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Abstract—Virtual Power Plants (VPP) have emerged as a way to 

coordinate and control the growing number of Distributed 

Energy Resources (DERs) within power systems. Typically, VPP 

models have focused on financial or commercial outcomes and 

have not considered the technical constraints of the distribution 

system. The objective of this paper is the development of a 

technical VPP (TVPP) operational model to optimize the 

scheduling of a diverse set of DERs operating in a day-ahead 

energy market, considering grid management constraints. The 

effects on network congestion, voltage profiles and power losses 

are presented and analyzed. In addition, the thermal comfort of 

the consumers is considered and the trade-offs between comfort, 

costs and technical constraints are presented. The model 

quantifies and allocates the benefits of the DER operation to the 

owners in a fair and efficient manner using the Vickrey Clarke 

Grove mechanism. This paper develops a stochastic mixed-

integer linear programming (MILP) model and various case 

studies are thoroughly examined on the IEEE 119 bus test system. 

Results indicate that electric vehicles provide the largest marginal 

contribution to the TVPP, closely followed by solar PV units.  

Also, the results show that the operations of the TVPP improve 

financial metrics and increase consumer engagement while 

improving numerous technical operational metrics. The proposed 

TVPP model is shown to improve the ability of the system to 

incorporate DERs, including those from commercial buildings.  

 

Index Terms—Virtual Power Plant, Flexibility Services, 

Consumer comfort, Electric Vehicles, Demand Response, Heating 

Ventilation and Air Conditioning. 

 

NOMENCLATURE 
Set/indices �/Ω� Index/set of scenarios ℎ/Ω� Index/set of hours �/Ω� Index/set of generators 	
/Ω�� Index/set of electric vehicles 
/Ω� Index/set of market �/Ω� Index/set of lines �, �/Ω�  Index/set of nodes �/Ω� ��, �, �� ∈ �� 

Index/set of loads 

HVAC/Ω�� ! Index/set of HVAC system "/Ω# Index/set of normal operation 
Parameters 

�� , $� , %�&'( Conductance, susceptance and flow boundaries 
of each branch � (S, S, MVA) )� , *�  Resistance, Reactance (Ω, Ω) 

+,� , +-� Big-M parameters related with active and 
reactive power flows over each branch � .� Probability of scenario � /0� Cost of unit energy production 1�234 TOU price associated with customers (€/MWh) 1��  Day-ahead market price (€/MWh) 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

1��� EV discharging cost (€/MWh)  ,5�,��  Demand at node � (MW) -5�,��  Reactive demand at node � (MVAr) 6�7& Nominal voltage (kV) 8��9� Charging efficiency 8��:9� Discharging efficiency ;��,�&<�, ;��,�&'( Energy Storage limit =�� Scaling factor ,�,�,�,�>?,&<�, ,�,�,�,�>?,&'( 
Power generation limits (MW) 

@A� Power factor of DG’s @A�� Power factor of substation B�,�,�,�<:�'�  Ideal temperature set-point in house k (℃). 

,�� !,�,�,�,�977�_&'(  
Actual HVAC unit power consumption of 
house k in time h 

B�,D,�,�,�<�  
Indoor temperature increase with respect to the 
set-point in house k in period h (℃). 

B�,D,�,�,�:�9  
Indoor temperature decrease with respect to the 
user-selected set-point in house k in period h 
(℃). 

0/,�� ! 
Coefficient of performance of HVAC in house 
k. +� Mass of air in household k (kg). �'<E  Thermal capacity of air (kJ/kg·℃). B�,�,�,�<�<D<'� Initial indoor temperature of household k (℃). 

B�,�,�,�>�':GH'�: 
Dead-band around the temperature set-point for 
the HVAC unit of house k (℃). 

B�D,�,�,�D��E&  
Thermostat set-point of house k in period h 
(℃). 

Variables ,�,�,�,�&'E��D,-�,�,�&'E��D Power purchased from grid (MW, MVAr) ;��,�,�,� Reservoir level of EV (MWh) I��,�,�,�:9� ,I��,�,�,�9�  Charging and discharging binary variables ,�,�,�,�>? , -�,�,�,�>?    DG power (MW, MVAr) ,�,�,�,�&'E��D Power purchased from market (MW) 

,� , -� , J� 
Active and reactive power flows respectively, and 
voltage angle difference of branch l (MW, MVAr, 
radians) 

,K� , -K� Active and reactive power lines of each branch l 
(MW, MVAr) x�,� Binary variable to indicate line status Δ6�,�,� Voltage deviation magnitude (kV) ,�� !,�,�,�,�977� ,-�� !,�,�,�,�977�  
Active and reactive power flows of HVAC system 

BNDGOP'&H  Ambient temperature in period h in house k [℃]. 
 

I. INTRODUCTION 

N the age of rapidly increasing numbers of Distributed 

Energy Resources (DERs), the optimal control of these 

devices to benefit both the owners and the wider electricity 

distribution is becoming a challenge [1]. Various control 

strategies for the optimal scheduling of these devices exist, and 

among those the introduction of a Virtual Power Plant (VPP) 

has emerged [2]. This VPP is an entity that aggregates the 

disparate DERs to ensure that they act as a coordinated group 

in energy markets and has shown promise both in academic 

research and real-world applications [3]. Typically, VPPs have 

focused on optimizing the scheduling of DERs to reach some 

financial or commercial objectives. These types of VPPs are 

called Commercial Virtual Power Plants (CVPP) and neglect 

important technical considerations related to the impact of 

DERs on the physical distribution grid.  

I
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In order to account for these physical impacts, a 

Technical Virtual Power Plant (TVPP) has emerged [4]. This 

agent schedules the optimal output level of generators and 

DERs to meet commercial as well as technical considerations. 

This increases the feasibility of the proposed schedule of 

flexible generators as well as controllable loads. This can 

increase the efficiency, reliability and penetration of these 

DERs within a given distribution system [5].  

