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Abstract: Energy storage system (ESS) has great importance in saving energy in new power systems. Optimum selection of these 

elements poses a new challenge to improve the energy management and prevent cost increases in the system. Also, renewable energy 

resources have been increasingly used in microgrids. The uncertainty and variation of renewable distributed generation (DG) affect 

the performance of power systems. In this paper, ESS implementations and photovoltaic (PV) power prediction are used to improve 

voltage/power profile of the system and reduce the total cost of the microgrid. The purpose of this paper is the optimal installation 

of ESSs in a microgrid to minimize the total cost where quantile nearest neighbour forecasting is utilized for PV output power 

prediction as an efficient approach. Gathering data of the last samples in time duration can be used for an effective prediction of PV 

output in this method, which can overcome PV uncertainty due to changes in solar irradiation and other parameters. Artificial neural 

networks combined with multi-layer perceptron and genetic algorithm are used for optimizing the size and location of ESSs in the 

system. Simulation results show that the proposed method improves the power profile as 14%, 21% and 28%, relatively to the 

scenarios of optimal ESS installation without PV prediction, using PV prediction but with no optimal ESS implementation and not 

using PV- no ESS implementation, respectively. Moreover, the accuracy of the proposed prediction method is more than the gradient-

descent and RNN methods by about 12% and 5%, respectively, as shown in the simulation results. Also, the cost reduction of 

proposed method is enhanced as 24% and 31% relatively to the cases of optimal ESS installation without PV prediction and PV 

prediction without optimal ESS implementation, respectively. 

Keywords— Energy storage systems; microgrids; uncertainty; distributed generation; photovoltaic power. 

Nomenclature 

Index 

Act Actual 

b, b′  Index of buses 

C Capacity 

Ch Charge 

Dch Discharge 

E Energy 

ESS Energy storage system 

F Forecast 
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K Number of Step times 

N Number of elements 

Nom Nominal value 

P Power 

PV Photo-Voltaic 

QNN Quantile nearest neighbour 

LWMA linear weighted moving average 

 cardinality operator ