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Abstract—Prosumers are agents that both consume and produce
energy. This article studies the optimal energy management of a
residential prosumer which consists of a renewable power plant
and an energy storage unit. Energy could stream among power
grid, renewable plant, storage unit, and demand, providing a highly
flexible energy supply and the opportunity of arbitrage. To cap-
ture the uncertainty of renewable generation and electricity price,
as well as the rolling horizon feature of the multiperiod energy
management, the problem is formulated as a robust data-driven
dynamic programming (RDDP). Kernel regression is utilized to
build the empirical conditional distribution in a data-driven man-
ner, and all candidates that reside in a Wasserstein metric-based
ambiguity set are taken into account to tackle the inexactness of
the empirical distribution. The RDDP can be transformed into a
series of convex optimization problems with cost-to-go functions in
their constraints. The piecewise linear expression of the cost-to-go
function is retrieved from dual linear programs. Through such
an analytical expression of cost-to-go functions, the RDDP can
be solved via backward induction, unlike the popular stochastic
dual dynamic programming technique that incorporates forward
and backward passes. Case studies validate the performance and
advantage of the proposed RDDP approach.

Index Terms—Energy storage, prosumer, robust data-
driven dynamic programming, uncertainty, value function
approximation.

NOMENCLATURE

A. Abbreviations

ADP Approximate dynamic programming.
DG Distributed generator.
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ESU Energy storage unit.
LP linear programming.
PWL Piecewise linear.
RDDP Robust data-driven dynamic programming.
SDDP Stochastic dual dynamic programming.
SoC State of charge.

B. Parameters and Indices

xc
max Maximum charging power of ESU.

xdc
max Maximum discharging power of ESU.

smin Minimum SoC of ESU.
smax Maximum SoC of ESU.
ηc/ηdc Charging/discharging efficiency of ESU.
Δ Duration of a time slot.
wt Available renewable power, random parameter.
dt Demand in time slot t, random parameter.
πs Selling price of electricity, random parameter.
πp Buying price of electricity, random parameter.
ξt Random vector of exogenous states.
N Number of historical observations.
H Number of sampled state variables.
Mε

t Ambiguity set of the conditional distribution in period
t with radius ε.

C. Variables

xwd
t Power from renewable DG to demand.

xwg
t Power from renewable DG to power grid.

xws
t Power from renewable DG to ESU.

xsd
t Power from ESU to demand.

xsg
t Power from ESU to power grid.

xgd
t Power from power grid to demand.

xgs
t Power from power grid to storage.

st SoC of ESU.
ut Vector of control variables.

I. INTRODUCTION

W ITH the development of technology, renewable dis-
tributed generators (DGs) have been widely deployed

at the demand side, bringing various benefits not only to the
distribution system but also to end consumers [1]. Private-owned
DGs, like rooftop solar panels, small wind turbines, and micro
gas-fired units, endow traditional end consumers with the ability
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to produce, precipitating the advent of prosumers [2]. Energy
storage unit (ESU) owned by the prosumer greatly improves
the flexibility and reliability of maintaining power balance.
On the one hand, the ESU helps to compensate the volatile
output of renewable DGs; on the other hand, DG and ESU
offer the prosumer a unique opportunity to actively participate
in system operation through trading energy with the power grid
[3]. Recently, prosumer has become a hot topic and attracted a
lot of attention from researchers [4].

Because of low operation costs, renewable DGs have won the
favor of prosumers. However, given the volatility of renewable
generation, the energy management of prosumer becomes more
challenging. Two-stage stochastic optimization and two-stage
robust optimization are the mainstream methods for decision
making under uncertainty. SO requires the probability distribu-
tion of uncertain factors and usually relies on scenario sampling
[5] or chance-constraints [6]; robust optimization depicts un-
certain parameters via an uncertainty set [7] and optimize the
target under the worst-case scenario. Both of them have been
widely applied in unit commitment [8], [9], economic dispatch
[10], [11], optimal active-reactive power flow [12], [13], energy
storage operation [14] and so on. A tutorial on two-stage robust
optimization can be found in Appendix C of [15].

