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1. ABSTRACT 

This study proposes a strategy for short-term operational planning of active distribution systems to 

minimize operating costs and greenhouse gas (GHG) emissions. The strategy incorporates network 

reconfiguration, switchable capacitor bank operation, dispatch of fossil fuel-based and renewable 

distributed energy resources, energy storage devices, and a demand response program. Uncertain 

operational conditions, such as energy costs, power demand, and solar irradiation, are addressed using 

stochastic scenarios derived from historical data through a k-means technique. The mathematical 

formulation adopts a stochastic scenario-based mixed-integer second-order conic programming 

(MISOCP) model. To handle the computational complexity of the model, a neighborhood-based 

matheuristic approach (NMA) is introduced, employing reduced MISOCP models and a memory strategy 

to guide the optimization process. Results from 69 and 118-node distribution systems demonstrate reduced 

operational costs and GHG emissions. Moreover, the proposed NMA outperforms two commercial solvers. 

This work provides insights into optimizing the operation of distribution systems, yielding economic and 

environmental benefits. 

Keywords:  

Demand response, energy storage devices, greenhouse gas emissions mitigation, matheuristic, mixed-

integer second-order conic programming, network reconfiguration. 

 

2. NOMENCLATURE 

Sets and indices 

𝑖, 𝑗/𝑘𝑖, 𝑖𝑗 Indices for nodes/branches; 

Ω𝑏 Set of branches; 

Ω𝑑𝑔 Set of nodes with dispatchable generators installed; 

Ω𝑒𝑠𝑑 Set of nodes with energy storage devices installed; 

Ω𝑛 Set of nodes; 

Ω𝑝𝑣 Set of nodes with photovoltaic panels installed; 
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Ω𝑠 Scenarios I and II such that: 𝑠 ∈ {1, 2}; 

Ω𝑠𝑐𝑏 Set of nodes with switchable capacitors bank installed; 

Ω𝑠𝑠 Set of substation nodes; 

Ω𝑡 Set of periods of the day such that: 𝑡 ∈ {0, … ,11}; 

Parameters 

𝑐ℎ
𝑒𝑛𝑒𝑟𝑔𝑦

 Historical hourly measurements of the cost of energy 

𝐶𝑡,𝑠
𝑒𝑛𝑒𝑟𝑔𝑦

 Price per unit of energy in scenario c; 

𝐶𝑡𝑎𝑥 Penalty per ton of 𝐶𝑂2 emitted; 

𝑒𝑠𝑠, 𝑒𝑑𝑔 𝐶𝑂2 emission factor from the substation and dispatchable generators, respectively; 

𝑔ℎ Historical hourly measurements of solar irradiation; 

𝐺𝑡,𝑠 Solar irradiation in scenario c; 

𝐼𝑖𝑗 Maximum thermal capacity of the line 𝑖𝑗; 

𝑛𝑖
𝑠𝑐𝑏

 Number of installed capacitor banks at node 𝑖; 

𝑁𝑂𝐶𝑇𝑖 Nominal operating cell temperature of PV at node 𝑖; 

𝑃𝑖,𝑡,𝑠
𝑑 , 𝑄𝑖,𝑡,𝑠

𝑑  Active/reactive power demand at load node 𝑖; 

𝑃𝑖,𝑡,𝑠
𝑒𝑠𝑑𝑐ℎ

, 𝑃𝑖,𝑡,𝑠
𝑒𝑠𝑑𝑐ℎ

 Lower/Upper limits of charge of ESD connected at node 𝑖; 

𝑃𝑖,𝑡,𝑠
𝑒𝑠𝑑𝑑𝑐ℎ

, 𝑃𝑖,𝑡,𝑠
𝑒𝑠𝑑𝑑𝑐ℎ

 Lower/Upper limits of discharge of ESD connected at node 𝑖; 

𝑃𝑖
𝑠𝑡𝑑 Power under standard conditions of PV at node 𝑖; 

𝑄𝑖
𝑓𝑐𝑏

 Reactive power injected by the fixed capacitor at node 𝑖; 

𝑞𝑖
𝑠𝑐𝑏 Reactive power capacity of each unit of an SCB; 

𝑅𝑖𝑗 , 𝑋𝑖𝑗 Resistance and reactance of branch 𝑖𝑗; 

𝑆𝑖
𝑠𝑠, 𝑆𝑖

𝑑𝑔
 Maximum capacity of SS/DG at node 𝑖; 

𝑇𝑡,𝑠 Duration of each analysis period; 

𝑇𝑎𝑚𝑏 , 𝑇𝑖,𝑡,𝑠
𝑐𝑒𝑙𝑙 Ambient temperature; and temperature of PV at node 𝑖; 

𝑉 , 𝑉 Min./max. limits of voltage’s magnitude in nodes; 

𝑍𝑖𝑗
𝑠𝑞𝑟

 Squared impedance of branch 𝑖𝑗; 

ℨ𝑑𝑟 Percentage of the maximum decreases allowed in loads to apply the DRP; 

𝛿𝑖 Power/temperature coefficient of PV at node 𝑖; 

𝜉𝑖
𝑒𝑠𝑑𝑐ℎ

, 𝜉𝑖
𝑒𝑠𝑑𝑑𝑐ℎ

 Charge/discharge efficiency of ESDs; 

𝜁𝑖
𝑒𝑠𝑑 Self-discharge rate of ESDs; 

ϝ𝑡,𝑠 Demand factor, scenario t,s; 

𝜃𝑖
𝑝𝑓

 Power factor of load connected at node 𝑖; 

𝜑𝑖
𝑐/𝑑𝑔

, 𝜑𝑖
𝑖/𝑑𝑔

 Capacitive/inductive power factors of DG unit at node 𝑖; 

𝜑𝑖
𝑐/𝑝𝑣

, 𝜑𝑖
𝑖/𝑝𝑣

 Capacitive/inductive power factors of PV unit at node 𝑖; 

𝜂, 𝜂
𝑠𝑐𝑏

, 𝜂
𝑒𝑠𝑑

 Maximum changes on SCBs/ESDs while neighborhood search; 

𝜋𝑡,𝑠
𝑒𝑛𝑒𝑟𝑔𝑦

, 𝜋𝑒𝑚𝑖𝑠 , 𝜋𝑒𝑛𝑠 Cost parameters of energy, CO2 emissions and energy not supplied, respectively; 
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𝜋𝑑𝑟 Discount rate of energy cost when DRP is applied; 

𝜌𝑡,𝑠 Probability of occurrence of scenario c; 

𝛥𝑖
𝑠𝑐𝑏 , 𝛥𝑖

𝑒𝑠𝑑 Maximum allowed maneuvers on SCBs/ESDs; 

Continuous variables 

𝐶𝑡,𝑠
𝑑𝑟 , 𝐶𝑡,𝑠

𝑒𝑚𝑖𝑠 , 𝐶𝑡,𝑠
𝑒𝑛𝑠 , 𝐶𝑡,𝑠

𝑙𝑜𝑠𝑠 
Cost of demand response, 𝐶𝑂2  emissions, energy not supplied, and energy losses in 

scenario t,s, respectively; 

𝐸𝑖,𝑡,𝑠
𝑒𝑠𝑑 Stored energy in ESD; 

𝑒𝑖,𝑡,𝑠
𝑒𝑠𝑑𝑑𝑐ℎ

, 𝑒𝑖,𝑡,𝑠
𝑒𝑠𝑑𝑐ℎ

 Auxiliary variables to account for maneuvers on ESDs; 

𝐼𝑖𝑗,𝑡,𝑠
𝑠𝑞𝑟

  Square of current flow in branch 𝑖𝑗; 

𝑃𝑖𝑗,𝑡,𝑠, 𝑄𝑖𝑗,𝑡,𝑠 Active and reactive power flow in branch 𝑖𝑗, scenario 𝑡, 𝑠; 

𝑃𝑖
𝑑 , 𝑄𝑖

𝑑 Active and reactive maximum load connected at node 𝑖; 

𝑃𝑖,𝑡,𝑠
𝑑𝑔

, 𝑄𝑖,𝑡,𝑠
𝑑𝑔

 Active and reactive power injection by DG units; 

𝑃𝑖,𝑡,𝑠
𝑑/𝑑𝑟

, 𝑄𝑖,𝑡,𝑠
𝑑/𝑑𝑟

 Active and reactive demand after DRP application; 

𝑃𝑖,𝑡,𝑠
𝑒𝑠𝑑𝑐ℎ

, 𝑃𝑖,𝑡,𝑠
𝑒𝑠𝑑𝑑𝑐ℎ

 Charge/discharge power of ESD connected at node 𝑖; 

𝑃𝑖,𝑡,𝑠
𝑒𝑛𝑠  Not supplied power at node 𝑖; 

𝑃𝑖,𝑡,𝑠
𝑝𝑣

, 𝑄𝑖,𝑡,𝑠
𝑝𝑣

 Active and reactive power injection by PV units; 

𝑃𝑖,𝑡,𝑠
𝑠𝑠 , 𝑄𝑖,𝑡,𝑠

𝑠𝑠  Active and reactive power injection by substations; 

𝑃𝑖,𝑡,𝑠
𝑡𝑜𝑢+

, 𝑃𝑖,𝑡,𝑠
𝑡𝑜𝑢−

 Increase/decrease of active load when TOU-DRP is applied at node 𝑖; 

𝑄𝑖,𝑡,𝑠
𝑠𝑐𝑏   Reactive power injected by an SCB at node 𝑖; 

𝑛𝑖,𝑡,𝑠
+ , 𝑛𝑖,𝑡,𝑠

−  Auxiliary variables to account for increase/decrease maneuvers on SCB installed at node 𝑖; 

𝑉𝑖,𝑡,𝑠
𝑠𝑞𝑟

  Square of voltage at node 𝑖; 

𝜇𝑖𝑗,𝑡,𝑠  Slack variable for voltage calculation; 

𝛹 Operational cost, Objective function; 

Integer variables 

𝑒𝑖,𝑡,𝑠
𝑒𝑠𝑑 Binary variable to state the charge or discharge of the ESD connected at node 𝑖; 

𝑘𝑖𝑗 Binary variable to indicate the status of branch 𝑖𝑗 ; 

𝑛𝑖,𝑡,𝑠
𝑠𝑐𝑏  Number of connected capacitors in an SCB during scenario 𝑡, 𝑠; 

𝛽𝑖𝑗 Binary variable to indicate 𝑗 is the parent node of 𝑖; 

𝜍𝑖,𝑡,𝑠
𝑡𝑜𝑢 Binary variable to indicate the application or not of DRP at node 𝑖; 

3. INTRODUCTION 

In response to the growing climate crisis, nations globally are actively incorporating distributed energy 

resources (DERs) to diminish the reliance on fossil fuels [1], [2]. The increasing relevance of low-carbon 

policies further complicates the operational planning of distribution systems (DSs), posing challenges in 

maintaining balance due to demand variability and uncertainties from renewable energy resources (RESs) 

[3], [4]. Simultaneously, carbon emission trading policies, leveraging financial incentives, emerge as 

highly effective in mitigating emissions [5]. Achieving low-carbon operational planning for DSs in this 
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context requires effective solutions to manage uncertainties, a critical aspect in meeting carbon neutrality 

targets [6]. 

The optimal operation of DSs (OODS) is a well-known problem that aims to optimize the scheduling 

and operational state of DERs and other network resources over a planning horizon [7], [8]. In this regard, 

it is crucial to consider various available technologies in optimizing the DSs operation such as dispatchable 

generators (DGs), photovoltaic generators (PVs), capacitor banks (CBs), switched capacitor banks (SCBs), 

and energy storage devices (ESDs). Furthermore, a short-term topology reconfiguration planning (i.e. a 

seasonal topology plan), based on renewable source patterns from historical data, can enhance DSs 

operation. Similarly, demand response programs (DRPs) appear to support the DSs performance by 

allowing consumers to actively participate in deregulated electricity markets. DRPs involve modifying 

load consumption patterns to reduce peak demand periods, incentivizing user participation through 

rewards [9]. On the other hand, objective functions in OODS problem typically involve minimizing energy 

purchased cost, power losses, voltage deviation, DGs, and ESDs operation costs. Given the significance 

of DERs in the low-carbon transition [6], emerging considerations include minimizing greenhouse gas 

(GHG) emissions, DRPs incentives, load shedding, and maximizing social welfare [5], [6], [10], [11], [12]. 

Finally, it is important to mention that combining the above elements in a mathematical model, results in 

a big and heavy problem from a computational point of view. Consequently, this work explores a 

matheuristic approach, which combines mathematical programming and heuristic techniques to handle 

complex optimization problems and has been applied in several areas including power systems 

optimization [13], [14], [15].  

The specialized literature encompasses various studies on optimal distribution system operation, for 

example, Reference [1] introduces a collaborative framework for multi-stakeholder DERs, utilizing a 

cascading algorithm to achieve a win-win situation. Moreover, carbon tax and demand response to electric 

and heat loads are applied in the framework, and the problem is solved through an analytical target 

cascading algorithm. The authors in [4] focus on DERs optimization for energy independence in the 

Canarian Islands, employing a transient system simulation tool for simulation. The work concludes by 

encouraging the participation of stakeholders to achieve net/nearly zero energy goals for island 

communities. In [5], a two-stage low-carbon scheme of energy dispatch based on active demand side 

management (DSM) is proposed considering different types of generation (coal, gas-fired, hydro, wind, 

and PV), ESDs. The paper concludes with a clear carbon emission reduction by the application of DSM. 

A similar work is proposed in [6] where the dual consensus alternating direction multiplier algorithm is 

proposed to solve the problem. Results show a reduction of carbon emissions by 14%. Reference [8] 

addresses the optimal operation of DSs considering volt/var control, using an evolutionary algorithm to 

minimize operational costs. Tap change costs are found to be crucial for conservation voltage reduction 

goals. In [10], a mixed-integer second-order cone programming model is presented to determine the 

optimal operation of DSs considering the influence of energy storage devices and other DERs, such as 

DGs, CB, SCB on-load tap-changers. The authors in [11] propose a mixed-integer linear programming 

model for the optimal operation of DGs, ESDs, and wind turbines. The problem is treated by the CPLEX 

solver, and uncertainty considerations provide better solutions than a deterministic treatment. Reference 

[12] introduces a two-stage stochastic model for an energy hub with the presence of ESDs. Furthermore, 

demand response is applied, and the problem is treated by both real and binary-coded genetic algorithms, 

offering a comprehensive overview of studies applying various strategies for optimal distribution system 

operation. 
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Distribution network reconfiguration (DNR) stands as a robust strategy to enhance the operation of 

dynamic and active DSs [16]. In the specialized literature, numerous studies have explored this topic using 

mathematical programming and metaheuristic algorithms [17], [18]. For instance, a convex-based DNR 

model employing mixed-integer second-order conic programming (MISOCP) was introduced in [19], 

offering accurate power loss calculations. Subsequent research has further developed conic models to 

address the DNR problem. Some examples include the big-M method for power loss minimization [20], a 

joint formulation of DNR and capacitor bank (CB) placement [21], and a mixed-integer linear 

programming (MILP) model that separates variables into real and imaginary parts [22]. While 

mathematical programming approaches face computational limitations with increasing problem 

complexity, metaheuristics, such as tabu search (TS), simulated annealing, evolutionary algorithms, 

genetic algorithms, and differential evolution, have gained traction for solving the DNR problem [23]. 

However, these approaches do not guarantee optimal global solutions and rely on the developer’s 

expertise. 

As an additional strategy, DRPs allow consumers to actively participate in deregulated electricity 

markets. They involve modifying load consumption patterns to reduce peak demand periods, and 

incentivizing user participation through rewards [9]. These programs offer flexibility and positively impact 

technical and economic aspects [24]. In the literature, various multi-objective reconfiguration models 

incorporating time-of-use DRPs (TOU-DRP) have been proposed [9], [25]. Additionally, stochastic multi-

objective approaches considering dispatchable, wind, and solar generation, along with DRPs and ESDs, 

have been explored in [26], where Monte Carlo simulations are used to account for parameter uncertainties. 

Parameter uncertainties are a crucial consideration in addressing challenges related to the optimal 

operation of DSs. Various strategies have been proposed in the literature, where one of the most applied 

methods are the scenario-based ones whose are obtained from historical data [26]. In the context of DNR, 

it becomes essential to incorporate the influence of stochastic parameters and the impact of installed DERs 

along the feeders. For example, a day-ahead reconfiguration with a generation scheduling model that 

incorporates biomass, fuel cells, small hydro, geothermal, solar, wind, and electric vehicles as special loads 

was presented in [27]. The study in [9] quantifies a significant reduction in carbon emissions after network 

reconfiguration, highlighting the proportional relationship between emissions and losses. Another study 

proposed a multi-objective optimization model considering DERs and electric vehicles, solved using the 

beetle swarm algorithm and scenario reduction with the k-means method [28]. 

Addressing the OODSs problem, considering all the summarized strategies, results in high complexity 

that is challenging for mathematical programming and metaheuristic approaches. Recognizing these 

limitations, the matheuristic concept emerges as a promising solution. Matheuristic algorithms uniquely 

blend mathematical programming and heuristic techniques to effectively tackle intricate optimization 

problems. In power systems, variable neighborhood search-based matheuristic algorithms have been 

employed for DS expansion planning [29] and optimal power flow in transmission systems [30]. A 

neighborhood structure-based matheuristic approach was used in [31] to solve the DNR problem, but it 

did not consider energy storage devices or a demand response program. Notably, the methods proposed in 

[29], [30], [31] outperformed commercial solvers. 

Building upon the aforementioned background of topics and strategies, this study aims to ascertain 

the optimal operational planning of modern dynamic and active DSs. The focus includes network 

reconfiguration, optimal scheduling of active devices like dispatchable DGs and energy storage, along 

with the integration of a demand response program. Uncertainties in DS operational planning are 
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considered by representing a typical day of a specific season through a set of stochastic scenarios that 

capture uncertain behavior of energy cost, power demand, and solar irradiation. The mathematical 

formulation of the problem is presented as a stochastic MISOCP model and an efficient matheuristic 

approach is introduced to address this complex problem. TABLE 1 summarizes the differences between 

this paper and the state of the art of the problem of optimal operation planning of active distribution 

systems. The main contributions of this work are explained as follows: 

• Novel Matheuristic Algorithm: Introducing a pioneering matheuristic algorithm that 

seamlessly integrates mathematical programming and heuristic techniques. This combination 

enables the effective operational optimization of complex DS, considering diverse operational 

aspects. 

• Focus on Modern DS Challenges: Emphasizing specific attention to challenges inherent in 

modern DSs, such as network reconfiguration, dispatch of Distributed Energy Resources, 

Demand Response Programs, and Energy Storage Devices. These aspects might not have been 

comprehensively explored in existing literature. 

• Extensible Neighborhood Structures: Developing a set of extensible neighborhood 

structures based on MISOCP models. These structures enhance the flexibility of the approach, 

making it applicable to various DS optimization problems. 

• Case Studies and Performance Evaluations: Conduct targeted case studies and rigorous 

over commercial solvers. This practical demonstration underscores the effectiveness of the 

contributions. 

In summary, this work advances the field of DS operational planning by integrating matheuristics, 

addressing the distinctive challenges of modern DSs, accommodating uncertainties, and providing 

performance evaluations. These contributions, coupled with the unique features of the proposed approach, 

TABLE 1. Taxonomy Table of Optimal Operational Planning Strategy for Distribution Systems. 

 Uncertainties 
Renewable 

generation 

Operational 

cost 

minimization 

GHG 

minimization 

DGs 

schedule 

SCBs 

schedule 

ESDs 

schedule 

Demand 

response 

program 

Reconfig. 
Mathematical 

model 

[1] -- ✓ ✓ -- ✓ -- ✓ ✓ -- MINLP 

[5] -- ✓ ✓ ✓ ✓ -- ✓ ✓ -- MINLP 

[6] -- ✓ ✓ ✓ ✓ -- ✓ ✓ -- MINLP 

[7] -- -- -- -- ✓ -- -- -- ✓ MISOCP 

[8] -- -- ✓ -- -- ✓ -- -- ✓ MISOCP 

[9] ✓ -- -- -- -- -- -- ✓ ✓ MINLP 

[11] ✓ ✓ ✓ -- ✓ -- ✓ -- -- MINLP 

[12] ✓ ✓ ✓ ✓ -- -- ✓ ✓ -- NLP 

[13] ✓ ✓ ✓ -- ✓ -- ✓ ✓ ✓ MINLP 

[14] -- ✓ ✓ -- ✓ -- -- ✓ ✓ MISOCP 

[15] ✓ ✓ -- -- -- -- -- -- ✓ MINLP 

[16] -- -- -- -- -- -- -- ✓ ✓ MINLP 

[17] ✓ ✓ ✓ -- -- -- ✓ ✓ ✓ MIQCP 

[18] -- ✓ ✓ ✓ -- -- ✓ ✓ ✓ MILP 

[24] ✓ ✓ ✓ ✓ ✓ ✓ -- -- ✓ MISOCP 

This 

work 
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ MISOCP 

 

 

Jo
ur

na
l P

re
-p

ro
of



set it apart from existing literature, offering insights for the management and optimization of distribution 

systems. The subsequent sections of the paper delve into the details of the proposed MISOCP model, the 

matheuristic algorithm, and present results obtained for the 69-bus and 118-bus distribution systems. 

Finally, the study concludes by summarizing key findings. 

4. PROBLEM FORMULATION 

4.1. Uncertainty 

The incorporation of distributed energy resources (DERs) in modern power grids necessitates 

modeling non-deterministic parameters such as energy cost, load demand, and RESs [32]. Among various 

techniques, clustering methods are suitable and easy-to-implement alternatives [2], [33], [34], [35]. These 

methods group a set of observations into clusters, extracting the most representative information from 

extensive data sets [36]. This work chose the k-means method due to its suitability and proven performance 

in modeling uncertainty parameters in power systems [37]. 

As depicted in Fig. 1, the measurements represent the hourly values of the parameters during the 

autumn of 2014 (93 days), in the São Paulo region of Brazil. These parameters are the normalized values 

(p.u.) for energy cost, demand, and solar irradiation. The k-means algorithm is applied to reduce the set of 

observations at each day’s period into clusters using the following steps: 

Step 1- Daily curves: The entire dataset is divided into blocks of 24 hours, representing 93 daily 

profiles. 

Step 2- Period Definition: Each block is further divided into twenty-four equal periods. 

Step 3- The k-means process is applied to each of the twenty-four periods, dividing the 93 samples 

into two clusters. The centroids of these clusters represent the parameter values for scenarios I and II. As 

these are stochastic scenarios, their probability of occurrence depends on the number of samples forming 

the cluster. Consequently, a vector is generated for each scenario 𝑠 ∈ {1,2} of period 𝑡 ∈ {0, 1, 2, … 23}, 

containing the energy cost, demand, solar irradiation, and probability. Thus, the final structure of the 

scenario vector is [𝐶𝑡,𝑠
𝑒𝑛𝑒𝑟𝑔𝑦

  ϝ𝑡,𝑠   𝐺𝑡,𝑠   𝜌𝑡,𝑠]. 

Energy cost (p.u.)

Demand factor (p.u.)

Solar irradiation (p.u.)

 h  hours

24 hours

 n  days

24 periods

24 hours

k - means

Period n

Scen.

I

Scen.

II

STEP 1

Hourly measurements of a season

Division of all data in twenty-four hours 

blocks, obtaining daily profiles

STEP 2

STEP 3

Energy cost

Demand factor

Solar irradiation

Probability

 n  correlated 

measurements 

Period n

Probability is obtained based on the 

number of elements in each  k  cloud.

Divide the set of profiles into twenty-four 

periods

Apply the k-means technique to the set of elements 

of each of the 24 periods created previously.

 
Fig. 1 Stochastic scenario generation approach. 
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4.2. Objective Function 

The proposed model aims to determine an operating state that reduces the operational cost of the 

system over a planning horizon. Thus, the objective function Ψ, presented in (), minimizes the active 

power losses, CO2 emissions, rewards for the demand response program, and energy not supplied to loads.  

𝑀𝑖𝑛 Ψ = ∑ ∑ 𝜌𝑡,𝑠

𝑠∈𝛺𝑠

𝑇𝑡,𝑠(𝐶𝑡,𝑠
𝑙𝑜𝑠𝑠 + 𝐶𝑡,𝑠

𝑒𝑚𝑖𝑠 + 𝐶𝑡,𝑠
𝑑𝑟 + 𝐶𝑡,𝑠

𝑒𝑛𝑠)

𝑡∈𝛺𝑡

 () 

Where: 

𝐶𝑡,𝑠
𝐿𝑜𝑠𝑠 = 𝜋𝑡,𝑠

𝑒𝑛𝑒𝑟𝑔𝑦
∑ 𝑅𝑖𝑗𝐼𝑖𝑗,𝑡,𝑠

𝑠𝑞𝑟

𝑖𝑗∈𝛺𝑏

 () 

𝐶𝑡,𝑠
𝑒𝑚𝑖𝑠 = 𝜋𝑒𝑚𝑖𝑠 ( ∑ 𝑒𝑠𝑠𝑃𝑖,𝑡,𝑠

𝑠𝑠

𝑖∈𝛺𝑠𝑠

+ ∑ 𝑒𝑑𝑔𝑃𝑖,𝑡,𝑠
𝑑𝑔

𝑖∈𝛺𝑑𝑔

) () 

𝐶𝑡,𝑠
𝑑𝑟 = 𝜋𝑑𝑟 ∙ 𝜋𝑡,𝑠

𝑒𝑛𝑒𝑟𝑔𝑦
∑ 𝑃𝑖,𝑡,𝑠

𝑡𝑜𝑢+

𝑖∈𝛺𝑏

 () 

𝐶𝑡,𝑠
𝑒𝑛𝑠 = 𝜋𝑒𝑛𝑠 ∑ 𝑃𝑖,𝑡,𝑠

𝑒𝑛𝑠

𝑖∈𝛺𝑏

 () 

The power loss cost of the system is determined in (). The cost of gas emissions from the sub-

transmission system and dispatchable fossil fuel-based DG units of the system is estimated in (). The cost 

for demand response application is a total discount in tariff due to changes in the schedule of energy supply. 

The system operator can supply energy to some type of load at any convenient period, meeting the daily 

energetic requirements of the customer. Additionally, the customer would receive a percentage discount 

on energy prices (𝜋𝑑𝑟), at the period defined by the system operator. This can be an advantage at periods 

of peak load to reduce an allowed percentage of demand. This concept is addressed in () where 𝑃𝑖,𝑡,𝑠
𝑡𝑜𝑢+

 is 

the power that is being delivered to customer. Finally, equation () corresponds to a possible share of 

energy not supplied at any load bus to avoid constraint violation. 

4.3. Operational State of the System 

The DS’s steady state is assessed through the following second-order conic programming model, ()–

(). 

∑ 𝑃𝑘𝑖,𝑡,𝑠

𝑘𝑖 𝜖 𝛺𝑏

− ∑ (𝑃𝑖𝑗,𝑡,𝑠 + 𝑅𝑖𝑗𝐼𝑖𝑗,𝑡,𝑠
𝑠𝑞𝑟

)

𝑖𝑗 ∈ 𝛺𝑏

+ 𝑃𝑖,𝑡,𝑠
𝑠𝑠 + 𝑃𝑖,𝑡,𝑠

𝑑𝑔
+ 𝑃𝑖,𝑡,𝑠

𝑝𝑣
+ 𝑃𝑖,𝑡,𝑠

𝑒𝑠𝑑𝑑𝑐ℎ
− 𝑃𝑖,𝑡,𝑠

𝑒𝑠𝑑𝑐ℎ
= 𝑃𝑖,𝑡,𝑠

𝑑/𝑑𝑟
 () 

∑ 𝑄𝑘𝑖,𝑡,𝑠

𝑘𝑖 𝜖 𝛺𝑏

− ∑ (𝑄𝑖𝑗,𝑡,𝑠 + 𝑋𝑖𝑗𝐼𝑖𝑗,𝑡,𝑠
𝑠𝑞𝑟

)

𝑖𝑗 ∈ 𝛺𝑏

+ 𝑄𝑖,𝑡,𝑠
𝑠𝑠 + 𝑄𝑖,𝑡,𝑠

𝑑𝑔
+ 𝑄𝑖

𝑓𝑐𝑏
+ 𝑄𝑖,𝑡,𝑠

𝑠𝑐𝑏 + 𝑄𝑖,𝑡,𝑠
𝑝𝑣

= 𝑄𝑖,𝑡,𝑠
𝑑/𝑑𝑟

 () 

⩝ 𝑖 ∈ 𝛺𝑛,⩝ 𝑡 ∈ 𝛺𝑡,⩝ 𝑠 ∈ 𝛺𝑠 

 
 

𝑉𝑖,𝑡,𝑠
𝑠𝑞𝑟

− 𝑉𝑗,𝑡,𝑠
𝑠𝑞𝑟

+ 𝜇𝑖𝑗,𝑡,𝑠 = 2(𝑅𝑖𝑗𝑃𝑖𝑗,𝑡,𝑠 + 𝑋𝑖𝑗𝑄𝑖𝑗,𝑡,𝑠) + 𝑍𝑖𝑗
𝑠𝑞𝑟

𝐼𝑖𝑗,𝑡,𝑠
𝑠𝑞𝑟

 () 

|𝜇𝑖𝑗,𝑡,𝑠| ≤ (𝑉
2

− 𝑉2)(1 − 𝑘𝑖𝑗) () 
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 𝐼𝑖𝑗,𝑡,𝑠
𝑠𝑞𝑟

