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Abstract: The increased integration of wind power into the electric grid, as nowadays occurs 

in Portugal, poses new challenges due to its intermittency and volatility. Hence, good 

forecasting tools play a key role in tackling these challenges. In this paper, a hybrid intelligent 

approach is proposed for short-term wind power forecasting in Portugal. The proposed 

approach is based on the wavelet transform and a hybrid of neural networks and fuzzy logic. 

Results from a real-world case study are presented. A thorough comparison is carried out, 

taking into account the results obtained with other approaches. Conclusions are duly drawn. 
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1   Introduction 

 
Wind-driven power resources have become increasingly important in the planning and 

operation of electric power systems. In Portugal, the wind power goal foreseen for 2010 was 

established by the government as 3750 MW, representing about 25% of the total installed 

capacity in 2010. This value has been raised to 5100 MW by the most recent governmental 

goals for the wind sector. Hence, Portugal has one of the most ambitious goals in terms of 

wind power and in 2006 was the second country in Europe with the highest wind power 

growth [1]. 

The wind energy is free, so all wind-generated electric energy is accepted as it comes, i.e. 

as it is available. A major barrier to the integration of wind power into the grid is its 

variability [2]. Curtailment has been considered as a means of managing wind power 

integration into the grid. Hence, efforts should be made to predict the wind behaviour and the 

corresponding electric energy production. 

Short-term wind power forecasting is an extremely important field of research for the 

energy sector, as the system operators must handle an important amount of fluctuating power 

from the increasing installed wind power capacity. The time scales concerning short term 

prediction vary from minutes for frequency considerations and to hours and days for 

operational reasons [3]. 

In the technical literature, several methods to predict wind power have been reported, 

which fall into two categories, namely physical and statistical methods. The physical method 

requires a lot of physical considerations to reach the best prediction precision. For a physical 

model the input variables will be the physical or meteorology information, such as description 

of orography, roughness, obstacles, pressure and temperature. The statistical method aims at 

finding the inherent structure within the measured power data. Physical method has 

advantages in long-term prediction while statistical method does well in short-term  

prediction [4]. 
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Conventional statistical models are identical to the direct random time-series model, 

including auto regressive (AR), and auto regressive integrated moving average (ARIMA) [5] 

models. The persistence models [6] are considered as the simplest time-series models. They 

can surpass many other models in very short-term prediction. In spite of the unstable 

forecasting efficiency, they have been widely used in practice [4]. The persistence approach 

has proven to be a useful first approximation for short-term wind power forecasting and 

provides a benchmark against which to compare alternative techniques. 

In the recent years, some new methods are catching researcher’s attention, namely data 

mining [7], neural networks (NN) [8, 9], fuzzy logic and neuro-fuzzy [10, 11], evolutionary 

algorithms [12], and some hybrid methods [13, 14]. The accurate comparison of all the 

methods is quite difficult because these methods depend on different situations and the data 

collection is a formidable task. However, it has been reported that artificial-based models 

outperformed others in short-term prediction [4, 8–12]. 

In this paper, a hybrid intelligent approach is proposed for short-term wind power 

forecasting in Portugal. The proposed approach is based on the wavelet transform (WT) and a 

hybrid of neural networks and fuzzy logic. The proposed approach is compared with 

persistence, ARIMA, NN and NNWT approaches, to demonstrate its effectiveness regarding 

forecasting accuracy and computation time. 

 
2   Proposed approach 

 
The proposed approach to forecast short-term wind power is based on the WT and a hybrid of 

NN and fuzzy logic known as adaptive-network-based fuzzy inference system (ANFIS). The 

WT is used to decompose the wind power series into a set of constitutive series. Then, the 

future values of these constitutive series are forecasted using ANFIS. In turn, the ANFIS 

forecasts allow, through the inverse WT, reconstructing the future behaviour of the wind 

power series and therefore to forecast wind power. 
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2.1   Wavelet transform 

The WT convert a wind power series in a set of constitutive series. These constitutive 

series present a better behaviour than the original wind power series, and therefore, they can 

be predicted more accurately. The reason for the better behaviour of the constitutive series is 

the filtering effect of the WT. 

