that can understand spatio-temporal features
of time signals in the power systems. Thus, this article presents
a multi-task residual spatio-temporal deep consists of three
parallel parts and each part consists of four main blocks, that
is, residual CNN, GRU, fully-connected networks (FCNs), and
weight fusion blocks. The proposed structure is depicted in
Fig. 3.

A. Arrangement of Input Dataset

In the first step, the measurement and load parameters
obtained by a generated dataset is normalized based on [32]

Xi = x i − Xi
min

Xi
max − Xi

min

(23)

the maximum and minimum input values are shown as Xi
max

and Xi
min, respectively.

The 1-D time series is not sufficient for complete feature
extraction. Therefore, the representation learning technique
is applied in which the initial dataset, which is extensively
assessed using real input, is converted to 2-D vectors through
the following [33]:

Xi =

⎡⎢⎢⎢⎢⎣
�t−1

d χ t−1
d−1

χ

�t−2
d� χ

(�)
dt−2

χ

...
...
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d� χ t−kϒ

dχ

⎤⎥⎥⎥⎥⎦. (24)

Fig. 3. Proposed multi-residual deep network structure for CLM parameter
estimation.

B. Residual CNN

In the first blocks of the designed deep network, raw data
is fed into a CNN block. The measurement and parameter
data in the previous time intervals construct a sparse and
noisy input dataset. In the first block, convolutional layers and
max-polling layers are used to extract time-varying patterns
and spatial dependency between measurement signals from
different buses in the power system. The convolutional layers
consist of multiple kernels with a size of wi����

width

× he����
height

. The

output of lth convolution layer is as follows [34]:

OConv
l,i = f act

�
ωConv

l,i ⊗ Xi + Bl,i
�

(25)

where OConv
l,i , ωConv

l,i , and Bl,i represent the output, weight
matrix, and bias matrix of the lth convolutional layer,
respectively. Also, the function f act and the operator ⊗ show
activation function and convolutional operator, respectively.
As can be seen from (25), the input measurement and load
parameters are filtered based on the activation function for the
several times. Also, the input data convolved to extract the
inherent features including spatial features (loads at different
locations).

To enhance the CNN performance in capturing spatial
features, we added a residual mapping after two convolutional
layers, and therefore, the output after passing through a
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residual network is

O res
i = f m + X res

i (26)

where the output of the residual unit, mapping element, and
input of the residual units are shown by O res

i , f m , and X res
i ,

respectively.

C. Gated Recurrent Unit

In the second blocks of three parallel structures, GRU
units are added to the designed multi-residual deep network
to capture fully temporal feature as a time-efficient version
of memory-based recurrent neural networks. GRU units as
the modified version of LSTM consist of update and reset
gates. The update gate stores the important features throughout
a signal and realize long-term dependency, while rest gate
removes features with low weight importance by resetting
memory [3].

D. Fully-Connected Networks

The FCN layers are used to control the dimension of the
GRU, the three parallel FCN layers are trained in an end-
to-end manner, and improve the training performance without
further machinery [34].

E. Weighted Fusion Block

In the time-varying composite model, different parameters
in static and dynamic models have a different impact on the
parameter identification performance. For example, in ZIP load
model, the parameters might be almost constant, in particular,
during the normal operational conditions, while dynamic para-
meters could highly change during an ultra-short-term period,
such in the millisecond time period. Thus, different influential
factors could highly influence on the parameter estimation
with different behavior [35]. To this end, first we designed
a three parallel networks, and then a fusion method is used to
construct final outputs as

O fu = ωP1 � O P1 + ωP2 � O P2 + ωP3 � O P3 (27)

where O fu, ωP1/P2/P3 , and O P1/P2/P3 show the output of weight
fusion block, each parallel part of the designed multi-residual
network weights and outputs, respectively. The output of
weight fusion block is the final output of the proposed deep
approach for CLM parameters ��t

d with the aim of minimum
difference with the aim of minimum difference with �t

d .

F. Training Process

The training process is given in Fig. 4. As can be seen,
training of the designed deep learning-based CLM parameter
identification is simple. First, the designed network is fed by a
set of historical data, and then an iterative process is conducted
to obtain a set of optimal learning weights by optimizing a
pseudo-Huber loss function and Adam algorithm.

Fig. 4. Training process of the multi-residual deep network.