𝑉𝑗,𝑡,𝑠
𝑠𝑞𝑟

≥ 𝑃𝑖𝑗,𝑡,𝑠
2 + 𝑄𝑖𝑗,𝑡,𝑠

2  () 

⩝ 𝑖𝑗 ∈ 𝛺𝑏 ,⩝ 𝑡 ∈ 𝛺𝑡 ,⩝ 𝑠 ∈ 𝛺𝑠 

 
 

0 ≤ 𝐼𝑖𝑗,𝑡,𝑠
𝑠𝑞𝑟

≤ 𝐼𝑖𝑗

2
∙ 𝑘𝑖𝑗 () 

𝑉2 ≤ 𝑉𝑖,𝑡,𝑠
𝑠𝑞𝑟

≤ 𝑉
2

 () 

𝑃𝑖,𝑡,𝑠
𝑠𝑠 2

+ 𝑄𝑖,𝑡,𝑠
𝑠𝑠 2

≤ 𝑆𝑖
𝑠𝑠

2
| 𝑖 ∈  𝛺𝑠𝑠 () 

⩝ 𝑖 ∈ 𝛺𝑛,⩝ 𝑖𝑗 ∈ 𝛺𝑏,⩝ 𝑡 ∈ 𝛺𝑡 ,⩝ 𝑠 ∈ 𝛺𝑠 

Constraints () and () represent the active and reactive power balances. Net power injected at 𝑖 must 

satisfy the demand level in each scenario. The load at node 𝑖 (𝑃𝑖
𝑑/𝑑𝑟

 and 𝑄𝑖
𝑑/𝑑𝑟

) are the values obtained 

after DRP has been applied. Constraint () calculates the voltage drop along a branch. As presented in (), 

variable 𝜇𝑖𝑗,𝑡,𝑠  provides a degree of freedom between (𝑉
2

− 𝑉2) in the voltage calculation when the 

branch 𝑖𝑗  is open (𝑘𝑖𝑗 = 0) . The second-order conic constraint () states the square current flow 

magnitude. At the steady state point, this constraint it is equivalent to equality, as explained in [38]. 

Constraints related to the operational limits of the system are presented in (11)-(13). Constraint () 

represents the current limit through a branch. Constraint () holds the voltage regulation limits of the 

system, and finally, constraint () determines that supplied complex power by the substation must be 

within its maximum capacity.  

4.4. Radiality Constraints 

The radiality of DSs can be modeled as a spanning tree of a graph with a substation as the root, load 

nodes are vertices, and branches are edges [19]. The mathematical model uses the binary variables 

𝛽𝑖𝑗  and 𝛽𝑗𝑖  to indicate if node 𝑗 is the parent of node 𝑖, or vice versa, and the binary variable 𝑘𝑖𝑗   that 

indicates the operating state (open/closed) of the branch 𝑖𝑗. Based on constraints ()-(), if the branch 

𝑖𝑗 is part of a spanning tree, it implies that 𝑘𝑖𝑗 = 1. When the above occurs, either 𝛽𝑖𝑗 or 𝛽𝑗𝑖 must be 1 

where 𝛽𝑖𝑗 = 1, defines that 𝑗 is the parent node of 𝑖, otherwise 𝛽𝑗𝑖 = 1, which defines that 𝑖 is the parent 

node of 𝑗. 

𝛽𝑖𝑗 + 𝛽𝑗𝑖 = 𝑘𝑖𝑗 () 

∑ 𝛽𝑖𝑗

𝑗∈𝛺𝑛 | 𝑖𝑗∈Ω𝑏 𝑜𝑟 𝑗𝑖∈Ω𝑏 

= 1 () 

𝛽𝑖𝑗 = 0      | 𝑗 ∈  𝛺𝑠𝑠 () 

𝛽𝑗𝑖 = 0      | 𝑖 ∈  𝛺𝑠𝑠 () 

𝛽𝑖𝑗 , 𝛽𝑗𝑖 , 𝑘𝑖𝑗 ∈ {0,1} 

⩝ 𝑖𝑗 ∈ 𝛺𝑏  

If a branch connecting nodes 𝑖 and 𝑗 is closed, i.e., 𝑘𝑖𝑗 = 1, constraint () sets one of these nodes as 

the parent. Constraint () forces load nodes to have only one parent node. Constraints () and () 

prevent substation nodes from having a parent node. 
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4.5. Distributed Generation 

The proposed model considers the presence of fossil fuel-based DGs and photovoltaic generation 

(PVs). The behavior of fossil fuel-based DGs is presented in ()–(). 

(𝑃𝑖,𝑡,𝑠
𝑑𝑔

)
2

+ (𝑄𝑖,𝑡,𝑠
𝑑𝑔

)
2

≤ (𝑆𝑖
𝑑𝑔

)
2

 () 

𝑃𝑖,𝑡,𝑠
𝑑𝑔

≥ 0 () 

−𝑃𝑖,𝑡,𝑠
𝑑𝑔

∙ 𝑡𝑎𝑛(𝑐𝑜𝑠−1𝜑𝑖
𝑐/𝑑𝑔

) ≤ 𝑄𝑖,𝑡,𝑠
𝑑𝑔

≤ 𝑃𝑖,𝑡,𝑠
𝑑𝑔

∙ 𝑡𝑎𝑛(𝑐𝑜𝑠−1𝜑𝑖
𝑖/𝑑𝑔

) () 

⩝ 𝑖 ∈ 𝛺𝑑𝑔 ,⩝ 𝑡 ∈ 𝛺𝑡 ,⩝ 𝑠 ∈ 𝛺𝑠 

The active and reactive power injected by DGs is limited by power capacity 𝑆𝑖
𝑑𝑔

 (). The machine 

can inject active power () and either inject or absorb reactive power (). This injection or absorption is 

limited by the capacitive 𝜑𝑖
𝑐/𝑑𝑔

 and inductive 𝜑𝑖
𝑖/𝑑𝑔

 machine’s power factors. 

𝑃𝑖,𝑡,𝑠
𝑝𝑣

= 𝑃𝑖
𝑠𝑡𝑑 {

𝐺𝑡,𝑠

1000
[1 + 𝛿𝑖(𝑇𝑖,𝑡,𝑠

𝑐𝑒𝑙𝑙 − 25)]} () 

−𝑃𝑖,𝑡,𝑠
𝑝𝑣

∙ tan(𝑐𝑜𝑠−1𝜑𝑖
𝑐/𝑝𝑣

) ≤ 𝑄𝑖,𝑡,𝑠
𝑝𝑣

≤ 𝑃𝑖,𝑡,𝑠
𝑝𝑣

∙ tan(𝑐𝑜𝑠−1𝜑𝑖
𝑖/𝑝𝑣

) () 

𝑇𝑖,𝑡,𝑠
𝑐𝑒𝑙𝑙 = 𝑇𝑎𝑚𝑏 + (

𝑁𝑂𝐶𝑇𝑖 − 20

800
) 𝐺𝑡,𝑠 () 

⩝ 𝑖 ∈ 𝛺𝑝𝑣 ,⩝ 𝑡 ∈ 𝛺𝑡 ,⩝ 𝑠 ∈ 𝛺𝑠 

For PV units, the power injection depends on the solar irradiation available in each scenario [39]. 

Therefore, active and reactive power injected by PV units are determined in () and (), respectively.  

4.6. Capacitor banks constraints 

Constraints (21)–(27) present the mathematical model for the operation of SCBs. 

𝑄𝑖,𝑡,𝑠
𝑠𝑐𝑏 = 𝑛𝑖,𝑡,𝑠

𝑠𝑐𝑏 ∙ 𝑞𝑖
𝑠𝑐𝑏 () 

0 ≤ 𝑛𝑖,𝑡,𝑠
𝑠𝑐𝑏 ≤ 𝑛𝑖

𝑠𝑐𝑏
 () 

𝑛𝑖,𝑡𝑖𝑛𝑖,𝑠
𝑠𝑐𝑏 = 𝑛𝑖,𝑡𝑒𝑛𝑑,𝑠

𝑠𝑐𝑏       |   𝑡𝑖𝑛𝑖 = 0 & 𝑡𝑒𝑛𝑑 = 23 () 

∑ ∑ 𝑛𝑖,𝑡,𝑠
+ + 𝑛𝑖,𝑡,𝑠

−

𝑠∈Ω𝑑𝑡∈Ω𝑡

≤ 𝛥𝑖
𝑠𝑐𝑏 () 

𝑛𝑖,𝑡,𝑠
𝑠𝑐𝑏 − 𝑛𝑖,𝑡−1,𝑠

𝑠𝑐𝑏 = 𝑛𝑖,𝑡,𝑠
+ − 𝑛𝑖,𝑡,𝑠

−  () 

𝑛𝑖,𝑡,𝑠
+ ≥ 0 () 

𝑛𝑖,𝑡,𝑠
− ≥ 0 () 

⩝ 𝑖 ∈ 𝛺𝑠𝑐𝑏,⩝ 𝑡 ∈ 𝛺𝑡 ,⩝ 𝑠 ∈ 𝛺𝑆 

The total power injection of the SCB at node 𝑖, is calculated by () and depends on the number of 

active CB modules. The number of active CB modules in a period is limited by constraint (). Equation 

() maintains the equality between the number of connected units for the first and last periods of the day. 

Constraints ()-() limit the daily switching operations for the SCB at node 𝑖. At each node with a SCB 

𝑛𝑖,𝑡,𝑠
+ , and 𝑛𝑖,𝑡,𝑠

−  are positive variables that count the variation in the number of connected units between 
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two consecutive periods, as stated in constraint (). Finally, () and () allow the variables 𝑛𝑖,𝑡,𝑠
+  and 

𝑛𝑖,𝑡,𝑠
−  to take positive values only. 

4.7. Energy Storage Devices 

The ESDs’ operation is modeled in ()-(), as presented in [10]. 