In the above two-stage optimization approaches, a decision
is made with perfect knowledge of the realized uncertainty over
the entire time horizon. However, in the energy management
problem, renewable generation is observed period-by-period,
and the dispatch strategy in period t cannot depend on the
information after period t, which is called nonanticipativity; if
nonanticipativity is neglected, the solution could be infeasible,
as is illustrated in [16] by an example to demonstrate such
phenomenon in the two-stage robust unit commitment problem.
To overcome this difficulty, an affine policy-based multiperiod
robust optimization method is proposed in [16] to enforcing
nonanticipativity, in which the generator real-time adjustments
are linear functions in the forecast errors. The method is applied
to unit commitment with energy storage in [17]. Appling the
affine policy restricts system flexibility and thus may give sub-
optimal strategies. More detailed discussions on the optimality
performance of affine policy can be found in [18].

Another remedy is to perform multiperiod optimization or
dynamic programming in a rolling horizon fashion. The main
difficulty is the nested optimization structure that requires eval-
uating the optimal value for the remaining periods (also called
the cost-to-go function) recursively. Two prevalent methods are
approximate dynamic programming (ADP) and stochastic dual
dynamic programming (SDDP) [19], depending on how the
cost-to-go function is approximated.

ADP approximates the cost-to-go function with a smaller
number of parameters; general strategies include aggregation
and continuous value function approximation [20]. The au-
thors in [21] proposed a heuristic interpolation-based method.
However, interpolation-based regression does not guarantee the
performance of approximation (optimistic or pessimistic). The
method in [21] is applied to battery storage management in [22].
An inspiring method in [23] focuses on finding the slopes of a
piece of function rather than the value, but this approach does

not account for uncertainty. Machine learning methods are also
found in value function approximation, such as deep recurrent
neural network learning [24] and reinforcement learning [25].
ADP has been used in [26] for the strategic operation of energy
hubs with uncertainties, in [27] for microgrid economic dispatch,
in [28] for load management in smart grids, and so on.

SDDP approximates the cost-to-go function via multidimen-
sional benders cuts. Lower bounds and upper bounds are gen-
erated in the forward and backward swapping process until a
convergence criterion is met [29]. The applications of SDDP
are also reported in [30] and [31] to economic dispatch, in [32]
to transmission expansion planning and in [33] to ESU manage-
ment strategy for microgrids. As variants of SDDP, stochastic
dual dynamic integer programming [34], and distributionally
robust SDDP [35] are also explored. In summary, SDDP is
an elegant method that can solve dynamic programs under
uncertainties with a provable guarantee on the optimality gap.
However, as the forward pass and backward pass should repeat
many times, the computation time may not meet the requirement
of online use. Although some dedicated strategies have been
proposed to accelerate SDDP, such as scenario reduction[36]
and cut selection [37], it is still not clear how fast SDDP would
converge in advance.

Except for ADP and SDDP, robust dual dynamic program-
ming is proposed in [38]. It describes uncertain parameters
using an uncertainty set and is a multistage robust optimization.
The solution also relies on forward and backward swapping. A
multiresolution dynamic programming is introduced in [39] for
managing ESU. The optimization horizon is divided into a series
of sub-horizons and discretized with different temporal resolu-
tions, enabling a reduced computational complexity compared
to the single-resolution approach. The authors in [40] discusses
a data-driven multistage stochastic optimization approach for
seasonal energy storage operation; the cost-to-go function is
evaluated based on available historical data of uncertain param-
eters instead of modeling their underlying distributions.

In view of the limitation of two-stage optimization in the
dynamic environment faced by prosumers, we resort to the
dynamic programming modeling paradigm in [21]. Compared
with existing work, the novelty of this article is twofold.

1) A robust data-driven dynamic programming (RDDP) for-
mulation for energy management of a residential prosumer.
To model the uncertainty in the dynamic environment, kernel
regression is used to estimate the empirical conditional distri-
bution using historical data following the paradigm in [21]; a
Wasserstein metric-based ambiguity set is built accounting for
the inexactness of conditional distribution. Unlike SDDP, the
proposed method relies on data and is robust against the inex-
actness of conditional distribution. Compared with the robust
dual dynamic programming in [38], the proposed RDDP is less
conservative as the distributional property of uncertainty is taken
into account.

2) A systematic approach to solve the RDDP, which entails
solving a series of convex optimization problems with cost-to-go
functions in its constraints. According to the multiparametric
programming theory, we construct convex PWL expressions
for the cost-to-go functions from dual variables extracted from
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LPs, which enables to solve the RDDP via backward induction.
The computational efficiency outperforms SDDP and robust
dual dynamic programming in [38] which conduct forward pass
and backward pass repeatedly. Unlike machine learning-based
value function approximation, the approximation quality of
the proposed PWL expression does not rely on the quality of
historical data and training process. Data is only used to retrieve
conditional distribution.