Within a given distribution system, there may be a 

diverse set of consumers, including prosumers who both 

produce and consume energy. Commercial, industrial, and 

residential consumers have different load profiles, differing 

choices of DERs as well as preferences. In order to maximize 

the ability of this diverse set of consumers and prosumers to 

engage in the energy sector, optimization models should 

incorporate various types of consumers. This will help to 

maximize the potential complimentary effects that may be 

present and reduce uncertainty or variability during operation. 

Uncertainty may be introduced into the model through 

fluctuating load profiles from the consumers or by the output 

from renewable energy generators, such as solar photovoltaic 

or wind generation [6].  

To deal with this variability, energy storage systems may 

be used. Using electric vehicles (EVs) as this storage is 

intriguing as they may have predictable charging requirements, 

are mobile, and through smart charging the power withdrawn 

during charging may be modulated to increase during periods 

of high renewable energy generation or reduce during periods 

of high system load. These actions may improve the resilience 

of the network.  

Another device that may provide system flexibility 

within low voltage networks are Heating Ventilation and Air 

Conditioning (HVAC) systems. These devices may be 

operated in a controlled manner to reduce peak load or to 

operate in anticipation of high heating/cooling demand, such 

as pre-heating an office building during winter. In fact, thermal 

loads account for between 40% and 46% of energy consumers 

in commercial buildings [7]. These devices, when aggregated, 

can offer important sources of flexibility for low voltage 

networks.  

Despite the advantages that the increasing penetration of 

DERs can bring to power systems, there may also be some 

disadvantages. These may include power quality issues related 

to fluctuations in both voltage and frequency profiles [8]. Also, 

there may be issues related to the bidirectional flow of power 

within the network which may lead to congestion issues. High 

numbers of EVs at a certain location without smart charging 

may dramatically increase the load faced by the system and the 

intermittent nature of renewable energy sources may also 

increase reserve requirements to account for rapid increases or 

decreases of power generation. These issues may be addressed 

through smart charging of EV’s or by improved weather 

forecasting to reduce the unpredictability of renewable energy 

sources (RESs) generation or through the use of Demand 

Response (DR) programs [9]. The technical constraints 

considered in this paper can be summarized as follows; 

minimizing the deviations in the voltage profile of the buses, 

reducing congestion in the lines, and reducing the power losses 

experienced by the system.  

The introduction of DERs in distribution grids can bring 

either financial benefits or costs to the individual owner as well 

as the wider range of participants in the grid. These additional 

benefits or costs may not be accounted for in the initial price 

of the DER.  

Thus, an ex-post allocation mechanism to account for and 

distribute these costs or benefits to the DER owners in a fair, 

efficient and equitable manner may be needed. There are many 

such allocation mechanisms from coalitional game theory 

including the Vickrey Clarke Grove (VGC) mechanism which 

has been widely used in power systems and energy markets 

[10].  

Using these mechanisms can ensure that the various 

impacts are allocated to the individuals who are responsible 

and thus increase the fairness and equitability of the TVPP. 

This may help to increase consumer engagement with the 

TVPP as consumers will be fairly rewarded for actions which 

benefit the grid such as investing in DERs and enrolling in the 

TVPP program [11]. 

II. STATE OF THE ART 

A. Literature Review 

This section presents recent published research which deals 

with the optimization of energy systems considering DERs 

from prosumers and VPPs.  

Many papers considering VPPs do not consider the 

technical constraints of the network. For example, the model 

presented by [12] is a combined energy scheduling and trading 

model for prosumers but does not consider technical 

constraints. This model used the principles of transactive 

energy and results showed an improvement in grid operations 

via prosumer’s participation.  

A further example of technical constraints not being 

considered is shown in the study conducted by [13]. This paper 

considered the participation of a CVPP in both the day-ahead 

and intraday energy markets was studied by. Various types of 

uncertainty were included in the model and notably a penalty 

function was introduced to minimize the deviation between the 

day-ahead and intraday dispatch schedules.  

An optimization model for the aggregation of prosumers 

which took network constraints into account was developed by 

[14]. This model considered a decentralized approach to 

determine feasible bidding schedules between aggregators of 

prosumers and the distribution system operator. The objective 

was to minimize the aggregator’s net cost of bidding in both 

the energy and secondary reserve markets. Uncertainty related 

to market price, renewable energy generation or electric 

vehicles was not considered. Results show that by including 

network constraints in the problem, costs are slightly increased 

due to penalties for network violations.  

Network congestion, an important technical 

consideration, was included in the energy management 

framework for prosumers proposed by [15]. The behavior of 

aggregated prosumers was modeled using a virtual battery 

model and used to schedule various small-scale resources to 

minimize the amount of congestion in the network. The results 

show a reduction in congestion as well as the preservation of 

consumer privacy within the model. The model relied on EVs 

as the main source of flexibility and did not consider other 

distributed energy resources. By introducing these other forms 

of responsive demand or generation, the network congestion 

may be reduced further, especially if there are demand 

response programs used within the model.  

In contrast to the above model, the authors of [16] 

considered other types of DERs but not EVs in their model. 

The authors aimed to increase flexibility of distribution 

systems. The objective was to minimize operational costs by 

the optimal scheduling of various DERs. While this paper 

considered other DERs it did not consider network constraints.  
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The vast majority of VPP models neglect technical 

constraints of the system. However, a model considering a 

TVPP was formulated by [4] to maximize the profit of the 

TVPP while minimizing the outage costs due to contingency 

occurrences. While the constraints of the distribution grid were 

considered, there was little analysis of the impacts of the 

TVPP’s operation on the grid, such as congestion management, 

voltage profile fluctuations and losses in the lines. Instead, the 

model focused on reliability indicators such as expected energy 

not served, system average interruption frequency/duration 

indices (SAIFI/ SAIDI) and expected interruption costs (EIC). 