𝑒𝑖,𝑡,𝑠
𝑒𝑠𝑑𝑃𝑖,𝑡,𝑠

𝑒𝑠𝑑𝑑𝑐ℎ
≤ 𝑃𝑖,𝑡,𝑠

𝑒𝑠𝑑𝑑𝑐ℎ
≤ 𝑒𝑖,𝑡,𝑠

𝑒𝑠𝑑𝑃𝑖,𝑡,𝑠
𝑒𝑠𝑑𝑑𝑐ℎ

 () 

(1 − 𝑒𝑖,𝑡,𝑠
𝑒𝑠𝑑)𝑃𝑖,𝑡,𝑠

𝑒𝑠𝑑𝑐ℎ
≤ 𝑃𝑖,𝑡,𝑠

𝑒𝑠𝑑𝑐ℎ
≤ (1 − 𝑒𝑖,𝑡,𝑠

𝑒𝑠𝑑)𝑃𝑖,𝑡,𝑠
𝑒𝑠𝑑𝑐ℎ

 () 

𝐸𝑖,𝑡,𝑠
𝑒𝑠𝑑 = 𝐸𝑖,𝑡−1,𝑠

𝑒𝑠𝑑 + 𝑇𝑡,𝑠𝜉𝑖
𝑒𝑠𝑑𝑐ℎ

𝑃𝑖,𝑡,𝑠
𝑒𝑠𝑑𝑐ℎ

−
𝑇𝑡,𝑠

𝜉𝑖
𝑒𝑠𝑑𝑑𝑐ℎ 𝑃𝑖,𝑡,𝑠

𝑒𝑠𝑑𝑑𝑐ℎ
− 𝜁𝑖

𝑒𝑠𝑑𝐸𝑖,𝑡,𝑠
𝑒𝑠𝑑 () 

𝐸𝑖
𝑒𝑠𝑑 ≤  𝐸𝑖,𝑡,𝑠

𝑒𝑠𝑑 ≤ 𝐸𝑖
𝑒𝑠𝑑  () 

𝐸𝑖,𝑡𝑖𝑛𝑖,𝑠
𝑒𝑠𝑑 = 𝐸𝑖,𝑡𝑒𝑛𝑑,𝑠

𝑒𝑠𝑑  |   𝑡𝑖𝑛𝑖 = 0 & 𝑡𝑒𝑛𝑑 = 23 () 

∑ (𝑒𝑖,𝑡,𝑠
𝑒𝑠𝑑𝑑𝑐ℎ

+ 𝑒𝑖,𝑡,𝑠
𝑒𝑠𝑑𝑐ℎ

)

𝑡∈Ω𝑇

≤ 𝛥𝑖
𝑒𝑠𝑑 () 

𝑒𝑖,𝑡,𝑠
𝑒𝑠𝑑𝑑𝑐ℎ

− 𝑒𝑖,𝑡,𝑠
𝑒𝑠𝑑𝑐ℎ

= 𝑒𝑖,𝑡,𝑠
𝑒𝑠𝑑 − 𝑒𝑖,𝑡−1,𝑠

𝑒𝑠𝑑  () 

0 ≤  𝑒𝑖,𝑡,𝑠
𝑒𝑠𝑑𝑑𝑐ℎ

≤ 1 () 

0 ≤  𝑒𝑖,𝑡,𝑠
𝑒𝑠𝑑𝑐ℎ

≤ 1 () 

𝑒𝑖,𝑡,𝑠
𝑒𝑠𝑑 ∈ {0,1} 

⩝ 𝑖 ∈ 𝛺𝑒𝑠𝑑 ,⩝ 𝑡 ∈ 𝛺𝑡 ,⩝ 𝑠 ∈ 𝛺𝑠 

Constraints () and () define the charge and discharge operation modes of the ESD connected at 

node 𝑖, respectively. The binary variable 𝑒𝑖,𝑡,𝑠
𝑒𝑠𝑑 avoids the simultaneous charge/discharge process. The level 

of stored energy is calculated by () and depends on the stored energy level at 𝑡 − 1, the charge/discharge 

efficiencies and the self-discharge rate. The charge level must be within storage capacity limits as shown 

in (). In () is determined that the charge levels must be equal for the first and the last period. 

Constraints ()-() limit the operation changes along the 24 hours to preserve the useful life of the ESD. 

4.8. Time-of-use Demand Response Program 

The TOU demand response program (TOU-DRP) alleviates the pattern consumption of loads at heavy 

load periods. These modifications decrease overall power losses and improve the quality and reliability of 

systems [9]. The idea is to change from a heavy load period to a light one, an allowed percentage of demand 

of customers with whom there is a pre-established agreement. In this way, the overall energy provided to 

the loads is the same but at more convenient hours. The mathematical model of TOU – DRP is represented 

by ()-(). 

𝑃𝑖,𝑡,𝑠
𝑑/𝑑𝑟

= 𝑃𝑖
𝑑  ϝ𝑡,𝑠 + 𝑃𝑖,𝑡,𝑠

𝑡𝑜𝑢+
− 𝑃𝑖,𝑡,𝑠

𝑡𝑜𝑢−
− 𝑃𝑖,𝑡,𝑠

𝑒𝑛𝑠 () 

𝑄𝑖,𝑡,𝑠
𝑑/𝑑𝑟

= 𝑄𝑖
𝑑  ϝ𝑡,𝑠 + tan 𝜃𝑖

𝑝𝑓
(𝑃𝑖,𝑡,𝑠

𝑡𝑜𝑢+
− 𝑃𝑖,𝑡,𝑠

𝑡𝑜𝑢−
− 𝑃𝑖,𝑡,𝑠

𝑒𝑛𝑠) () 

0 ≤ 𝑃𝑖,𝑡,𝑠
𝑡𝑜𝑢+

≤ ℨ𝑡𝑜𝑢 ∙ 𝑃𝑖
𝑑 ϝ𝑡,𝑠 ∙ 𝜍𝑖,𝑡,𝑠

𝑡𝑜𝑢 () 
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0 ≤ 𝑃𝑖,𝑡,𝑠
𝑡𝑜𝑢−

≤ ℨ𝑡𝑜𝑢 ∙ 𝑃𝑖
𝑑 ϝ𝑡,𝑠 ∙ (1 − 𝜍𝑖,𝑡,𝑠

𝑡𝑜𝑢) () 

∑ 𝑃𝑖,𝑡,𝑠
𝑡𝑜𝑢+

𝑡∈Ω𝑡 

= ∑ 𝑃𝑖,𝑡,𝑠
𝑡𝑜𝑢−

𝑡∈Ω𝑡 

 () 

𝜍𝑖,𝑡,𝑠
𝑡𝑜𝑢 ∈ {0,1} 

⩝ 𝑖 ∈ 𝛺𝑛,⩝ 𝑡 ∈ 𝛺𝑡 ,⩝ 𝑠 ∈ 𝛺𝑠 

The TOU-DRP is applied to modify the load at node 𝑖 using the positive variables 𝑃𝑖,𝑡,𝑠
𝑡𝑜𝑢+

and 𝑃𝑖,𝑡,𝑠
𝑡𝑜𝑢−

, 

as presented in (). Besides, it is considered the energy not supplied term (𝑃𝑖,𝑡,𝑠
𝑒𝑛𝑠) that indicates that the 

real demand at each period can be modified by applying TOU-DRP and the disconnection of a part of the 

load. In () is established that any increase/decrease in the active power demand also affects reactive 

power demand in the same way, maintaining the power factor of the load. Constraints () and () limit 

the increases/decreases of demand at node 𝑖 to a maximum percentage of the total load given by ℨ𝑡𝑜𝑢. 

Notice that the presence of binary variable 𝜍𝑖,𝑡,𝑠
𝑡𝑜𝑢, avoids the simultaneously increase/decrease. Finally, 

constraint () establish that any decrease on load, will be compensated entirely along other day periods. 

5. PROPOSED NEIGHBORHOOD-BASED MATHEURISTIC ALGORITHM  

The proposed MISOCP model ()-() is based on a convex formulation with a finite solution that 

can be solved directly using commercial optimization solvers. However, it is highly complex, impacting 

the computational time required to find an integer solution. In this sense, alternative solution techniques 

such as heuristic, metaheuristic, and matheuristic algorithms, for example, are required to solve the 

problem in large stances. 

Matheuristics algorithms are efficient tools that use heuristic strategies and mathematical optimization 

to decompose and solve highly complex problems [40]. In this paper, we propose a tabu search-based 

matheuristic approach to solve the MISOCP model ()-(). To explore the search space effectively, 

candidate solutions that move forward in the optimization process need to be generated. These solutions 

are obtained by making slight modifications to the initial/current solution and are referred to as neighbor 

solutions. The strategy involves fixing some variables by assigning them a predetermined value or keeping 

them as variables to be determined by a commercial solver. By doing so, the number of variables in the 

problem can be reduced, allowing for the solution of sub-models derived from ()-() to obtain 

neighboring solutions. Since binary and integer variables add complexity to the problem, they are handled 

using the following neighborhood structures. 

5.1. Neighborhood structures 

5.1.1. Neighborhood structure for reconfiguration (𝑵𝑩𝟏)  

The DNR problem can be handled by generating a set of neighbor radial topologies. In this context, a 

neighborhood can be obtained through the branch-exchange technique, which has been broadly applied to 

DNR [41], [42]. The algorithm closes a tie switch forming a closed-loop in the network, and then a 

sectionalizing switch is opened to recover the radiality of the network. 
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The proposed branch-exchange algorithm creates radial neighbor topologies by solving reduced 

submodels of ()-(). It removes integer variables of the complete model by the use of 𝑘𝑖𝑗 and 𝛽𝑖𝑗. When 

an open line 𝑖𝑗 is closed, i.e., fixing 𝑘𝑖𝑗 = 1, the model is solved just for 𝑘𝑖𝑗 and 𝛽𝑖𝑗 of lines that belong to 

the formed loop. Conversely, the rest of 𝑘𝑖𝑗 and 𝛽𝑖𝑗 variables are fixed at their current values. To do that, 

the algorithm recognizes a formed loop and selects the best line to be opened, as explained in the flowchart 

of Fig. 2 and the example of Fig. 3. 