This article proposes a paradigm for the optimal energy
management of the prosumer-like energy systems, including but
not limited to residential users, microgrids, energy hubs, and
industrial parks. Technically, the proposed method can approxi-
mate the cost-to-functions at a very low computational expense
relying on historical data; the computational time of RDDP is
K ×O(N), which is much shorter than that of SDDP, O(N2).
More importantly, the RDDP formulation enjoys a degree of
robustness: even in case of the scarcity of historical data, the
strategies can still guarantee an acceptable operating economy;
results show that with only ten observations of historical data,
the suboptimality of RDDP is less than 4%.

This article extends the work in [21] and [22] in two aspects.
First, we consider the energy streams from the residential sys-
tem to the main grid, improving the operational flexibility and
capturing the arbitrage opportunity of the prosumer. Second, we
develop a thorough scheme for approximating the cost-to-go
function according to the multiparametric programming theory;
compared with the interpolation-based approximation method in
[21] and [22], which overly estimates the function value, such a
method leads to an under-estimator and exhibits better accuracy
without increasing complexity, especially when the sampling set
is small.

The rest of this article is organized as follows: the architecture
of the prosumer is established in Section II, followed by the
RDDP formulation of the optimal energy management problem.
The solution method for the RDDP is presented in Section III.
The results of numerical tests are reported in Section IV. Finally,
conclusions are drawn in Section V.

II. MATHEMATICAL FORMULATION

In this section, the architecture of the residential prosumer
is introduced first; then the energy management problem in the
deterministic case is presented; finally, the RDDP is set forth by
incorporating uncertainty.

A. Architecture of the Residential Prosumer

The architecture of residential prosumer studied in this article
is depicted in Fig. 1. We assume that the interfaces between
wind turbine and storage, wind turbine and the load devices,
wind turbine and grid, storage and grid (bidirectional), storage
and load devices, as well as grid and load devices, are available.
Demand is supplied by the DG, ESU, and the grid; ESU can
store energy from renewable generation and grid; specifically,
the energy in storage or generated from wind turbine can be sold
back to the grid, which is practicable in a decentralized power
grid. The ESU plays an important role in this residential-level
energy system due to its ability to shift demand over time. The

Fig. 1. Configuration of the residential prosumer.

model of ESU is given as

0 ≤ xgs
t + xws

t ≤ xc
max, ∀t (1a)

0 ≤ xsg
t + xsd

t ≤ xdc
max, ∀t (1b)

smin ≤ st ≤ smax, ∀t (1c)

st+1 = st + (xgs
t + xws

t )Δηc − (xsg
t + xsd

t )Δ

ηdc
, ∀t (1d)

where constraints (1a) and (1b) impose non-negativity and upper
limits on charging power and discharging power of the ESU;
constraint (1c) stipulates the feasible range of SoC; (1d) de-
scribes the SoC dynamics over time. Here we do not exert strict
complementarity on charging and discharging power, which can
be a barrier to unleash the flexibility of prosumer. The condition
that the terminal SoC equals to the initial state is relaxed [41].

The total power supply from the renewable plant cannot
exceed the available renewable generation wt, yielding

xwd
t + xws + xwg

t ≤ wt, ∀t. (2)

Demand balance boils down to

xsd
t + xwd + xgd

t = dt, ∀t. (3)

Such an architecture enjoys high flexibility of reconfiguration.
For example, if a real prosumer system does not have the
interface between wind turbine and grid, the variable xwg is
set to 0. Therefore, the proposed architecture and its model are
very general.

B. Prosumer Energy Management in Stochastic Form

Given the rolling horizon feature and uncertain nature, the
energy management problem can be cast as a stochastic DP.
In period t, storage SoC st ∈ S is the endogenous state,
where S is defined in (1c). Vector ξt = {wt, π

s
t , π

p
t , dt} ∈ R4

which encapsulates all external random parameters is the ex-
ogenous state, where πs

t /π
p
t denotes selling and purchasing

prices of electricity. ξt is observed at the beginning of pe-
riod t. Based on (st, ξt), the prosumer determines control ac-
tion ut = {xgs

t , xgd
t , xsg

t , xsd
t , xwg

t , xwd
t , xws

t } ∈ Ut(ξt) which
includes energy flow variables in period t, where feasible set Ut

depending on wt and dt corresponds to constraints (1a), (1b),
(2), and (3). After prosumer deploys action ut, the system moves
to a new state st+1 at the beginning of period t+ 1 according to
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the state transition equation st+1 = gt(st, ut) described in (1d).
Then, ξt+1 is observed. The action ut incurs an instantaneous
payoff in period t which represents the cost for purchasing elec-
tricity from the power grid and the income for selling electricity
to the power grid, i.e., ct(ξt, ut) = πp

t (x
gs
t + xgd

t )− πs
t (x

sg
t +

xwg
t ).
Based on the above notations and Bellman’s principle of

optimality [19], the stochastic dynamic programming model of
prosumer energy management is cast in a backward recursive
manner