G. Design Procedure

To provide a balance between the slow and fast variants
in the CLM parameters identification, the designed structure
composes of three parallel branches as follows.

1) The first branch is trained based on the measure-
ment parameters and parameters of the ZIP model�
αP

t , β P
t , α

Q
t · αQ

t

	
.

2) The second branch is trained using measurement
parameters, rotor, and stator parameters of the IM�
x t

S, x t
R, r t

S, r t
r

�
.

3) The last branch is trained based on the H t and x t
m .

As can be seen from Fig 1, each branch includes two residual
CNNs, one GRU, and one FCN layer. To this end, the proposed
network is designed based on the following steps.

1) Step 1: Initialization.
Step 1.1: The input data (measurement and parameters) is
normalized based on (23).
Step 1.2: The normalized data is converted from 1-D to
2-D signals.

2) Step 2: Residual CNN.
Step 2.1: As mentioned above, three parallel blocks have
been considered to provide a balance between the slow and
dynamic behavior of the parameters in the static and dynamic
models. Each block consists of two residual CNNs and the
first convolutional layer converts the input to (S,4,1,1,512)
(S: samples) into the two parallel branches and the output
of the last branch (including measurement data and historical
data of H t and x t

m) form is (S,2,1,1,512). Furthermore, about
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15% of the layers are dropped out in the first residual CNN
layers. The dropout approach is a beneficial and widely
used technique to prevent overfitting as well as improve the
computational burden of the designed network. Step 2.2: In
the second residual CNN, the output of the first residual
CNN converts to the outputs with sizes (S,2,1,1,512) into the
two parallel layers (including IM rotor, IM stator, and ZIP
parameters), while the form of the outputs in the last parallel
layer is (S,2,1,1,512). In the second residual CNN layers, about
25% of the layers are dropped.

3) Step 3: GRU.
Step 3.1: The outputs of residual CNN blocks are 2-D signals.
First, 2-D signals convert to the 1-D signals by using a flatten
layer. Therefore, flatten layers are used to convert 2-D signals
to 1-D signals with the size of (S,4,256), (S,4,512), and
(S,2,218) in the first, second, and third parallel layers.
Step 3.2: The 1-D outputs of flattening layers are fed into the
three sets of GRU layers, each branch consisting of one of the
GRU layers. The output of GRU layers is the time series with
the size of (S,128).

4) Step 4: FCN.
Step 4.1: The output of GRU is fed into the FCN blocks.
FCN block converts the outputs of GRU into the vectors with
a size of (S,64), (S,128), and (S,64) in the first, second, and
third parallel layers, respectively.

5) Step 5: Output.
Step 5.1: The outputs of the FCN blocks are fed into the weight
fusion block. The weight fusion block is used to concatenate
the three parts and then construct the final outputs. These
outputs are the results of CLM parameter identification.

IV. NUMERICAL EXPERIMENTS

The numerical results of the designed deep-based CLM
parameter identification structure are given in this section. The
robustness and effectiveness of the proposed multi-residual
deep network are validated using two benchmark case studies
with regard to noise impacts. For the sake of the compar-
ison, four different data-driven approaches including multi-
LSTM [4], single LSTM [4], and 1-D-CNN [36] as previously
presented deep networks and SVM [14] as shallow-based
networks have been considered. Besides, to show the GRU
unit’s impacts on the performance of the proposed approach,
we consider the designed network without GRU units and as a
state-of-the-art approach, multi-residual convolutional (MRC)
approach is also used for assessing the performance of the
developed technique.

The designed network is coded in Python (TensorFlow
package) and the two datasets are gathered from MATLAB
program in a PC system with Core I7 CPU @3.00 GHz RAM.

A. Data Generation and Description

The first benchmark system considered for this study is
IEEE 68-bus system. This system involves 86 lines and 16 gen-
erators. To simulate the network, the power system tool-
box (PST) with 0.01 samples per second has been utilized [37].
Two methods are deliberated to generate the datasets. To illus-
trate the generation technique with an example, consider that

the IEEE 68-bus system has 34 different loads which are
disconnected from the system each a time, while the data is
recorded. Then, this trend is taken into account for the lines.
In other words, they also disconnected from the system while
the data is being captured. This procedure leads to generating
more than 59 500 various samples from the IEEE 68-bus
system. This obtained data is divided into three subsections
including training, validation, and testing samples. In this
regard, 70% of the data is assigned to training stage, while
15% of samples are considered for the validation and the
remaining 15% of this dataset is devoted to the testing process.
It must be noted that the noisy data is generated based on
Normal distribution function with the mean values equaled to
mean values of original data and standard deviation equaled
to 10% of the mean values. These produced noisy samples are
also considered in the evaluation of the developed technique.