Fig. 3 shows a didactical system with two substations, three tie switches, and the state of integer 

variables related to lines. If 6-12 is closed (line in bold), 𝑘6 12 is set as 1 and a loop is formed. According 

to Fig. 2, node 𝑖 is 6 and the node 𝑗 is 12, so temporal variable 𝑎 takes the value 6 and the algorithm finds 

the line 𝑎𝑏 → 6𝑏 or 𝑏𝑎 → 𝑏6 that is active (𝑘6𝑏 𝑜𝑟 𝑏6 = 1) and has the node 𝑏 as a parent, i.e., 𝛽6𝑏 = 1. 

Among all the variables, just the line 2-6 satisfies the condition since 𝑘26 = 1 and 𝛽62 = 1, indicating that 

2 is the parent node of 6 and consequently, 2-6 belongs to the closed loop. Since node 2 is not a substation, 

variable 𝑎 = 2. Now, the algorithm repeats the process to find 2𝑏 or 𝑏2 that is active and is a descendant 

of 𝑏. Lines 1-2 and 2-3 are active, however, the parent node of 2 is 1 (𝛽21 = 1), while 3 is a descendant 

(𝛽32 = 1). At this point, the algorithm recognizes node 1 as a substation, therefore, it is necessary to 

identify the right side of the loop starting from node 𝑗 that was assigned as 12. In the same manner, the 

algorithm identifies the lines that connect node 12 to the substation. 

The lines belonging to the closed loop are candidates to be opened and are identified in red. In 

conclusion, only variables 𝑘12, 𝑘26, 𝑘910, 𝑘1011, 𝑘1112, 𝛽12, 𝛽21, 𝛽26, 𝛽62, 𝛽910, 𝛽109, 𝛽1011, 𝛽1110, 𝛽1112, 

and 𝛽1211 are optimized by solving the MISOCP model ()-() while the rest of the variables 𝑘𝑖𝑗 and 𝛽𝑖𝑗 

hold fixed on their current values.  

It is important to mention that this algorithm is extensible to close several lines at the same time, as 

indicated in Fig. 2, by the introduction of the vector 𝑁𝑙𝑛𝑙×1 of dimension 𝑛𝑙 × 1 where 𝑛𝑙 indicates the 

number of lines to be closed to get a neighbor solution. 
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Fig. 2. Neighborhood structure for reconfiguration algorithm (𝑁𝐵1)    Fig. 3. Closed-loop recognition through 𝑘𝑖𝑗 and 𝛽𝑖𝑗 variables. 
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5.1.2. Neighborhood structure of SCBs (𝑵𝑩𝟐) 

The search space of the problem is reduced by fixing the integer variables 𝑘𝑖𝑗, 𝛽𝑖𝑗, and 𝑒𝑖,𝑡,𝑠
𝑒𝑠𝑑 in their 

current values and including constraints () and () in the MISOCP model ()-(). 

�̂�𝑖,𝑡−1,𝑠
𝑠𝑐𝑏 − 𝜂 ≤ 𝑛𝑖,𝑡,𝑠

𝑠𝑐𝑏 ≤ �̂�𝑖,𝑡−1,𝑠
𝑠𝑐𝑏 + 𝜂 () 

∑ �̂�𝑖,𝑡−1,𝑠
𝑠𝑐𝑏

𝑖∈Ω𝑠𝑐𝑏

− 𝜂
𝑠𝑐𝑏

≤ ∑ 𝑛𝑖,𝑡,𝑠
𝑠𝑐𝑏

𝑖∈Ω𝑠𝑐𝑏

≤ ∑ �̂�𝑖,𝑡−1,𝑠
𝑠𝑐𝑏

𝑖∈Ω𝑠𝑐𝑏

+ 𝜂
𝑠𝑐𝑏

 () 

𝑖 ∈ Ω𝑠𝑐𝑏, ⩝ 𝑡 ∈ 𝛺𝑡 ,⩝ 𝑠 ∈ 𝛺𝑠 

Considering the current solution of the NMA for the SCBs operation (�̂�𝑖,𝑡,𝑠
𝑠𝑐𝑏 ), constraint () controls 

the connection or disconnection up to 𝜂 modules between consecutive scenarios. Similarly, constraint () 

is used to control the number of modules that can be operating in the system, with a bound of 𝜂
𝑠𝑐𝑏

 units. 

5.1.3. Neighborhood structure of ESDs (𝑵𝑩𝟑) 

The operational behavior of the ESDs is represented by the binary variable 𝑒𝑖,𝑡,𝑠
𝑒𝑠𝑑 that assumes the 

values of 1 and 0 for the discharge and charge process, respectively. So the neighborhood structure NB3 

is obtained by fixing the integer variables 𝑘𝑖𝑗, 𝛽𝑖𝑗, and 𝑛𝑖,𝑡,𝑠
𝑠𝑐𝑏  in their current values and including constraint 

() in the MISOCP model ()-(). 

∑ 𝑒𝑖,𝑡−1,𝑠
𝑒𝑠𝑑

𝑖∈Ω𝑒𝑠𝑑

− 𝜂
𝑒𝑠𝑑

≤ ∑ 𝑒𝑖,𝑡,𝑠
𝑒𝑠𝑑

𝑖∈Ω𝑒𝑠𝑑

≤ ∑ 𝑒𝑖,𝑡−1,𝑠
𝑒𝑠𝑑

𝑖∈Ω𝑒𝑠𝑑

+ 𝜂
𝑒𝑠𝑑

 () 

⩝ 𝑡 ∈ 𝛺𝑡 ,⩝ 𝑠 ∈ 𝛺𝑠 

Constraint () controls the total changes between two consecutive periods. From one period to the 

next, the maximum changes of operation over all the ESDs, are 𝜂
𝑒𝑠𝑑

. 

5.2. Matheuristic algorithm 

In this section, we delve into the matheuristic approach employed to address the OODSs problem. 

Firstly, it is important to define the neighbor concept, since it refers to reaching a local optimum state of 

the network by applying the neighborhood reduction strategies (𝑁𝐵1, 𝑁𝐵2, 𝑁𝐵3) as in Fig. 4. This process 

allows the optimization solver to manage the problem within reduced searching spaces easily. 𝑁𝐵1 is first 

applied due to its greater impact on the solution. Afterward, 𝑁𝐵2 and 𝑁𝐵3 are applied because of their 

smaller impact. Notice that each neighborhood structure is applied just for its respective kind of variable. 

Once the topology is defined (𝑥𝑘 ≡ 𝑘𝑖𝑗 ∪ 𝛽𝑖𝑗 ∪ 𝛽𝑗𝑖), these variables are fixed, and then SCBs integer 

variables (𝑥𝑠𝑐𝑏 ≡ 𝑛𝑖,𝑡,𝑠
𝑠𝑐𝑏 ) are defined. Finally, 𝑥𝑠𝑐𝑏 are fixed to determine ESDs variables (𝑥𝑒𝑠𝑑 ≡ 𝑒𝑖,𝑡,𝑠

𝑒𝑠𝑑). 

Simultaneously, a tabu list (𝑇𝐿) for the visited topologies was used in order to implement the concept 

of memory like on the Tabu Search algorithm. In this regard, each visited topology has an "𝑜𝑙" vector that 

contains its open switches. The "𝑜𝑙" vector is saved in the "𝑇𝐿" during several iterations defined by the 

tabu period (𝑇𝑃) parameter, thus avoiding a return to this topology for "𝑇𝑃" iterations.  

The search process starts by setting a set of variables to initial values as follows: 

• Fix 𝑘𝑖𝑗 keeping the original topology ∀𝑖𝑗 ∈ Ω𝑏; 

• Relax integrality of taps in SCBs:  𝑛𝑖,𝑡,𝑠
𝑠𝑐𝑏    ∀𝑖 ∈ Ω𝑠𝑐𝑏; 

• Relax integrality of charge/discharge mode of ESDs:  𝑒𝑖,𝑡,𝑠
𝑒𝑠𝑑    ∀𝑖 ∈ Ω𝑒𝑠𝑑; 
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• Disable the DRP and the disconnection of load mode: 𝑃𝑖,𝑡,𝑠
𝑡𝑜𝑢+ = 𝑃𝑖,𝑡,𝑠

𝑡𝑜𝑢− = 𝑃𝑖,𝑡,𝑠
𝑒𝑛𝑠 = 𝜍𝑖,𝑡,𝑠

𝑡𝑜𝑢 = 0; 

• Solve ()-() through a solver. 

• Fix 𝑛𝑖,𝑡,𝑠
𝑠𝑐𝑏  ∀𝑖 ∈ Ω𝑠𝑐𝑏 and 𝑒𝑖,𝑡,𝑠

𝑒𝑠𝑑  ∀𝑖 ∈ Ω𝑒𝑠𝑑, to their closest integer value. 

After obtaining the state of the system and the first objective function, the matheuristic proceeds with 

the process illustrated in the flowchart of Fig. 5. The "𝐼𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡", is a temporal variable that stores the 

best-found objective function until the current iteration, initially set as the objective function of the initial 

system state. The "𝐼𝑡𝑒𝑟" parameter serves aas a counter of iterations, equivalent to the total created  

neighborhoods. Then, "𝑖𝑛𝑐𝑖𝑡"  parameter counts consecutive iterations where the incumbent is not 

improved and is used as a stopping criterion. If an "𝐼𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡" is not improved after 𝑖𝑛𝑐𝑚𝑎𝑥 iterations, 

the search concludes. "𝑛𝑣" represent the number of neighbors created at each iteration, and "𝑛𝑙" is the 

number of lines to be closed to apply 𝑁𝐵1. Notice that the vector "𝑜𝑙" contains the open lines of each 

visited topology. 