Vt(st, ξt) = min ct(ξt, ut) + E[Vt+1(st+1, ξt+1)|ξt]
s.t. ut ∈ Ut(ξt), st+1 ∈ S

st+1 = gt(st, ut) (4)

for t = T, . . . , 1 with VT+1 ≡ 0, where Vt(st, ξt) is the optimal
payoff for the remaining T − t periods and is called the cost-
to-go function or value function. It quantifies the optimal value
based on (st, ξt) revealed at the beginning of period t. However,
as the payoff depends on the future realization of uncertain
parameters, we resort to minimize the conditional expectation
in problem (4) for each period.

C. RDDP Model

The stochastic DP model (4) encounters two difficulties in
practical use. From the modeling perspective, the exact condi-
tional probability distribution of ξt+1 given ξt is not available;
from the computational perspective, to perform backward induc-
tion, we need the analytical expression of cost-to-go function.
In this section, we use the kernel regression method to construct
the empirical conditional distribution based on historical data
and formulate an RDDP model, inspired by the paradigm in
[21]. Specifically, we consider all possible distributions in a
Wasserstein-metric based ambiguity set which needs fewer data
than the χ2-distance based one in [21]. The computational issue
is left for the next section.

Given a set of N historical trajectories of exogenous states
{ξit}Ni=1, ∀t, the conditional expectation in (4) can be estimated
via Nadaraya-Watson kernel regression method [21], [25]

N∑
i=1

qti(ξt)Vt+1(st+1, ξ
i
t+1) (5)

where the weight coefficients qti(ξt) are obtained from

qti(ξt) =
K(ξt − ξit)∑N

k=1 K(ξt − ξkt )
(6)

where

K(y) = exp

(
− (‖y‖2)2

2σ2

)
(7)

is the Gaussian kernel function; ‖ · ‖2 stands for the Euclidean
norm of a vector; σ > 0 is a bandwidth parameter. The kernel
function guarantees that the observation nearer to ξt holds a
larger weight. Substituting (5) into (4) we have

[b]Vt(st, ξt) = min ct(ξt, ut)

+
N∑
i=1

qti(ξt)Vt+1(st+1, ξ
i
t+1)

s.t. ut ∈ Ut(ξt), st+1 ∈ S

st+1 = gt(st, ut). (8)

Problem (8) is reminiscent of SDDP and can be solved via
forward pass and backward pass algorithm in [29]. In practice,
however, the historical data may be sparse, and the conditional
probabilities qti(ξt) could be inexact with the variance scalings
with O( 1

N )[21].
To cope with this issue, when calculating the expectation in

(5), not only the empirical distribution in (6), but also other
distributions that are close to the empirical one, should be taken
into account. To this end, we employ the Wasserstein metric to
quantify the distance between two probability distributions. The
Wasserstein metric for two discrete probability distributions P1

and P2 in probability space P(Ξ) supported on Ξ is defined
through an optimal transport problem

dW (P1, P2) = inf
π≥0

∑
i

∑
j

πij‖ζi1 − ζj2‖p

s.t.
∑
j

πij = P i
1, ∀i

∑
i

πij = P j
2 , ∀j

∑
i

∑
j

πij = 1 (9)

where decision variable π ∈ RI×J
+ is a joint distribution of ran-

dom variables ζ1 and ζ2 with marginal distributions P1 and P2,
respectively; ‖ · ‖p is the vector p-norm. We adopt p = 1 in this
article, and dW is called 1-Wasserstein metric or Kantorovich
metric [42]. If we regard πij as the probability mass transported
from slot i to slot j, and ‖ζi1 − ζj2‖p as the corresponding energy
consumption, then problem (9) aims to find the energy optimal
plan for reshaping distribution P1 to distribution P2, and the
minimal energy consumption is defined as the distance between
P1 and P2.