A multi-stage stochastic energy management framework 

for VPPs was developed in [17]. This model used a mixed-

integer linear programming (MILP) approach to investigate the 

impacts of DR and EVs on minimizing the operating costs of a 

VPP. The technical constraints of the test system were not 

considered. A model which considered the effects of a TVPP 

on both active and reactive power flows was proposed by [5]. 

This model accounted for uncertainty using a robust capability 

curve and adjustable robust optimization to formulate a two-

stage scheduling and optimization problem. In this paper, 

congestion management, voltage profile fluctuations and line 

losses were not investigated.  

A decentralized model for the optimal scheduling of 

flexible resources was developed by [18]. This model aimed to 

meet certain techno-social-economic objectives for the 

prosumers and ensure the reliability of the grid. Results show 

that coordinated scheduling of flexible resources reduced the 

peak load of the system by 83% and increased prosumer costs 

by 28% relative to a scenario of non-coordinated scheduling. 

The model did not consider the effects of EVs or RESs. 

Impacts of the coordinated scheduling on the technical 

operations of the grid, such as voltage profiles, congestion or 

power losses were also not considered. 

B. Paper Contributions 

The objective of this paper is to investigate the ability of a 

TVPP to positively impact the operation of a distribution 

system with a high penetration of DERs, considering both 

technical and economic impacts. This paper addresses this 

through the use of a three-stage model for the optimal 

operation of a TVPP. These stages are shown in Fig. 1.  

The first stage involves collecting data and accounting for 

the various forms of uncertainty using scenario decomposition 

strategies. The second stage deals with the optimal energy 

management within the distribution system.  

The final stage of the model handles the technical 

constraints of the system and compensates for the uncertain 

parameters.  

From the previous section, it can be seen that there has 

been significant research carried out on the concept of VPPs 

but limited research into their technical impacts on the 

distribution grid. Table I shows how this paper investigates the 

impacts of a TVPP in a novel manner as the impact of a VPP 

on power losses, line congestion as well as average voltage 

profile deviations has not been investigated to the best of the 

authors knowledge. This investigation can then provide a 

comprehensive investigation into the effect that a TVPP can 

have in a distribution system. In addition, very few existing 

papers consider thermal comfort considerations for a TVPP. 

Also, only a few papers consider congestion and line losses 

within the system. In the existing literature, the impact of a 

VPP on this combination of technical constraints has not been 

investigated previously, to the best of the authors knowledge. 

Finally, no paper surveyed quantified and allocated the 

benefits of DER using allocation mechanisms.  

Thus, the paper has the following major contributions: 

•  A stochastic (MILP) model that considers technical 

constraints of the network to optimize the scheduling of a 

diverse set of generators and loads within a distribution 

system is developed. 

•  The concept of a TVPP is extended to investigate the 

technical impacts of aggregating diverse DERs and 

quantifies the benefit that the TVPP can bring to the system. 

To the best of the authors knowledge, this is the first time, 

the impact of a TVPP on the combination of power losses, 

voltage profiles and line congestion has been studied. 

•  The benefits of the different types of DERs are quantified. 

These marginal benefits are allocated in a fair and efficient 

manner using the VCG mechanism from cooperative game 

theory. This quantification is important to highlight which 

DERs can provide the largest benefit to the system.  

•  The impact of a TVPP on the thermal comfort of building 

occupants under different HVAC operational strategies is 

quantified. This quantification allows for an evaluation of 

the trade-offs between thermal comfort, financial outcomes 

and technical impacts of different operating strategies of 

commercial HVAC systems in the presence of DR programs. 

By providing this information, commercial building 

managers become more informed of their possible impacts 

on the larger electrical system.  

TABLE I 
A SYNOPSIS OF SURVEYED RELEVANT LITERATURE IN CONTRAST WITH THE CURRENT WORK. 

Paper Type of optimization Objective function Types of DERs Thermal 

comfort 

Allocation 

mechanisms 

Voltage 

profiles 

Congestion 

issues 

Power 

losses 

[12] MILP Minimize costs Solar PV, ESS No No No No  No 

[13] MILP Max revenue Wind, BESS,  No No No No  No 

[14] Alternating direction  

method of multipliers 

Min cost of energy traded EV, solar PV No No Yes Yes No 

[15] Iterative distribution 

locational marginal price 

Max consumer profit EV, BESS Yes No No Yes No 

[16] MILP Min costs ESS, wind energy, 

solar PV 

No No  No No No 

[4] MILP Max TVPP profits, min 

contingency costs 

Solar PV, EV No No  No No No 

[17] MILP Max VPP profit EV No No Yes No No 

[5] Robust optimization Not included None No No  No No No 

[18] MILP Min consumer cost, Min 

system fluctuations 

BESS No No No  No No 

This 

paper 

MILP Max VPP profit Solar PV, wind, EV, 

HVAC 

Yes Yes Yes Yes Yes 
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Fig 1: Proposed Three-stage TVPP model. 

 

 

The work in this paper extends previous research in [8]. 

This present model introduces the HVAC units and EVs in 

commercial and service buildings. In addition, this model 

investigates the impact of TVPP operations on the systems 

congestion and voltage profiles of the system. Finally, the 

allocation mechanism used in this paper is also newly 

introduced. Work carried out in [8] considered the first two 

stages of Fig. 1 and the complete third stage is a novel 

introduction.  

C.  Paper Structure 

The rest of the paper has the following structure. Section 

III contains the mathematical formulation of the model. 

Section IV presents the details of the case studies investigated 

and the test system used. The results from the case studies are 

presented and discussed in detail in Section V. Finally, the 

conclusions are summarized in Section VI. 

 

III. MATHEMATICAL FORMULATION 

A. TVPP Energy Management Model 

The stochastic model developed in this paper aims to 

maximize the TVPP’s profit from optimally scheduling 

various DERs from both residential and commercial 

consumers. This profit is made up of two terms, revenue from 

power sold to commercial customers (PSC) and the cost of 

operating the TVPP (TVPPC) plant while considering the 

technical and economic constraints. This is shown in (1). 
 

Max:   ∑N,%0 − B6,,0P (1) 

 

The PSC revenue term is decomposed further in (2). 

This equation represents each consumer’s power 

consumption from daily loads, EV charging and the usage of 

HVAC systems. The consumer’s power consumption is 

subject to Time-of-Use (TOU) tariffs.  
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(2)                 

The TVPPC term is shown in (3). These costs include 

payments to consumer-owned Distributed Generation for 

electricity produced plus maintenance costs. There are three 

terms which are subtracted from the operation costs. They are 

the revenue from power sold in the day-ahead market, revenue 

from the power sold by discharging EVs and a penalty. The 

penalty (4) is the price paid to charge EVs or paid to activate 

the HVAC systems which would not have occurred if the 

TVPP was not active. 

In this model, the control of responsive loads can be 

performed by the TVPP to achieve the TVPP's goals, but still 

satisfying the welfare conditions of commercial and service 

buildings and staff. However, if this control of responsive 

loads by the TVPP brings additional costs to these buildings, 

the TVPP pays for the extra cost to the building in the form of 

a penalty. Therefore, the penalty is the payment to the 

commercial buildings for the extra cost generated from 

allowing TVPP to operate the EVs and HVAC. 

Therefore, in equations (5)-(6) the EV's penalty term is 

presented. The penalty is because the TVPP should 

compensate the surplus cost faced by customers. This cost can 

be modelled as the difference between customer optimal cost 

and resulted cost of TVPP's schedule on the charging and 

discharging cycles of the EVs. This surplus can be interpreted 

as the incentive paid to customers for participating in energy 

scheduling of the TVPP. 

Customers EVs' Optimal Cost is selected as the optimum 

cost of each EV introduced in objective function as Penaltyev. 

An independent optimization problem minimizes the 

following cost function with respect to constraints (9)-(14). 
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In equations (7)-(8) the HVAC’s penalty term is 

presented. The penalty is due to the fact that the TVPP 

should compensate the surplus cost faced by customers. 

This cost can be modelled as the difference between 

customer optimal cost and resulted cost of TVPP's schedule 

on the charging and discharging cycles of the HVACs. This 

surplus can be interpreted as the incentive paid to customers 

for participating in energy scheduling of the TVPP. 

Customers HVAC' Optimal Cost is calculated as the 

optimum cost of each HVAC introduced in objective 

function as PenaltyHVAC. An independent optimization 

problem minimizes the following cost function with respect 

to constraints (15)-(26). 
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(8) 

EVs are modelled by the expressions (9)-(14). The 

maximum charging and discharging rates are governed by (9) 

and (10) respectively while (11) ensures that charging or 

discharging cannot occur simultaneously.  

0 ≤  ,��,�,�,�,�9�  ≤  I��,�,�,�,�9� ,��,�,�,�9�,&'(
 (9)

                  

                 0 ≤  ,��,�,�,�,�:9�  ≤  I��,�,�,�,�:9� ,��,�,�,�9�,&'(
 (10)

   I��,�,�,�,�9� + I��,�,�,�,�9� ≤ 1 (11)

  ;��,�,�,�,� =  ;��,�,�,�,�GO + 8��9�,��,�,�,�,�9� − nZ[,W,o,V,XpqX
rZ[pqX  (12)
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The state of charge (SoC) of the EV is modelled in (12) 

and relies on the SoC of the previous period plus any additional 

charging and minus any discharging. Inequality (13) ensures 

that the storage level is always within a permissible range, and 

(14) sets the initial storage level and requires that the EV 

returns to this initial SoC at the end of the operational period.  

For simplicity, both 8��9� and 8��:9�  are set to be equal and 

are expressed as a percentage, depending on the node where 

the EVs are connected. 

HVAC systems are modelled by expressions (15)-(26) 

which were obtained from [19]. The maximum and minimum 

temperature limits are set by (15) while (16) bounds the HVAC 

power use. This model utilizes a thermal resistance model 

which uses the cooling operation of the HVAC system and is 

shown in (17). The initial temperature is defined by (18). 

Equation (22) minimizes the discomfort level of the 

consumers. Equations (23) and (24) set the upper and lower 

limits of HVAC operation. The non-negativity constraints for 

the decision variable are shown in (25) and (26).  

B�� !,�&<� ≤  B�,�,�,�<:�'�  ≤ B�� !,�&'(  (15) 

  0 ≤  ,�� !,�,�,�,�977�  ≤ ,�� !,�,�,�,�977�_&'(
 (16) 

  

B�D,�,�,�<� = (1 − ∆2
Osss .  yW .  9z{|  .  }WP . B�NDGOP,�,�,�<�  

+ ∆B1000 .  +�  .  �'<E  .  )�  . BNDGOP'&H  

 - 
!3n\]^_s,sssu~~ .  yW .  9z{|  . ,�� !,�,�,�,�977�    ,  ∀ �, c > 1 

 

 

 

 

(17) 

B�Ds,�,�,�<� =  B�,�,�,�<�<D<'�  , ∀ � (18) 

,�� !,�,�,�,�977� =  ��D,�,�,� . ,�� !,�,�,�,�977�  , ∀ �, c  

(� = 0 /��, � = 1 /�P  
(19) 

B�D,�,�,�<�   ∀ �, c ∈ 

 b�����B�D,�,�,�<� , B�D,�,�,�:�9 , B�D,�,�,�D��E& , B�D,�,�,�<� { 
O

  hW . 
∑ ∑  ∑  �∈UW�∈UX�∈UV NB�D,�,�,�<� + B�D,�,�,�:�9 P 

 

(20) 

subject to:  B�D,�,�,�D��E& ≤  B�D,�,�,�<:�'�  + B�D,�,�,�<�  , ∀ �, c   (21) 

  

- B�D,�,�,�D��E&  ≤ B�D,�,�,�:�9 −  B�D,�,�,�<:�'�  , ∀ �, c   (22) 

  B�D,�,�,�<� ≤  B�D,�,�,�D��E& + B�,�,�,�>�':GH'�: , ∀ �, c  (23) 

  −B�D,�,�,�<� ≤ B�,�,�,�>�':GH'�: - B�D,�,�,�D��E&  , ∀ �, c  (24) 

  

 −B�D,�,�,�:�9 ≤ 0 , ∀ �, c  (25) 

  −B�D,�,�,�<� ≤0 , ∀ �, c  } (26) 

  

Kirchhoff’s Current law governs the flows of current into 

and out of a node. This is applied to the active power flow in 

(27) and the reactive power flows in (28). In these equations ,�,�,� and -�,�,�represent the active and reactive power flow in 

the line respectively, and ,5�,��  and -5�,��  represent the active 

and reactive demand at the nodes, respectively. ,K�,�,� and -K�,�,� represent the active and reactive power losses in the 

line, respectively. 

 

T ,�,�,�,�>?
�∈U`

+ T  
�∈UW

T �,��,�,�,�,�:9� − ,��,�,�,�,�9� �
��∈UZ[+ ,�,�,�&'E��D   

 

+ T ,�,�,�
<�,�∈U�

−  T ,�,�,�
7�D,�∈U�=  �,5�,�� + ,�� !,�,�,�,�977� � 

 

 

(27) 

+ T 12 ,K�,�,�
<�,�∈U�

+ T 12 ,K�,�,�
7�D,�∈U�

;  ∀
 ∈ �  
 

 

T -�,�,�,�>?
�∈U`

+  -�,�,�&'E��D  

 

 

+ T -�,�,�
<�,�∈U�

−  T -�,�,�
7�D,�∈U�=  �-5�,�� + -�� !,�,�,�,�977� � 

 

(28) 
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+ T 12 -K�,�,�
<�,�∈U�

+ T 12 -K�,�,�
7�D,�∈U�

∀
 ∈ �  

 

Inequalities (29) and (30) present linearized AC power 

flows through each feeder, which are governed by Kirchhoff’s 

Voltage Law. Note that J�,�,ℎ refer to the angle difference J�,�,ℎ − J�,�,ℎ where � and � are bus indices corresponding 

to the same line �, based on [20]. 

The big-M formulation was used, set to the maximum 

transfer capacity, to avoid the non-linearity. �,�,�,� − N6�7&�Δ6�,�,� − Δ6&,�,����− 6�7&u $�J�,�,��  ≤  +,�  
(29) 

  �-�,�,� − N−6�7&�Δ6�,�,�− Δ6&,�,��$�− 6�7&u ��J�,�,��  ≤  +-�  

(30) 

The maximum amount of flow that can pass through a 

line is given by inequality (31).  

Equations (32) and (33) represent active and reactive 

power losses in each line l. ,�,�,�u + -�,�,�u ≤  ��,�N%�&'(Pu (31) 

  ,K�,�,� = )��,�,�,�u +  -�,�,�u �/ 6�7&u  (32) 

  -K�,�,� = *��,�,�,�u +  -�,�,�u �/ 6�7&u  (33) 

The active and reactive power limits of the DGs are given 

by (34) and (35), respectively.  

Inequality (36) limits the DGs ability to inject or consume 

reactive power. ,�,�,�,�>?,&<� ≤  ,�,�,�,�>? ≤  ,�,�,�,�>?,&'(
 (34) 

  -�,�,�,�>?,&<� ≤  -�,�,�,�>? ≤  -�,�,�,�>?,&'(
 (35) 

− tan ��g�GO�@A��� ,�,�,�,�>?  ≤  -�,�,�,�>?
≤  cb� ��g�GO�@A��� ,�,�,�,�>?    (36) 

For stability reasons, the active and reactive power limits 

at the substations are given by (37) and (38). ,�,�,�&'E��D,&<� ≤  ,�,�,�&'E��D ≤  ,�,�,�&'E��D,&'(
  (37) 

 -�,�,�&'E��D,&<� ≤  -�,�,�&'E��D ≤  -�,�,�&'E��D,&'(
  (38) 

The reactive power that is withdrawn from the substation 

is subject to the bounds presented in inequality (39). 

− tan��g�GON@A��P�,�,�,�&'E��D  ≤  -�,�,�&'E��D
≤  cb���g�GON@A��P�,�,�,�&'E��D     (39) 

Equation (40) requires that all nodes with a demand at 

hour h are connected and have a single input flow through line 

l. The inequality shown in (41) places an upper bound of 1 input 

flow for the terminal nodes.  

T ��,�
�∈U�

= 1, ∀� ∈ Ω�; � ∈ � (40) 

 

T ��,�
<�,�∈U�

−  T ��,�
7�D,�∈U�

≤ 1, ∀� ∉ Ω�; � ∈ � (41) 

B. Allocation Mechanism 

The Vickrey-Clark-Groves (VCG) mechanism is a 

commonly used mechanism within cooperative game theory 

[20]. This mechanism is an efficient way to ensure that the 

dominant strategy within a cooperative game is for the 

individuals to act in a truthful manner.  

The outcome of this mechanism a set of truthful private 

valuations submitted by the agents (the set of agent’s 

valuations are given by v ̃={v ̃1,...,v ñ }). This mechanism 

allows the first-best outcome to be implemented.  

This mechanism ensures that the DER owner i receives a 

monetary transfer equal to the true marginal contribution of 

that DER to the distribution system. Formally, the transfer ti 
that agent i receives is described by (42): 

  

c<N
�P = T 
��NA∗N
�PP
��<

− T 
��NA∗N
�G<PP
��<

 
(42) 

 The VCG mechanism is used in this model to accurately 

quantify and allocate the benefits provided by the various types 

of DERs to the system in such a manner which provides a fair 

and efficient valuation of the DER’s contribution to the TVPP. 

IV. SYSTEM LAYOUT AND CASE STUDIES CONSIDERED 

In this section, the layout of the test system and 

assumptions used in the model are presented. Following this, 

the various case studies are discussed.  

A. System Layout 

In this work, the 119-bus test system is used to perform the 

numerical analysis. The system has a nominal voltage of 11 kV 

and demand of 22709.72 kW and 17041.068 kVAr [21]. The 

size and location of RESs, and also the power factor of RESs, 

are all taken from [21].The type of DG units and the buses to 

which it is connected, as well as the points of interconnection 

between the EVs parking lots and HVAC systems and the 

network, are also shown in Fig. 2 and are taken from [21]. Two 

types of DG units are considered as illustrated: wind power and 

solar power.  

The installed capacity of these units is 1 MW in both cases. 

EV characteristics are taken from [8] and the initial value of 

the SoC is either 50% or 62.5% depending on the individual 

EV in the EV parking lot. The solar and wind plants are 

modeled using a set of scenarios to represent the power 

generated while accounting for uncertainty in the output. These 

scenarios are derived from real-data taken from [21].  

The correlations between solar irradiation, wind speed and 

demand were considered during scenario generation. This was 

done to ensure that the generated scenarios closely resemble 

real-world conditions. Between solar irradiation and wind 

speed a correlation factor of -0.3 was used. The correlation 

between wind speed and demand was 0.28 and a correlation 

factor of 0.5 was used for the relationship between solar 

irradiation and demand [20]. These factors were used to derive 

new wind and solar production profiles using Cholesky 

factorization as was done in [20].  

There are three sources of uncertainty, solar generation, 

wind generation and demand. Three scenarios for each 

parameter were developed. This resulted in 27 scenarios (three 

scenarios for each parameter or 3x3x3) which were reduced 

using k-means clustering techniques as is described in [20].  In 

addition to the above, the following assumptions and system 

data are also considered:  

• A time horizon of 24 hours is considered;  

• In each node a voltage deviation of ±5% is considered;  

• The reference node is the substation, with a voltage 

magnitude set to 1 p.u. and the angle to 0°;  

• The value of the power factor of the DG units is 0.95 and 

the substation is 0.8, both inductive;  

• EVs rates of charge and discharge of energy are considered 

the same and equal to 90%;  
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• The operation cost of EVs during charge and discharge is 5 

€/MWh;  

• The EVs discharge cannot go below 40% of their total load 

capacity;  

• The operation cost of solar DG units is 18.24 €/MWh [22];  

• The operation cost of wind DG units is 13.2 €/MWh [23]  

• Commercial buildings can also charge EVs at night;  

• Optimization for usage during a summer period for a 

location in Southern Europe.  

Commercial and service buildings (hospitals) are 

distributed throughout the network and are fed through nodes 

20, 33, 43, 69, 77, 83, 108 and 112. The demand profile for 

each type of consumer at each node is obtained from [24].  

Each one of these customers have HVAC and EVs units, 

with each EV park having 25 cars. EVs are to charge at the 

period with the lowest electricity purchase price, considering 

demand response. The arrival and departure times for the EVs 

are sourced from [25]. In this distribution network, there are 

different line capacities depending on the line’s location. These 

are 500 kVA, 800 kVA and 1200 kVA. In those lines closer to 

the substation, the line capacities are higher.  

B. Case Studies Considered 

The developed work was based on four case studies. The 

first case uses the external grid to meet the demands of the 

system. This is a benchmark case to examine the various 

effects of the latter case studies. The second case allows for the 

aggregation of distributed RES systems (solar PV and wind) to 

meet a portion of the demand in addition to the external grid. 

In addition, the impacts of DR, through a TOU tariff (shown in 

Table II), are investigated. The TOU rate is sourced from [26].   

The third case study investigates the potential of EVs and 

commercial HVAC systems to increase the flexibility of the 

system. This case investigates the possibility of the EVs to act 

as mobile energy storage systems to help support the grid’s 

operation in cases where there is a sudden drop off in the 

generation from RES generators. The case study considers the 

power purchased from the market and the aggregation of 

power from the EVs, HVAC use in commercial buildings, and 

DR flexibility with no generation from RES units. 

 

Fig. 2: Layout of test system used. 

TABLE II  
TOU TARIFFS USED 

Time Tariff (€/MWh) 

10:00-21:00 61.27 

21:00-10:00 40.36 

 

The fourth case study extends Case 3 by including RES 

generation to the EVs and HVAC systems to examine the 

combined impact of these technologies on the technical and 

economic performance of the TVPP. This case study considers 

the power purchased from the market, the aggregation of 

power from the DGs, and the aggregation of power provided 

by a variety of sources such as EVs through Vehicle-to-grid 

(V2G) interface technologies, HVAC use in commercial 

buildings, and DR flexibility through the ToU tariff. In this 

final case, the variation of the temperature range in commercial 

buildings is assessed. 

The model is programmed in GAMS 24.0 and solved 

using the CPLEX 12.0 solver. The simulations are conducted 

on an HP Z820 workstation with two 3.1 GHz E5-2687W 

processors and 256 GB of RAM with a CPU time of 1200s. 

 

V. RESULTS AND DISCUSSION 

A. Impact of TVPP on Profits 

The revenues from the power sold to the consumers, the 

operating costs of the TVPP and the final profit of the TVPP 

for all case studies are shown in Table III. From the table, it 

can be seen that as more DERs are added to the system, such 

as solar PV, wind, EVs and HVAC units, the profit of the 

TVPP increases. This increase is mainly due to the reduction 

in operating costs as the revenue of the TVPP largely remains 

constant. This cost reduction is due to numerous factors such 

as increased local generation which is cheaper than the external 

grid and smart scheduling of the EV charging and HVAC 

operation to minimize use during periods of high TOU tariffs.  