B. Evaluation Metrics

Four important and critical error-based metrics are consid-
ered to assess the performance of the designed network from
numerical aspects. The formulation of these indices is brought
as follows.

1) Root mean square error (RMSE)

RMSE =
'(() 1

N

N�
i=1

�
Y �

i − Yi
�2

. (28)

2) Normalized root mean square error (NRMSE)

NRMSE = 1

Y max
i

'(() 1

N

N�
i=1

�
Y �

i − Yi
�2

. (29)

3) Mean absolute error (MAE)

MAE = 1

N

N�
i=1

**Y �
i − Yi

**. (30)

4) Mean absolute percentage error (MAE)

MAPE = 1

N

N�
i=1

****Y �
i − Yi

Yi

****. (31)

C. Discussion on Results

Figs. 5 and 6 show the comparative results of the proposed
method (PM) with the actual values and estimated parameters
by the MCR approach. In these figures, it can be seen that the
proposed approach follows the pattern of measured αt

p and x t
m

with high degree of accuracy. These results indicate that the
proposed approach has high capabilities in this regard.

The performance of the proposed approach in terms of four
different accuracy indices with regard to the defined equations
(28)–(31) is given in Fig. 7. As can be seen from this figure, the
results validate the high accuracy of the proposed approach.

The comparative study between the mentioned methods and
the suggested technique for the estimation of αt

p and x t
m

are given in Figs. 8 and 9. From these figures, it is clear
that the proposed approach is far more accurate than the
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Fig. 5. Estimation results of α
p
t obtained by PM and MRC approaches versus

actual data.

Fig. 6. Estimation results of xm
t obtained by PM and MRC approaches versus

actual data.

state-of-the-art approaches. For instance, based on Fig. 8, the
proposed approach has a higher accuracy percentage in terms
of MAPE than MRC, MLSTM, LSTM, 1-D CNN, and SVM
which are 73.14%, 77.70%, 90.42%, 93.73%, and 98.35%,
respectively. Also, Fig. 9 denotes that the developed scheme
is more accurate in terms of NRMSE than SVM which its
performance is 94.80%. Also the developed scheme has a
better performance than MLSTM, LSTM, and 1-D CNN which
have approximately 76.50%, 89.51%, and 89.63% percentage
in terms of NRMSE, respectively. The comparison between
the proposed approach and MRC shows the effectiveness of
the GRU units with improving accuracy significantly, about
74.20% and 69.24% based on NRMSE values in estimation
of parameters, αt

p and x t
m , respectively.

D. Sensitivity Analysis on Parallel Structure

To analyze the effectiveness of the proposed approach with
different parallel parts, a sensitivity study is conducted. The

Fig. 7. Obtained metrics by the PM in wide-area load modeling.

Fig. 8. Estimation results of α
p
t obtained by PM in parameter identification

of CLM with MRC, MLSTM, LSTM, 1-D CNN, and SVM schemes.

Fig. 9. Estimation results of xm
t obtained by PM in parameter identification

of CLM with MRC, MLSTM, LSTM, 1-D CNN, and SVM schemes.

results of time-varying load parameter identification for para-
meter x t

m are depicted in Fig. 10 with regard to the mentioned
four different indices. As can be realized, the performance
of the proposed approach with three different parts is more
accurate than the scheme with one, two, four, and five parts.
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Fig. 10. Comparison of different structures of the PM in parameter
identification of CLM with 1–5 parallel layers in estimation of xm

t .

Fig. 11. Proposed multi-residual deep network structure for CLM parameter.
Comparison of the PM, MRC, MLSTM, and LSTM results on xm

t estimation
in terms of RMSE.

With increasing number of the parts from one to three, the
accuracy is enhanced. However, the designed deep network
with five different parts shows lower accuracy than with three
and four parts. For example, the proposed approach with
three parallel layers is significantly reduced the error in terms
of MAPE associated with one, two, four, and five parallel
layers approximately 80.32%, 63.37%, 32.41%, and 72.83%,
respectively. It can be stated that the higher number of parallel
branches leads to overfitting.