Equipped with the Wasserstein metric, we can build the am-
biguity set which includes all probability distributions near the
empirical distribution Q = [qt1(ξt), ..., qtN (ξt)],∀t

Mε
t =

{
P ∈ P({ξit}Ni=1) : dW (P,Q) ≤ ε

}
(10)

where distribution P is described by the vector of probabili-
ties [pt1(ξt), ..., ptN (ξt)] associated with historical trajectories
{ξit}Ni=1. According to (10), the distance between empirical
distribution Q and any P ∈ Mε

t is no greater than ε in the sense
of 1-Wasserstein metric. Parameter ε is called the radius of the
ambiguity set, and depends on the prosumer’s attitude on risk.
With the increase of ε, more distributions are contained in Mε

t ,
and the model is more conservative, reflecting a risk-aversive
attitude. If the attitude towards risk is not clear, a proper value
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of ε is recommended by [43]

ε = −log(α∗)/N (11)

whereN is the total number of historical observations. With such
a selection, the probability for the true distribution belonging to
Mε

t is no less than 1− α∗.
With the ambiguity set Mε

t , the robust version of stochastic
DP (8), which is called RDDP, can be written as

[b]Vt(st, ξt) = min ct(ξt, ut)

+ max
pt(ξt)∈Mε

t

N∑
i=1

pti(ξt)Vt+1(st+1, ξ
i
t+1)

s.t. ut ∈ Ut(ξt), st+1 ∈ S

st+1 = gt(st, ut). (12)

In RDDP (12), the expectation is evaluated at the worst-case
distribution in the ambiguity set Mε

t , therefore, the statistical
performance of the optimal strategy is robust against the inex-
actness of conditional probability distribution. Compared to (8),
an inner maximization over conditional distribution is performed
accounting for uncertainty. Compared to a similar model in [21],
the Wasserstein metric-based ambiguity set adapts to various
cases with different data availability.

III. SOLUTION METHOD

In this section, we develop a systematic methodology to
solve RDDP (12) via LP solver and backward induction. The
key steps entail the elimination of inner maximization and the
approximation of the cost-to-go function.

A. Eliminating the Inner Maximization

The maximization over Mε
t is an infinite-dimensional opti-

mization problem and must be reformulated. To this end, we
summarize the observations from the concrete model provided
as follows.

1) The cost function ct is linear in ut.
2) The state transition equation gt is linear in st and ut.
3) The feasible set Ut is a polyhedron.
According to Proposition 2 in [44], problem (12) can be

reduced to a finite-dimensional optimization problem

Vt(st, ξt) = min ct(ξt, ut) + λε− μ+

N∑
i=1

qti(ξt)yi

s.t.ut ∈ Ut(ξt), st+1 ∈ S

μ ∈ R, λ ∈ R+, z, y ∈ RN

st+1 = gt(st, ut)

Vt+1(st+1, ξ
i
t+1) + μ ≤ zi, ∀i = 1, ..., N

zi − λ‖ξit − ξjt ‖1 ≤ yj , ∀i, j = 1, ..., N (13)

where μ, λ, z, and y are auxiliary variables; qti(ξt), ∀i, t and
‖ξit − ξjt ‖1 ∀i, j, t are constants calculated from historical ob-
servations. In the next section, we prove the cost-to-go function

Vt+1(st+1, ξ
i
t+1) can be expressed via a convex PWL function,

so that problem (13) gives rise to an LP and can be solved very
efficiently. Solve (13) via backward induction (from the last
period to the first period), we obtain the solution of RDDP (12).
The strategy in the first period is deployed. The remaining task
is to construct the PWL expression of the cost-to-go function in
period t with respect to each observation.

B. PWL Expression of the Cost-to-go Function

We need an analytical expression ofVt+1(st+1, ξ
i
t+1) to solve

the problem (13). We knowVT+1 ≡ 0, so problem (13) in period
T is an LP. Suppose Vt+1(st+1, ξ

i
t+1) is a convex PWL function

in st+1, we prove Vt(st, ξ
i
t) remains a convex PWL function

in st. For notation brevity, let st denote the parameter and x
represents all decision variables in (13). Under the assumption
on Vt+1(st+1, ξ

i
t+1), all constraints in (13) can be written as

linear equalities and inequalities, resulting in an explicit LP.
Proceeding one step back, we solve

[b]Vt(st, ξt) = min c	x

s.t.Ax ≤ b+Bst (14)

where A, B, b, and c are constant coefficients corresponding to
the concrete model. We aim to demonstrate that the optimal value
function Vt(st, ξt) can be analytically expressed as a convex
PWL function in st.