The search process involves creating a random matrix "𝑛𝑔𝑏(𝑛𝑣×𝑛𝑙)", where each row contains the "𝑛𝑙" 

lines to be closed, representing "𝑛𝑣" neighbors. Subsequently, the algorithm forms a neighborhood by 

iteratively closing different "𝑛𝑙" vectors of switches. After a neighborhood is created, it is sorted to create 

the objective functions vector "𝑆𝑛𝑔𝑏" (dimension 𝑛𝑣 × 1). The algorithm then selects the topology with 

the best objective function not belonging to the TL and compared its objective function Ψ with the current 

"𝐼𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡" solution. If it is superior, the "𝐼𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡" is updated; otherwise, it retains its value, and 

the counter  "𝑖𝑛𝑐𝑖𝑡" increases. Each time the incumbent is updated, the integer and binary variables (𝑥 ≡
 𝑥𝑘 ∪ 𝑥𝑠𝑐𝑏 ∪ 𝑥𝑒𝑠𝑑 ≡ 𝑘𝑖𝑗 ∪ 𝛽𝑖𝑗 ∪ 𝛽𝑗𝑖 ∪ 𝑛𝑖,𝑡,𝑠

𝑠𝑐𝑏 ∪ 𝑒𝑖,𝑡,𝑠
𝑒𝑠𝑑), are saved, and the counter "𝑖𝑛𝑐𝑖𝑡" is reset. The process 

halts when the objective function does not improve after  "𝑖𝑛𝑐𝑚𝑎𝑥" iterations. As shown in Fig. 5, after 

each "𝐼𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡" comparison, "𝑛𝑙" increases by one unit diversifying the sear process, and it is reset 

after reaching a predetermined value avoiding compromising CPU time. This comprehensive process 

ensures effective exploration of the solution space, making adjustments based on the performance of 

neighboring solutions while considering the memory-like mechanism of the Tabu List. 

As a summarized way, the main elements of the matheuristic proposal presented in Fig. 5 are: 

NB2
SCB

NB1
Topology

NB3
ESD

1

nv

2

3

Incumbent Neighbors

 

 

Fig. 4 Algorithm for the creation of neighbor solutions.  Fig. 5 Proposed Matheuristic algorithm. 
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• Initialization: The process initiates by setting essential variables and parameters, including the initial 

topology of the distribution system. The algorithm then proceeds to solve the optimization problem 

using these initial conditions. 

• Neighborhood Creation: The algorithm creates a set of neighbors by iteratively closing different 

sets of lines defined by the "𝑛𝑣" vectors. This represents different potential configurations of the 

distribution system, considering the state variables such as switch positions and line statuses. 

• Objective Function Evaluation: For each generated neighborhood, the algorithm evaluates the 

corresponding objective function. This function encapsulates the key performance metrics relevant to 

the research question, such as minimizing energy costs, power losses, and ensuring voltage stability. 

• Incumbent Update: The algorithm maintains an "𝐼𝑛𝑐𝑢𝑚𝑏𝑒𝑛𝑡"  variable, storing the best-found 

objective function value. If a newly evaluated neighborhood yields a superior solution, the Incumbent 

is updated, signifying progress toward an optimal operational plan. 

• Memory Mechanism: To enhance exploration, the algorithm employs a Tabu List, preventing 

repetition of solutions for a defined period. This mechanism aids in avoiding premature convergence 

and encourages a more thorough exploration of the solution space. 

• Termination Criteria: The process continues iteratively until a stopping criterion is met. The 

algorithm monitors if there is a lack of improvement in the objective function value for a specified 

number of iterations (as indicated by the "𝑖𝑛𝑐𝑚𝑎𝑥"  parameter). This ensures a balance between 

exploration and exploitation, avoiding unnecessary computational burden. 

6. NUMERICAL EXPERIMENTS AND RESULTS 

The proposed NMA and MISOCP model were programmed in the mathematical programming 

language AMPL. For comparative purposes, the commercial solvers GUROBI v. 9.5.1 and CPLEX v. 

20.1.0.0 are used to perform simulations and both were set with an optimality gap of 1% and a solution 

time limit of 7 days. A computer with Intel(R) Xeon(R) CPU E5-2650 v4 with a 2.20GHz processor and 

64 GB of RAM was used.  

The stochastic scenarios obtained, exposed in 4.1, are depicted with data on energy cost, demand, and 

solar radiation, as presented in Fig. 6, [31]. The cost of 𝐶𝑂2 emissions depends on 𝜋𝑒𝑚𝑖𝑠 = 10 $/𝑡𝑜𝑛 and 

the emission factors are 𝑒𝑠𝑠 = 2.17 and 𝑒𝑑𝑔 = 0.63, both in 𝑘𝑔 ∙ 𝑐𝑜2/𝑘𝑤ℎ for Ω𝑠𝑠 and Ω𝑑𝑔 respectively. 

The user’s reimbursement when applying TOU-DRP, is obtained as 15% of the energy cost at the time of 

supply, so 𝜋𝑑𝑟 = 0.15. Finally, the cost of ENS is 𝜋𝑒𝑛𝑠 = 35 $/𝑘𝑤ℎ.  

The parameters of operation are the voltage limits 𝑉 = 1.05 𝑝. 𝑢. and𝑉 = 0.95 𝑝. 𝑢.. The set power 

factors for Ω𝑑𝑔  are 𝜑𝑖
𝑐/𝑑𝑔

= 𝜑𝑖
𝑖/𝑑𝑔

= 0.8 , while for Ω𝑝𝑣  are 𝜑𝑖
𝑐/𝑝𝑣

= 𝜑𝑖
𝑖/𝑝𝑣

= 0.9 . Regarding PVs’ 

parameters 𝑇𝑎𝑚𝑏 = 20 oC; 𝑁𝑂𝐶𝑇𝑖 = 45 oC and 𝛿𝑖 = −0.0045. The SCBs’ switching is limited by 𝛥𝑖
𝑠𝑐𝑏 =

2; 𝜂 = 1 and 𝜂
𝑒𝑠𝑑

= 2. For ESDs: 𝑃𝑖,𝑡,𝑠
𝑒𝑠𝑑𝑐ℎ

= 𝑃𝑖,𝑡,𝑠
𝑒𝑠𝑑𝑑𝑐ℎ

= 800𝑘𝑊 ; 𝑃𝑖,𝑡,𝑠
𝑒𝑠𝑑𝑐ℎ

= 𝑃𝑖,𝑡,𝑠
𝑒𝑠𝑑𝑑𝑐ℎ

= 0𝑘𝑊 ; 𝜉𝑖
𝑒𝑠𝑑𝑐ℎ

=

𝜉𝑖
𝑒𝑠𝑑𝑑𝑐ℎ

= 0.95; 𝜉𝑖
𝑒𝑠𝑑 = 0.01; 𝛥𝑖

𝑒𝑠𝑑 = 2 and 𝜂
𝑒𝑠𝑑

= 1. 

6.1. Case studies 

The following cases are proposed to assess the application of the TOU-DR program along with 

network reconfiguration: 

✓ Case I: Initial network topology, neither reconfiguration nor DRP are applied, as detailed in 5.2. 
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✓ Case II: Reconfiguration and DR with ℨ𝑡𝑜𝑢 = 0%. 

✓ Case III: Reconfiguration and DR with ℨ𝑡𝑜𝑢 = 15%. 

✓ Case IV: Reconfiguration and DR with ℨ𝑡𝑜𝑢 = 30%. 

6.2. The 69-Bus Distribution System 

This distribution system is adapted from [43]. It becomes active with the following DERs: Four DG 

units of 500 kVA installed at nodes 6, 18, 34, and 61. Four PVs of 500 kVA at nodes 24, 28, 50, and 66. 

Three ESDs of 1 MVA at nodes 11, 32, and 58. One FCB of 100 kVAr at node 17 and two FCBs of 50 

kVAr at nodes 29 and 53, respectively. One SCB with four modeules of 150 kVAr at node 13. The network 

has five tie switches, and the installed load is (3,802.39 +  𝑗 2,695.60) 𝑘𝑉𝐴. The NMA is set with the 

following values: 𝑛𝑣 = 5, 1 ≤ 𝑛𝑙 ≤ 3, 𝑇𝐿 = 5 and 𝑖𝑛𝑐𝑚𝑎𝑥 = 3. 

6.3. The 118-Bus Distribution System 

This distribution system is adapted from [44]. It becomes active with the following DERs: Five DG 

units of 500 kVA at nodes 11, 25, 35, 77, and 104. Four PVs of 1000 kVA at nodes 28, 61, 107, and 111. 

Three ESDs of 1 MVA at nodes 12, 30, and 87. The set of nodes 9, 30, 48, 57, 58, 59, 73, and 88 are 

selected to install FCBs of 120 kVAr, two SCBs with four modules of 150 kVAr each at nodes 7 and 73. 

The network has 14 tie switches, and the installed load is (22,709.72 +  𝑗 17,041.07) 𝑘𝑉𝐴. The NMA is 

set with the values: 𝑛𝑣 = 14, 1 ≤ 𝑛𝑙 ≤ 3, 𝑇𝐿 = 10 and 𝑖𝑛𝑐𝑚𝑎𝑥 = 5. 

The number of operation scenarios in the 118-bus system tests has been reduced from 24 to 12. This 

reduction was necessary as the solver did not provide feasible solutions for the larger scenario set within 

a reasonable time frame. The scenarios were obtained using the same method described in 4.1. However, 

to accommodate the reduced number of scenarios, the periods of the day were shortened to twelve 

intervals. 

 

Fig. 6 Stochastic hourly scenarios for parameters: a) Energy costs; b) demand, c) solar irradiation; and d) scenarios occurrence 

probability. 
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6.4. Simulations and solutions for the 69-Bus system 

For case studies I, II, III, and IV, results are summarized in TABLE 2. Notice the reduction of daily 

operational costs according to the increase of ℨ𝑡𝑜𝑢. The maximum reduction is achieved in case IV since 

the objective function is US$ 315.79 cheaper than the network's initial state. On the other hand, variations 

in the DRP parameter affect the reconfiguration problem since different topologies are determined in each 

case study. Finally, it should be noted that energy disconnection is only necessary for case IV, which 

represents the lowest portion of the total cost in the objective function, US$ 5.87. The NMA required a 

minimum of 15 iterations to solve a case, with a total duration of 43 minutes. Case III represented the 

longest duration simulation for the NMA, requiring 22 iterations and taking approximately 2.10 hours to 

solve. Finally, the lowest CPU time is 38.9 minutes for case IV. 