A brief summary of WT is presented hereafter. For the sake of simplicity, one-dimensional 

wavelets are considered to illustrate the related concepts.  

A wavelet is a waveform of effectively limited duration that has an average value of zero. 

Comparing wavelets with sine waves (which are the basis of Fourier analysis), sinusoids do 

not have limited duration (they extend from minus to plus infinity). Moreover, where 

sinusoids are smooth and predictable, wavelets tend to be irregular and asymmetric.  

Wavelet analysis is the breaking up of a signal into shifted and scaled versions of the 

mother wavelet. Signals with sharp changes might be better analyzed with an irregular 

wavelet than with a smooth sinusoid. Wavelet analysis does not use a time-frequency region 

(like the short-time Fourier transform), but rather a time-scale region. Wavelet analysis is 

capable of revealing aspects of data that other signal analysis techniques miss, such as trends, 

breakdown points, discontinuities in higher derivatives and self-similarity. Furthermore, 

wavelet analysis can often compress or de-noise a signal without appreciable degradation 

[15]. These capabilities of WT can be useful in short-term wind power forecasting. 

WTs can be divided in two categories: continuous wavelet transform (CWT) and discrete 

wavelet transform (DWT). The CWT ),( baW  of signal )(xf  with respect to a mother 

wavelet )(x  is given by [15]: 

 dx
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where the scale parameter a  controls the spread of the wavelet and translation parameter b  

determines its central position. The ),( baW  coefficient represents how well the original 

signal )(xf  and the scaled/translated mother wavelet match. Thus, the set of all wavelet 

coefficients ),( baW  for all a, b, associated to a particular signal, is the wavelet representation 

of the signal with respect to the mother wavelet. Since the CWT is achieved by continuously 

scaling and translating the mother wavelet, substantial redundant information is generated. 

Therefore, instead of doing that, the mother wavelet can be scaled and translated using certain 

scales and positions usually based on powers of two. This scheme is more efficient and just as 

accurate as the CWT [16]. It is known as the DWT and defined as: 
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where T  is the length of the signal )(tf . The scaling and translation parameters are functions 

of the integer variables m  and n  ( mm nba 2.,2  ); t  is the discrete time index. 

A fast DWT algorithm based on the four filters (decomposition low-pass, decomposition 

high-pass, reconstruction low-pass, and reconstruction high-pass filters), developed by Mallat 

[17], is considered in this paper. Multiresolution via Mallat’s algorithm is a procedure to 

obtain ‘‘approximations’’ and ‘‘details’’ from a given signal. An approximation is a low-

frequency representation of the original signal, whereas a detail is the difference between two 

successive approximations. An approximation holds the general trend of the original signal, 

whereas a detail depicts high-frequency components of it [16]. By successive decomposition 

of the approximations, Fig. 1, a multilevel decomposition process can be achieved where the 

original signal is broken down into lower resolution components. 

One particular wavelet function of type Daubechies of order 4 (abbreviated as Db4) is used 

as the mother wavelet )(t . This wavelet offers an appropriate trade-off between wave-length 

and smoothness, resulting in an appropriate behaviour for short-term wind power forecasting. 
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Similar wavelets have been considered by previous researchers for load forecasting [15, 16] 

and price forecasting [18, 19]. Also, three decomposition levels are considered, as in [19], 

since it describes the wind power series in a thorough and meaningful way. 

2.2   ANFIS method 

NN are simple, but powerful and flexible tools for forecasting, provided that there are 

enough data for training, an adequate selection of the input-output samples, an appropriated 

number of hidden units and enough computational resources available. Also, NN have the 

well-known advantages of being able to approximate any nonlinear function and being able to 

solve problems where the input-output relationship is neither well defined nor easily 

computable, because NN are data-driven. Multi-layered feedforward NN are specially suited 

for forecasting, implementing nonlinearities using sigmoid functions for the hidden layer and 

linear functions for the output layer [20]. Hidden layer is a convention that is normally made 

to designate the internal layer to the network, i.e. the layer that is neither input nor output 

layer. 

Just like NN, a fuzzy logic system is a nonlinear mapping of an input vector into a scalar 

output, but it can handle numerical values and linguistic knowledge. In general, a fuzzy logic 

system contains four components: fuzzifier, rules, inference engine, and defuzzifier. The 

fuzzifier converts a specific or exact ("crisp") input variable into a fuzzy representation, 

where membership functions give the degree of belonging of the variable to a given attribute. 

Fuzzy rules are of the type “if–then”, and can be derived from numerical data or from expert 

linguistic. Mamdani and Sugeno inference engines are two of the main types of inference 

mechanisms. The Mamdani engine combines fuzzy rules into a mapping from fuzzy input sets 

to fuzzy output sets, while the Takagi–Sugeno type relates fuzzy inputs and crisp outputs. The 

defuzzifier converts a fuzzy set into a crisp number using the centroid of area, bisector of 

area, mean of maxima, or maximum criteria. 
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NN have the advantage over the fuzzy logic models that knowledge is automatically 

acquired during the learning process. However, this knowledge cannot be extracted from the 

trained network behaving as a black box. Fuzzy systems, on the other hand, can be understood 

through their rules, but these rules are difficult to define when the system has too many 

variables and their relations are complex [21]. 

A combination of NN and fuzzy systems has the advantages of each of them. In a neuro-

fuzzy system, neural networks extract automatically fuzzy rules from numerical data and, 

through the learning process, the membership functions are adaptively adjusted. 

ANFIS is a class of adaptive multi-layer feedforward networks, applied to nonlinear 

forecasting where past samples are used to forecast the sample ahead. ANFIS incorporates the 

self-learning ability of NN with the linguistic expression function of fuzzy inference [22]. 

The ANFIS architecture is shown in Fig. 2. The ANFIS network is composed of five 

layers. Each layer contains several nodes described by the node function. The node function is 

described next. Let j
iO  denote the output of the ith node in layer j. 

In layer 1, every node i is an adaptive node with node function: 

 2,1),(1  ixAO ii   (3)  
or 
 4,3),(2

1   iyBO ii   (4)  

where x  (or y ) is the input to the ith node and iA  (or 2iB ) is a linguistic label associated 

with this node. Thus, 1
iO  is the membership grade of a fuzzy set A  (= 1A , 2A , 1B , or 2B ) and it 

specifies the degree to which the given input x  (or y ) satisfies the quantifier A .  

The membership functions for A  and B  are usually described by generalized bell functions, 

e.g.: 
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where  iii rqp ,,  is the parameter set. As the values of these parameters change, the bell-

shaped function varies accordingly, thus exhibiting various forms of membership functions on 

linguistic label iA . In fact, any continuous and piecewise differentiable functions, such as 

triangular-shaped membership functions, are also qualified candidates for node functions in 

this layer [23]. Parameters in this layer are referred to as premise parameters. 

In layer 2, each node   multiplies incoming signals and sends the product out: 

 2,1),()(2  iyBxAwO iiii   (6)  

Hence, each node output represents the firing strength of a rule. 

In layer 3, each node N computes the ratio of the ith rules’s firing strength to the sum of all 

rules’ firing strengths: 

 2,1,
21

3 


 i
ww

wwO i
ii  (7)  

The outputs of this layer are called normalized firing strengths. 

In layer 4, each node computes the contribution of the ith rule to the overall output: 

   2,1,4  icybxawzwO iiiiiii  (8)  

where iw  is the output of layer 3 and  iii cba ,,  is the parameter set. Parameters of this layer 

are referred to as consequent parameters. 

In layer 5, the single node   computes the final output as the summation of all incoming 

signals: 
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Thus, an adaptive network is functionally equivalent to a Sugeno-type fuzzy inference system. 

 



9 

The ANFIS considered in this study uses a hybrid learning algorithm to identify 

parameters of Sugeno-type fuzzy inference systems. Thus, ANFIS uses a combination of the 

least-squares method (to determine consequent parameters) and the backpropagation gradient 

descent method (to learn the premise parameters). In the estimation process, for any given 

input vector, outputs are acquired by each node function, and the least square estimation is 

used to identify the conclusion parameters of fuzzy rules. Finally, output errors corresponding 

to each input data are calculated. While in the backpropagation stage, the error is transferred 

from the output node into the input node by the steepest descent method; and then, the 

parameters related to the shape of the membership functions are adjusted. When the error 

standard is satisfied or the established number of iterations is reached, the process is finished 

[22, 23]. The membership functions considered in this study are triangular-shaped. The 

number of membership functions is selected based on domain knowledge and computation 

time. 

 
3   Forecasting accuracy evaluation 

 
To evaluate the accuracy of the proposed hybrid wavelet-neuro-fuzzy (WNF) approach in 

forecasting wind power, different criterions are used. This accuracy is computed as a function 

of the actual wind power that occurred. The mean absolute percentage error (MAPE) 

criterion, the sum squared error (SSE) criterion, and the standard deviation of error (SDE) 

criterion, are defined as follows. 

The MAPE criterion is defined as follows: 

 
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where hp̂  and hp  are respectively the forecasted and actual wind power at hour h , p  is the 

average wind power of the forecasting period and N  is the number of forecasted hours.  
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The SSE criterion is given by: 

  
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The SDE criterion is given by: 
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where he  is the forecast error at hour h  and e  is the average error of the forecasting period. 

A measure of the uncertainty of a model is the variability of what is still unexplained after 

fitting the model, which can be measured through the estimation of the variance of the error. 

The smaller this variance, the more precise is the prediction [18]. 

Consistent with definition (10), daily error variance can be estimated as: 
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4   Results 

 
The proposed hybrid WNF approach has been applied for wind power forecasting in Portugal. 

Historical wind power data are the main inputs for training. For the sake of clear comparison, 

no exogenous variables are considered. 

Our forecaster predicts the value of the wind power subseries for 3 hours ahead, taking into 

account the wind power data of the previous 12 hours with a time-step of 15 minutes. This 

procedure is repeated until the next 24 hours values are predicted. 
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The following days are randomly selected: July 3, 2007, October 31, 2007, January 14, 

2008, and April 2, 2008, corresponding to the four seasons of the year. Hence, days with 

particularly good wind power behaviour are deliberately not chosen. This results in an uneven 

accuracy distribution throughout the year that reflects reality. 

Numerical results with the proposed hybrid WNF approach are shown in Figs. 3–6 

respectively for the winter, spring, summer and fall days. Each figure shows the actual wind 

power, solid line, together with the forecasted wind power, dash-dot line. 

Table 1 presents the values for the criterions to evaluate the accuracy of the proposed 

hybrid WNF approach in forecasting wind power. The first column indicates the day, the 

second column presents the MAPE, the third column presents the square root of the SSE and 

the fourth column presents the SDE. 

 
Table 1: Statistical analysis of the daily forecasting error 

Day MAPE  SSE  SDE  

Winter 8.34 549.99 35.45 

Spring 7.71 425.17 29.54 

Summer 4.81 168.27 11.79 

Fall 3.08 204.88 15.33 

 

Table 2 shows a comparison between the proposed hybrid WNF approach and four other 

approaches (persistence, ARIMA, NN and NNWT), with respect to the MAPE criterion. The 

persistence approach states that the wind power forecast is the same as the last measured 

value [24]. 

 
Table 2: Comparative MAPE results 

 Winter Spring Summer Fall Average 

Persistence 13.89 32.40 13.43 16.49 19.05 

ARIMA 10.93 12.05 11.04 7.35 10.34 

NN 9.51 9.92 6.34 3.26 7.26 

NNWT 9.23 9.55 5.97 3.14 6.97 

WNF 8.34 7.71 4.81 3.08 5.99 
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A good accuracy of the proposed hybrid WNF approach was ascertained. The MAPE has 

an average value of 5.99%. 