Recalled the basic property of LP, the optimal solution can
always be found at one of the vertices of the polyhedral feasible
region. At the optimal solution, the constraints in (14) are
categorized into active ones and inactive ones

A′x∗ = b′ +B′st

A′′x∗ < b′′ +B′′st. (15)

Hence, the optimal solution and optimal value are

x∗ = A′−1b′ +A′−1B′st, st ∈ Θ (16a)

[b]V ∗
t (st, ξt) = c	A′−1b′ + c	A′−1B′st

= mt + ntst, st ∈ Θ (16b)

where Θ is called a critical region in which the set of active
constraints remains unchanged. From (16) we can see that the
optimal solution and the optimal value are linear functions of
st. In fact, the feasible interval S is covered by several disjoint
subintervals, i.e., S =

⋃I
i=1 Θi, where Θi

⋂
Θj = ∅, ∀i �= j.

Therefore, the cost-to-go function must be PWL in st

Vt(st, ξt) =

⎧⎪⎪⎨
⎪⎪⎩
m1 + n1st, ∀st ∈ Θ1

...

mI + nIst, ∀st ∈ ΘI

(17)

where the coefficients mi and ni depend on ξt. Computing the
critical regions can be tricky in case of degeneracy. Here we use
(17) to demonstrate the PWL structure of Vt(st, ξt); and critical
region is not actually used in the proposed method, once we
prove the convexity of Vt(st, ξt).
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Fig. 2. Flowchart of the proposed RDDP approach.

Consider the dual problem of LP (14)

Vt(st, ξt) = max
γ

γ	(b+Bst)

s.t.A	γ = c, γ ≤ 0 (18)

where γ is the vector of dual variables. By strong duality, the
optimal value of LP (18) coincides with Vt(st, ξt), the optimal
value of its primal problem. For any given γ, the objective
function of (18) is a linear function in st. Therefore, Vt(st, ξt)
is the point-wise maximum of infinitely many linear functions,
and thus convex in st.

The dual problem (18) provides a more convenient way to
build PWL expression (17) without the information on critical
region. Let Γ = {γ|A	γ = c, γ ≤ 0} be the polyhedral feasible
set of dual variable and vert(Γ) the set of vertices. Because the
optimum is finite, the optimal solution must be found at some
γ ∈ vert(Γ), althoughΓmay contain extreme rays. In this regard

Vt(st, ξt) = max
i

{
γ	
i b+ γ	

i Bst
}
, ∀γi ∈ vert(Γ). (19)

Compare (17) and (19), coefficients m and n can be retrieved
from dual variable via

mi = γ	
i b, ni = γ	

i B, for some γi ∈ vert(Γ). (20)

However, we do not know in prior which vertex produces the lin-
ear functions in (19). We propose the following heuristic method:
choose uniformly distributed points skt ∈ S, k = 1, . . .K; solve
problem (14) for each skt , the corresponding dual variable is γk,
k = 1, . . . ,K. After deleting duplicated elements in {γk}Kk=1,
we can retrieve the PWL expression according to (19).

Now we can claim: Vt(st, ξt) is a convex PWL function in
st, ∀t. The flowchart of constructing PWL expression for the
cost-to-go functions is summarized in Algorithm 1. For clarity,
an overall flowchart of the proposed RDDP approach is given in
Fig. 2.

Additional discussions are given as follows.
1) Algorithm 1 performs backward induction from periodT to

period 2, unlike SDDP algorithm which performs forward pass
and backward pass repeatedly. Hence, there is no convergence
issue.

Algorithm 1: PWL expression of Cost-to-go Function.
1. Input:

K discrete points: {skt }Kk=1 ∈ S, ∀t = 1, ..., T .
N historical observations: {ξlt}Tt=1, ∀l = 1, ..., N .
VT+1(sT+1, ξ

l
T+1) ≡ 0,∀l = 1, ..., N .

2. For t = T, ..., 2
For l = 1, ..., N

For k = 1, ...,K
Solve the following LP with (st, ξt) = (skt , ξ

l
t)

min ct(ξt, ut) + λε

− μ+

N∑
i=1

qti(ξt)yi

s.t.ut ∈ Ut(ξt), st+1 ∈ S

μ ∈ R, λ ∈ R+, z, y ∈ RN

st+1 = gt(st, ut)

mj
t+1,i + nj

t+1,ist+1 + μ ≤ zi,

∀j = 1, ...,K, ∀i = 1, ..., N

zi − λ‖ξit − ξjt ‖1 ≤ yj ,

∀i, j = 1, ..., N (21)

where mj
t+1,i and nj

t+1,i are obtained in the previous

iteration. Calculate mj
t,i and nj

t,i by (20).
End

End
End

3. Output: Coefficients mj
t,i and nj

t,i, ∀i, t, j.