Table III shows that there is a 48% reduction in the costs of 

operation when DER are included (case 2) in the system 

compared to the Case 1. When EVs and HVAC units are added 

to the DERs (Case 4), costs are reduced by 56% relative to the 

base case. In terms of profits, Case 2 sees a 94% increase in 

profits compared to Case 1. When all DERs are included (Case 

4), profits increase to € 32026.23. The energy mix of Case 4 is 

shown in Fig. 3. The contributions of the DERs (wind, solar 

and V2G) are shown. The charging demand of EVs is also 

shown. It can be seen that there is a large amount of EV 

charging during the early hours of the morning and then a slight 

increase when the solar PV units are generating.  

There is a decrease in the EV charging during the peak 

periods in the evening. Importantly, the implementation of a 

TOU ensures that there is a reduction in the load during peak 

hours. If this DR program was not included, we may see an 

increase in the peak load during the evening as a result of EV 

charging. This will bring extra costs to the consumers and 

negatively impact the network.  

B. Marginal Contribution of DER Assets 

This section investigates the marginal contribution of each 

DER asset type to the overall profit of the TVPP according to 

the VCG mechanism. By quantifying the contribution of each 

DER type, appropriate compensation may be paid to the 

owners of the DER may be made so that the owners are 

incentivized to participate in the TVPP.  

By using the VCG mechanism, it is ensured that the DERs 

with the largest positive impact to the TVPP are compensated 

in a fair and efficient manner.  
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Fig. 3: Energy mix for Case 4. 

 

TABLE III 

FINANCIAL COMPARISON BETWEEN TWO CASE STUDIES 

 Revenue (€) Costs (€) Profit (€) 

Case 1 44091.62 28849.79 15241.83 

Case 2 44517.26 14992.79 29524.47 

Case 3 44143.67 16989.28 27154.38 

Case 4 44783.89 12757.65 32026.23 

 

This is important to understand as DER assets may include 

significant investment costs and the choice of the allocation of 

capital to these DER assets are a significant factor in the 

optimal operation of a TVPP agent.  

The marginal contribution of the DERs assets to the profit 

of the TVPP is shown in Table IV. This table shows that EVs 

can provide the biggest impact to the TVPP operation. This is 

due to their ability to both absorb and provide power to the 

TVPP during different times. The ability of the EVs to provide 

proper power compensation is limited by the size of the 

battery. HVAC units do not provide significant technical 

benefits however, they provide important sources of thermal 

comfort control for commercial buildings and thus are 

important for the TVPP. HVAC units may also provide 

important peak reduction services.  

C. Technical Impact of TVPP  

In this optimization model, the technical constraints of the 

distribution system are accounted for. These include the 

capacities of the lines within the system. Table V shows the 

instances where line loads are exceeded in Case 1 and how the 

subsequent cases helped reduce or eliminate instances where 

the line load capacities were exceeded.  

In the Case 1 there are 19 instances where the load exceeds 

the rated line capacity. In Case 2, there are three instances. 

Case 3 sees 15 instances and in Case 4 the rated line capacities 

are not exceeded at all. In Case 3, only the EVs and HVAC 

units are operating. The ability of the EVs to offer power 

compensation is limited due to their size. This is the reason for 

the relatively high number of line capacities being exceeded.  

Another important technical constraint to consider in the 

system management is the voltage profile of the nodes within 

the network. The voltage profile of the buses across the study 

period is an important metric in terms of reliability of the 

system. The voltage profiles for all nodes across the 24-hour 

period for Case 1 is shown in Fig. 4.  

In contrast to Fig. 4, the results of the nodal voltage profile 

seen in Case 4 are shown in Fig. 5. In this case study, the profile 

of the nodal voltages has been greatly improved. The 

improvements to the voltage profile are due to the presence of 

the DG units as they generate power locally which improves 

the voltage of the local nodes.  

The DG units also tend to be located near the end of a line 

which improves the voltage profile. The largest voltage drops 

are seen in those nodes located at end nodes of the feeders 

which can be seen from the grid topology.  

The average voltage deviations for each node over the  

24-hour period for Case 4 are shown in Fig 6. The figure shows 

the pu deviation in the voltage profile from the nominal voltage 

of 11 kV and there are no instances of the voltage profile 

exceeding the 0.05 pu threshold.  

 

 
Fig. 4: Voltage profile for Case 1. 

 

 
Fig. 5: Voltage profile for Case 4. 

 

 
Fig. 6: Voltage deviation for Case 4. 

 
TABLE IV 

ALLOCATION OF MARGINAL DER BENEFITS 

DER Type Contribution (%)  

Solar PV 36 

Wind  18 

Electric vehicles 39 

HVAC units 7 
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TABLE V 
LINE CONGESTION 

Line Case 1 (MVA) Case 2 (MVA) Case 3 (MVA) Case 4 (MVA) 

Line 1 35.03 0.00 9.42 0.00 
Line 30 27.66 0.00 0.00 0.00 
Line 41 30.56 0.00 0.00 0.00 
Line 57 10.98 0.00 10.98 0.00 
Line 62 42.12 0.45 29.79 0.00 
Line 63 62.65 0.00 44.14 0.00 
Line 66 53.16 0.00 53.16 0.00 
Line 67 82.35 22.35 82.35 0.00 
Line 68 41.09 0.00 41.09 0.00 
Line 69 41.09 0.00 41.09 0.00 
Line 77 9.44 0.00 0.00 0.00 
Line 88 44.86 0.00 0.00 0.00 
Line 99 48.94 0.00 8.47 0.00 
Line 101 17.02 0.00 17.02 0.00 
Line 102 57.45 0.00 57.45 0.00 
Line 105 75.64 0.00 75.64 0.00 
Line 106 0.63 0.63 0.63 0.00 
Line 107 0.63 0.00 0.63 0.00 
Line 109 44.24 0.00 25.71 0.00 

In addition to the congestion and voltage profile of the 

system, the power losses were also investigated for all four test 

cases. The losses experienced by the system across the four 

cases are shown in Table VI. There is a significant decrease in 

the losses in Case 2, Case 3, and Case 4. Most significantly, 

the reduction in losses in Case 2 and Case 4 are due to the 

presence of the solar PV and wind generators. These local 

generators help to reduce the losses as they are positioned 

closer to the demand and thus there are fewer losses in the 

distribution lines.  