E. Sensitivity Analysis on Noise

The robustness of the proposed approach is discussed in this
section through a comparison with other approaches. To this
end, five different noise signals are added to the actual values;
each of them follows a Gaussian distribution with zero mean
and standard deviation of 0.005, 0.01, 0.015, 0.02, 0.025, and
0.03 (shown by α1). Figs. 11 and 12 compared the results
for estimation of x t

m obtained by the proposed approach,
MRC, MLSTM, and LSTM in terms of RMSE and MAPE

Fig. 12. Proposed multi-residual deep network structure for CLM parameter.
Comparison of the PM, MRC, MLSTM, and LSTM results on xm

t estimation
in terms of MAPE.

Fig. 13. Estimation results of H t obtained by PM in parameter identification
of CLM with MRC, MLSTM. LSTM, 1-D CNN, and SVM schemes in Iranian
95-bus system.

indices. As can be seen, the proposed approach is far more
accurate than other approaches and the results demonstrated
the robustness of the proposed approach in noisy conditions.
For instance, in highly noise condition with standard deviation
0.03, the proposed approach is more accurate than MRC,
MLSTM, and LSTM, about 64.61%, 80.91%, and 86.91%,
respectively, based on Fig. 11. From Fig. 12, it is clear that
MAPE of the designed network, MCR, MLSTM, and LSTM
are 0.001872, 0.005689, 0.006983, and 0.01086, respectively,
in highly noise condition (α1 = 0.03). These MAPE value
shows that the proposed approach has improved accuracy
of multi-residual CNN-based CLM parameter identification
significantly, about four times better. Besides, the error of the
proposed approach in estimation of x t

m are at least five and
seven times less than MLSTM and LSTM, respectively.

F. Further Results: Iranian 95-Bus Network

To verify the generality of the PM, the real network of
Iranian 95-bus network is considered [38]. To this end, the
proposed approach is tested on the data gathered from this
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network, in which the results obtained by the proposed net-
work on the estimation of the H t of the load connected to the
bus 63 (more information is provided in [38]). The results are
compared based on some metrics shown in Fig. 13. As can be
seen, it is clear that the designed multi-residual deep network
is superior over the compared methods. Therefore, based on
attained results on the IEEE-68 bus system and Iranian 95-bus
systems, the effectiveness as well as generality of the proposed
approach is demonstrated.

V. CONCLUSION AND FUTURE WORKS

In the power system studies, it is essential to model the loads
with highest accuracy to achieve more precise results. The
proper load modeling procedure has two consecutive stages
which are a selecting practical load model and developing a
powerful parameter identification scheme. In this article, the
wide-area CLM is selected as a realistic and practical load
model. Furthermore, a fast and accurate deep neural network,
namely multi-residual deep neural network, is designed to
achieve the unknown parameters. The proposed approach ben-
efits from a residual convolutional layer to capture spatial and
robust features of the measurement signal and used GRU unit
to realize fully temporal features. To make a balance between
learning dynamic and static behavior of CLM parameters, the
proposed network is designed in three parallel manners. The
training ability and noise immunity of the designed technique
is boosted by a reformulated error loss function named pseudo-
Huber loss function. The methodology is assessed on two dif-
ferent case studies including IEEE 68-bus and Iranian 95-bus.
The results network verifies the superiority of the proposed
approach through comparison with previous approaches such
as MLSTM, LSTM, and SVM, with at least more than 70%
accuracy improvement. To address the GRU application in the
designed network, the proposed approach is compared with
MCR (the proposed approach without GRU units) and shows
at least 50% accuracy improvement. The sensitivity analysis
on noise shows that the proposed network is almost robust in
different noisy conditions and shows at least three times less
error compared with other approaches. Finally, a three parallel
structures efficiency is demonstrated by a comparative analysis
with different structure of the designed network.

The investigations on the proposed CLM parameter estima-
tion based on WAMS reveal that further explorations in the
following directions would be worthwhile.

1) Estimation of the full statistical information of the elec-
trical loads from the probability density function (pdf)
instead of point estimations of load parameters.

2) Developing parameter identification models for com-
posite demand side models such as combination of
load, renewable power generations, and energy storage
devices. In this case, the number of the parameters and
the model would change and the uncertainty associated
with renewable generations can be a serious challenge
in the modern power systems.
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