2) The output of Algorithm 1 is the PWL expressions of cost-
to-go functions, not the optimal strategy. The execution process
can be viewed as training. When the real trajectory of uncertainty
{ξt}Tt=1 is observed period-by-period, the optimal action can be
determined by solving LP (21) moving forward.

3) An interpolation-based method is proposed in [21] to
approximate cost-to-go functions. It actually yields an over-
estimator for univariate cost-to-go functions. The proposed
method uses a subset of vert(Γ) to construct PWL expressions
and results in an under-estimator for cost-to-go functions (either
univariate or multivariate). The heuristic method mentioned in
[29] can help initiate discrete points skt . With proper discrete
points, the PWL expression is exact, at least is very close to the
exact one.

IV. CASE STUDIES

A residential prosumer with a storage and a wind turbine
is used to validate the proposed method. Some parameters are
given in Table I; complete system data are available in [45]. LPs
are solved by CPLEX 12.8 on a laptop with Intel i5-8250U CPU
and 8 GB memory.
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TABLE I
SYSTEM PARAMETERS

Fig. 3. Analysis on approximate PWL function. (a) PWL cost-to-go functions
across the day. (b) Corresponding observation.

A. Performance of the PWL Expression

To conduct Algorithm 1, we collect ten couples of historical
observations of wind power and demand from a real residential
energy system [46]; soN = 10. The electricity price is collected
from the PJM database from July 1st to July 10th, 2019 [46]. One
observation is plotted in Fig. 3, whose corresponding cost-to-go
functions over the entire time horizon are drawn in Fig. 3, from
which we can see the following.

1) In period t, the cost-to-go function Vt(·) is monotonically
decreasing in its argument st. The reason is clear: A higher SoC
can supply more energy in the future for demand or for sale, and
thus reduce the purchasing cost while circumventing potential
risks brought by market price uncertainty.

2) With time rolling on, cost-to-go functions in each period
shows a decreasing trend in general, because less energy is
needed in the rest of the day.

3) Distinguished from the overall trend, the first exception
marked by 1© exhibits an increase when battery SoC is low in
the early morning. Such a phenomenon is more clearly displayed
in Fig. 4. The reason can be deduced from Fig. 3 that in related
periods, the available wind power drops considerably while

Fig. 4. PWL cost-to-go functions in periods 3–7.

Fig. 5. PWL cost-to-go functions in periods 21–23.

the demand grows oppositely; therefore, the prosumer has to
purchase energy from the grid if the energy stored ahead of the
demand rise is not much.

4) The second exception marked by 2© occurs at the end of
a day. Referring to Fig. 5, the cost-to-functions in the last a few
periods have values higher than those in period 21 when the
level of SoC is relatively high. Because we assume VT+1 ≡ 0,
the prosumer will sell out the energy before a new day. Given a
maximum discharging power, the energy is sold across multiple
periods. Consequently, the prosumer enjoys a higher revenue
(represented by negative cost) in periods 22 and 23 than in the
last period.

B. Impact of Data Availability and Parameter ε

By Algorithm 1 with ten groups of historical observations
mentioned above, all the cost-to-go functions are already cal-
culated, with which we can solve the reformulated dynamic
program (13) as time recedes from period 1–24 with new obser-
vations.

To this end, we employ another five sequences of uncertain
renewable power, demand and electricity price, denoted by
S1∼S5; they act as the observations, which are given period by
period. The initial level of SoC is set to 10 kWh. The prosumer
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TABLE II
COMPARISONS ON INDEX 1 AND 2 WITH DIFFERENT ε

TABLE III
COMPARISONS ON ENERGY STREAMS WITH DIFFERENT ε

can freely choose ε, or use the recommended value in (11),
which depends on data availability. Three values ε = 0, ε = 0.3
(recommended value), and ε = 1.0 are tested.

To validate the performance of the RDDP method, we test
three representative indices. Index 1: operation cost evaluated
by problem (21) at period 1; Index 2: actual operation cost
calculated from

∑T
t=1 ct.

The comparison results of Index 1 and 2 are displayed in
Table II. Index 1 increases with the growth of ε, which defines
the size of the ambiguity set. The larger the value of ε, the more
distributions are taken into account, resulting in a worst extreme
distribution as well as a higher cost. For Index 2, a risk-neutral
prosumer with ε = 0 may enjoy a lower cost in scenario 1 and
scenario 5; while he has to pay a price for the strategy without
robustness: In scenario 2 or 3, the cost is higher not only than
those corresponding to two risk-aversive cases, but also higher
than its predictive expectation.