D. Impacts of EV Aggregation 

In Case 3 and Case 4, EVs and HVAC units in commercial 

and service buildings were included. Electric vehicles have 

limited ability to provide power compensation so the EVs had 

a small impact on the voltage deviations. They were able to 

charge and discharge according to the system demand and ToU 

pricing. This is shown in Fig. 7, which shows the active power 

discharge from the EV aggregators. This Figure only shows the 

active power discharge and does not show the charging of the 

EVs which typically occur between 21:00 and 07:00. 

The impacts of the TOU tariff are clear to see as there is 

significant V2G power provided by the EVs during the evening 

peak periods, between 19:00 and 21:00. This Figure shows the 

ability of EVs in parking lots equipped with V2G services to 

contribute to meeting system load balancing requirements and 

their potential in DR programs. The aggregated charging 

demand of the various EV aggregators is shown in Fig. 8. This 

Figure shows that there is very little charging demand during 

the peak TOU period between 10:00 and 20:00. Only EV 

aggregator 1 has significant charging which can be explained 

as this is the aggregator located at the hospital and there exists 

a minimum demand for EV charging throughout the day.  

E. Impacts of HVAC due to Changing Thermal Comfort 

In addition to including the effects of EVs in Case 3 and 

Case 4, HVAC units were also included in these cases. These 

HVAC units were optimized to respond to the DR program 

(TOU tariffs) to reduce demand during high demand periods 

while maintaining the thermal comfort of the consumers within 

the commercial buildings. There exist trade-offs between 

thermal comfort of consumers and the amount of flexibility 

that HVAC units can provide to the system. Stricter thermal 

comfort requirements will mean that the HVAC units need to 

operate for longer periods and possibly in high demand periods 

which have high TOU tariffs. 

TABLE VI 

SYSTEM LOSSES ACROSS THE FOUR CASES 
Case Number Losses (MWh) 

Case 1 20.25 
Case 2 9.38 
Case 3 14.11 
Case 4 6.16 

 
Fig. 7: Aggregated V2G power from EVs. 

 
Fig. 8: Aggregated charging demand from EVs. 

The three thermal comfort bands are a wide range of 18° 

and 24°, a standard band of 19° to 23°, and a narrow band of 

20° to 22°. This is shown in Fig. 9 that compares the operation 

of HVAC units within the model with three different thermal 

comfort requirements. In the narrow thermal operating band, 

due to stricter operating constraints of the commercial HVAC 

system and the ToU tariff, the costs of operating the HVAC 

units increased, therefore there was no HVAC operation during 

peak times (19:00 and 21.00). In the narrow thermal comfort 

band, HVAC power demands increased by 13.11% relative to 

the standard thermal cases in Southern Europe. Despite this 

increase in power demand, there were no significant technical 

impacts on the distribution grid. This shows that there is a 

trade-off between thermal comfort and operating costs but no 

significant trade-off between thermal comfort and technical 

aspects of the grid. Due to the DR program, there is a large 

amount of power used by the HVAC systems at 18:00 in order 

to pre-cool the buildings, which reduces the need for HVAC 

use during peak periods (20:00 and 21:00). Fig. 9 shows the 

ability of HVAC units in commercial and service buildings to 

contribute to DR programs while maintaining thermal comfort. 

 
Fig. 9: HVAC power use. 
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VI. CONCLUSIONS 

This paper has shown that, while the technical constraints 

of the distribution network have rarely been considered in VPP 

models, VPPs have positive technical benefits to the 

distribution grid. These impacts were evaluated by developing 

a stochastic mixed integer linear programming model for a 

VPP operating in a distribution system with a number of 

consumers. The TVPP optimized the generation of a number 

of DERs to maximize its profit when bidding into a day-ahead 

energy market. Through this optimization, results have shown 

an increase in system flexibility, increased consumer 

engagement and increased RES generation, while maintaining 

consumer thermal comfort requirements. Line losses were 

reduced by nearly 70% because of the model. The worst 

performing node, Bus 79, saw a 66% reduction in voltage 

deviations. Results show that the TVPP reduces operating 

costs and increases the revenue from the energy sold in the 

system. Costs saw a maximum reduction of 56% relative to the 

base case. These outcomes are combined to increase the profits 

of the TVPP. The benefits of the various types of DERs have 

been quantified and can be allocated to the owners of the 

DERs. This analysis shows that EVs have the largest marginal 

contribution to the profit of the TVPP, followed by solar PV 

systems, and then wind turbines. Therefore, various types of 

DERs can complement each other and a diverse set of DERs 

operating within a TVPP provides the best outcome for the 

TVPP operator in terms of both financial and technical 

outcomes. Different comfort preferences were investigated for 

the HVAC operation by changing the allowable limits of 

indoor temperature. These results showed a clear trade-off 

between consumer comfort and cost savings. However, there 

was no significant trade-off between thermal comfort and 

technical impacts in the system. Overall, the results showed the 

numerous benefits that a TVPP can bring to a distribution grid, 

including increased financial performance, improved technical 

operations, improved energy efficiency and enhanced 

environmental outcomes.  
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