The NMA's efficacy is gauged through a comparison with commercial solvers, Gurobi and Cplex. 

TABLE  presents the outcomes of Gurobi and Cplex for cases II, III, and IV. Notably, the NMA 

consistently outperforms the Gurobi solver in providing superior solutions. However, it is crucial to 

acknowledge that Cplex achieves more favorable objective functions than the NMA, with objective 

functions that are 1.83%, 3.5%, and 0.67% smaller respectively. Despite these percentage differences 

being relatively small, they are noteworthy. In terms of computational efficiency, the NMA emerges as 

the best. For cases II and III, where solvers operated under a 3-hour time limit, the NMA accomplished 

the optimization within 2 hours at the worst whilst the most efficient run taking a mere 38 minutes. 

Conversely, in the case IV, solvers necessitated an extended time limit up to 7 days due to convergence 

TABLE 2. RESULTS FOR THE 69 BUS SYSTEM. 

 OF ($) Loss ($) Emis ($) DR ($) ENS ($) Iter (#) Time (s) Open Lines 

Case I: 907.08 135.74 771.35 0.00 0.00 -- -- (11,66) (13,21) (15,69) (39,48) (27,54) 

Case II: 651.03 64.27 586.75 0.00 0.00 15 2,582.04 (10,11) (12,13) (13,14) (17,18) (47,48) 

Case III: 637.00 62.63 559.22 15.15 0.00 22 7,548.17 (10,11) (12,13) (14,15) (17,18) (44,45) 

Case IV: 591.29 69.04 490.64 25.74 5.87 20 2,318.97 (5,6) (9,10) (12,13) (13,14) (17,18) 

 

TABLE 3. RESULTS OF SOLVERS FOR THE 69 BUS SYSTEM. 

 OF. ($) Loss ($) CO2 ($) DRP ($) ENS ($) Time (𝑠) Open Lines 

Case II 

Gurobi 1,648.09 56.79 571.42 0.00 1,019.88 10,800.69 (1,2) (15,16) (47,48) (3,59) (66,67) 

Cplex 639.12 70.80 561.85 0.00 6.47 10,895.20 (5,6) (10,11) (14,15) (3,59) (66,67) 

Case III 

Gurobi 1,580.46 66.90 572.33 31.51 909.72 10,800.44 (2,3) (4,5) (14,15) (17,18) (59,60) 

Cplex 614.73 69.37 530.71 14.36 0.29 10890.33 (4,5) (10,11) (14,15) (51,52) (66,67) 

Case IV 

Gurobi 622.21 58.55 535.40 28.27 0 604,802.11 (5,6) (9,10) (12,13) (13,14) (17,18) 

Cplex 587.31 61.15 498.84 25.74 1.58 605,053.24 (5,6) (9,10) (12,13) (13,14) (16,17) 
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challenges. This adjustment was imperative, as the solvers failed to converge within the initial 3-hour limit. 

Examining the results in Table II and Table III, it is observed that, in case IV, both the NMA and Cplex 

solvers converged to the same network topology. However, a notable disparity in objective functions was 

evident. This difference can be ascribed to the superior handling of the TOU-DRP, SCBs, and ESDs 

scheduling by the Cplex solver. 

6.5. Simulations and solutions for the 118-Bus system 

Tests and results of the 118-bus system are summarized in TABLE 4. The most significant reduction 

in daily operational cost, while maintaining the voltage limits ±5%, occurs in Case IV, which is at least 

US$ 272.59 cheaper than the solutions obtained in other cases. Related to the computational performance, 

the proposed NMA requires 3.04 hours to solve Case III. Notice that number of iterations and the 

computational time are not related since Case IV employs 22 iterations to converge, although its solution 

time is lesser than Case III, which converges in 16 iterations. Finally, TABLE 5 shows results obtained by 

Gurobi and Cplex for Case IV. The proposed NMA is better than the solvers since the objective function 

and the CPU time to solve this test system are superior. Gurobi requires about 1.24 days to provide a 

solution, while Cplex takes about seven days (time limit). 

Regarding the system performance, Fig. 7 presents the objective function's components for cases II, 

III, and IV. Notice that the left axis (bars in blue) corresponds to OF and CO2 emissions, while the right 

axis (bar in red) corresponds to values of losses, TOU-DRP, and ENS. The decrease in the objective 

function, CO2 emissions, and losses are minimal among the three cases. This indicates that the 

reconfiguration process significantly impacts the overall objective function, while the demand response 

program (DRP) has a minor influence on the daily operation. TOU-DRP's cost is the smaller part of 

objective function, although their impact on peak load relaxation is relevant. On the other hand, ENS cost 

is reduced to US$ 178.62 in Case IV. It is important to mention that the portion of demand not supplied is 

an emergency option in case of voltage instability and overload. At the bottom of Fig. 7, the minimum 

TABLE 4. RESULTS FOR THE 118 BUS SYSTEM. 

 OF ($) Loss ($) Emis ($) DR ($) ENS ($) Iter (#) Time (s) Open Lines 

Case I: 8,740.94 737.55 8,003.39 0.00 0.00 -- -- 
(46,27) (17,27) (8,24) (54,43) (62,49) (37,62) (9,40) (58,96) 

(73,91) (88,75) (99,77) (108,83) (105,86) (110,118) 

Case II: 9,091.29 484.59 7,958.90 0.00 647.80 10 2,523.04 
(22,23) (34,35) (39,40) (42,43) (53,54) (57,58) (70,71) 

(97,98) (117,118) (17,27) (58,96) (73,91) (108,83) (105,86) 

Case III: 9,053.58 469.57 7,783.08 59.06 741.86 13 5,548.17 
(16,17) (22,23) (34,35) (39,40) (42,43) (52,53) (57,58) 

(70,71) (58,96) (88,75) (99,77) (108,83) (105,86) (110,118) 

Case IV: 8,780.99 465.25 8,025.03 112.09 178.62 10 1,518.97 
(16,17) (21,22) (34,35) (39,40) (42,43) (53,54) (61,62) 

(71,72) (87,88) (91,96) (97,98) (109,110) (108,83) (105,86) 

 

TABLE 5. RESULTS OF SOLVERS FOR CASE IV - 118 BUS SYSTEM. 

 OF. ($) Loss ($) CO2 ($) DRP ($) ENS ($) Time (𝑠) Open Lines 

Gurobi 8,805.43 466.98 8033.70 112.39 192.35 123,058.21 
(21,22) (24,25) (34,35) (39,40) (42,43) (51,52) (61,62) 

(70,71) (82,83) (86,87) (91,96) (97,98) (109,110) (105,86) 

Cplex 8,798.44 473.00 8058.76 113.16 153.53 604,803.33 
(23,24) (24,25) (34,35) (39,40) (42,43) (51,52) (61,62) 

(71,72) (74,75) (75,76) (79,86) (91,96) (109,110) (108,83) 
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voltage profiles are presented. Significant improvements can be observed in the minimum voltage profile 

compared to Case I, particularly in Case IV, where the voltage values are notably better. 

Fig. 9 shows, in each row, the TOU-DRP and ENS applications for cases II, III, and IV, respectively. 

The profiles of not supplied power and power increases/decreases of the DRP are plotted in bars, and line 

plots represent the demand before and after the TOU-DRP application. There is a significant reduction of 

demand in cases III and IV for scenario II, which occurs in peak hours (from 12h). Considering the scenario 

I and cases III and IV, the demand profile is slighter, and the reduction occurs between 0h and 10h. Notice 

the relevant substitution of ENS with TOU-DRP between cases III and IV. Finally, Fig. 9 depicts the active 

power injections of DGs, PVs, and ESDs. For all the cases, DGs are working close to their maximum 

 

Fig. 7. Objective function values at cases II, III and IV respectively. Below, minimum voltages profile of each case of study. 

 

 

Fig. 8. Active power schedule of TOU-DRP and ENS for cases II, III and IV. 
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capacity to contribute to the reduction of SE’s participation. PV's injection is significant, especially at 12h 

and 14h, and during the PVs' injection periods, it is produced the ESDs charge.  

7. CONCLUSIONS 

This work presents a mixed-integer second-order cone programming model to optimize the daily 

operational cost of distribution systems through network reconfiguration and the optimal control of 

distributed energy resources, energy storage, and switchable capacitor banks. A stochastic scenario-based 

approach represents a typical day of a year's season. Besides, the proposed model includes a time-of-use 

demand response program (TOU-DRP). On the other hand, due to the complexity of the problem, a 

neighborhood-based matheuristic approach (NMA) based on tabu search was designed to solve the 

problem. This approach enabled the solution of problems of planning the operation of distribution systems 

currently in operation, considering a large number of integer and discrete variables, with reliable quality 

in an adequate computational time. This performance is not possible using only classical mathematical 

optimization or metaheuristics techniques, given their limitations for analyzing the problem solution search 

space. The NMA was successfully validated by comparing it with two commercial solvers, providing high-

quality solutions with less computational effort. Results suggest that using a commercial solver to perform 

a neighborhood search generates efficient optimization tools.  

Results reveal that relaxing the demand profile is convenient to alleviate the system at peak hours and 

leads to important reductions of the objective function compared with initial states that do not consider a 

TOU-DRP option. Moreover, results also show that the network topology of the system changes along 

with the variation of the TUO-DRP. 

As future work, analysis can be addressed within a DRP framework, considering constraints of 

aggregators and type of loads. In the same way, electric vehicles can be added to the analysis to take 

advantage of energy storage devices. 

 

Fig. 9. Active power schedule of DERs installed at the system, cases I, II, III and IV. 
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