Furthermore, we explore the impact of ε on energy flows
(in kWh, for example, ewg =

∑5
s=1

∑T
t=1 x

wg
t /5). Results are

listed in Table III, from which we can observe the following.
1) The allocation of wind energy changes with the value of ε;

specifically, as ε becomes larger, more volatile wind energy is
sold to the grid, and more demand is supplied by either the grid
power or the storage, which is controllable.

2) The energy exchange between storage and grid decreases
as ε grows larger. Originally, the storage plays a prime role in
arbitrage; when the uncertainty increases, more storage capacity
is used to eliminate the negative impact of uncertainty and ensure
a reliable energy supply.

The change of SoC from another perspective demonstrates
how the robustness impacts the energy management strategy.
The average SoC trajectories throughout the whole time horizon
in three tests are drawn in Fig. 6; in the test with a larger ε, the
SoC is kept at a higher level to avoid potential risks.

C. Comparison Between SDDP and RDDP

We compare the effectiveness and efficiency of the proposed
RDDP and the popular SDDP. Please refer to [29] for a complete

Fig. 6. Comparison on average SoC with different ε.

TABLE IV
COMPARISONS ON COMPUTATIONAL TIME WITH DIFFERENT

SIZE OF HISTORICAL INFORMATION

TABLE V
COMPARISONS ON INDEX 2 BETWEEN RDDP AND SDDP

description of the forward–backward pass algorithm for SDDP.
We use the same ten observations in SDDP. The algorithm
terminates when the upper bound is close enough to the lower
bound. Basically, LP in each step can be solved efficiently within
0.02 s. As we use N = 10 observations, the optimality gap
between lower and upper bounds shrinks to 6 × 10−4 after ten
forward passes and ten backward passes. Because all the scenar-
ios must be visited in every backward pass, the computational
time of SDDP isO(N2), which grows quickly if more historical
observations are available. As for RDDP, the computational time
is K ×O(N) where the number of discrete points K = 10 is a
constant. Comparatively, results in Table IV verify that RDDP
is more efficient while the computational time of SDDP rapidly
soars with the growth of the size of historical information.

Finally, we compare Index 2 in the five newly observed
trajectories. The forward–backward pass algorithm of SDDP
constructs accurate cost-to-go functions. From Table V, we can
see that the relative errors between Index 2 offered by RDDP
and SDDP in all five scenarios are less than 5%, demonstrating
that the PWL expressions used in RDDP are accurate enough.
Furthermore, the values offered by RDDP are slightly smaller,
because in Algorithm 1, the dual variables for constructing PWL
expression are extracted from discrete samples of parameters,
and some critical vertices [as in (19)] that produces binding
linear functions in the PWL expression may be missed. In
this regard, the proposed method offers an under estimator for
the cost-to-go function in theory. Nevertheless, as the sampled
parameters are well distributed, the approximation is very close
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to the accurate one. To improve accuracy, we can incorporate
more sampled points of state variables to generate candidate
dual variables.

V. CONCLUSION

This article proposes a robust data-driven dynamic program-
ming method for prosumer energy management considering
uncertainties of electricity price, renewable generation, and
demand. The problem can be solved via backward induction
using only linear programming solver, and the key step entails
a piecewise linear approximation for the cost-to-go function,
which is constructed from dual linear programs.

Case studies corroborate the effectiveness of the proposed
RDDP method, revealing that the dispatch strategy of RDDP
can keep a proper balance between optimality and computational
expense: Compared to SDDP, the computational time of RDDP
isK ×O(N), which is much shorter than that of SDDP,O(N2);
besides, results show the suboptimality of RDDP is less than 4%.
Such results are based on only ten observations of historical data;
therefore, the RDDP formulation enjoys a degree of robustness:
even in case of the scarcity of historical data, the strategies can
still guarantee an acceptable operating economy.

However, the disadvantage of the proposed method is that
when the dimension of state variables is high, the computational
complexity will exponentially grow.

In general, such a study establishes a paradigm for the opti-
mal energy management of the prosumer-like energy systems,
including but not limited to residential users, micro grids, energy
hubs, and industrial parks. Our ongoing work is to apply RDDP
to storage operation in large power systems with network flow
constraints and develop more efficient solution algorithms.
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