The absolute values of forecast errors, considering NN, NNWT and WNF approaches, are 

shown in Figs. 7–10 respectively for the winter, spring, summer and fall days. The NN 

approach provides larger errors compared with NNWT and WNF approaches.  

In addition to the MAPE, stability of results is another important factor for the comparison 

of forecast approaches. Table 3 shows a comparison between the proposed hybrid WNF 

approach and the four other approaches (persistence, ARIMA, NN and NNWT), regarding 

daily error variances. The average error variance is smaller for the proposed hybrid WNF 

approach, indicating less uncertainty in the predictions. 

 
Table 3: Daily forecasting error variance 

 Winter Spring Summer Fall Average 

Persistence 0.0074 0.0592 0.0085 0.0179 0.0233 

ARIMA 0.0025 0.0164 0.0090 0.0039 0.0080 

NN 0.0044 0.0106 0.0043 0.0010 0.0051 

NNWT 0.0055 0.0083 0.0038 0.0012 0.0047 

WNF 0.0046 0.0051 0.0021 0.0011 0.0032 
 

 
Furthermore, the four plots of Fig. 11 provide average errors considering NN, NNWT and 

WNF approaches, for the four days analyzed. 

The proposed hybrid WNF approach presents better forecasting accuracy over the other 

approaches. Moreover, the average computation time is less than 1 minute on a PC with 1 GB 

of RAM and a 2.0-GHz-based processor. Instead, supercomputers are usually required to run 

numerical weather prediction (NWP) models. Thus, the proposed approach offers a practical 

solution in terms of computational burden, which is important for real-life applications.  
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5   Conclusions 

 
As the penetration level of wind power in power systems increases, the accurate prediction of 

the wind behaviour and the corresponding electric energy production will be increasingly 

important. In this paper, a hybrid WNF approach is proposed for short-term wind power 

forecasting, which is both novel and effective. The MAPE has an average value of 5.99%, 

outperforming persistence, ARIMA, NN and NNWT approaches, while the average 

computation time is less than 1 minute. Hence, the results presented confirm the considerable 

value of the proposed approach in forecasting wind power. 
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Figure captions 

 

 

 

 

 

 

 

 

 

Fig. 1   Multilevel decomposition process: the signal is divided into three levels, namely, a level of 

approximation (A) and details (D) 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2   ANFIS architecture 
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Fig. 3   Winter day: actual wind power, solid line, together with the forecasted wind power, dash-dot line, in 

megawatt 

 

 

Fig. 4   Spring day: actual wind power, solid line, together with the forecasted wind power, dash-dot line, in 

megawatt 
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Fig. 5   Summer day: actual wind power, solid line, together with the forecasted wind power, dash-dot line, in 

megawatt 

 

 

Fig. 6   Fall day: actual wind power, solid line, together with the forecasted wind power, dash-dot line, in 

megawatt 
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Fig. 7   Winter day: absolute value of forecast errors considering NN (dashed line), NNWT (dash-dot line) and 

WNF (solid line) approaches 

 

 

 

Fig. 8   Spring day: absolute value of forecast errors considering NN (dashed line), NNWT (dash-dot line) and 

WNF (solid line) approaches 
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Fig. 9   Summer day: absolute value of forecast errors considering NN (dashed line), NNWT (dash-dot line) and 

WNF (solid line) approaches 

 

 

 

Fig. 10   Fall day: absolute value of forecast errors considering NN (dashed line), NNWT (dash-dot line) and 

WNF (solid line) approaches 
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Fig.11   Average errors within three time intervals, considering NN (black rectangle), NNWT (grey rectangle) 

and WNF (white rectangle) approaches for the days analyzed: (a) Winter, (b) Spring, (c) Summer, and (d) Fall 
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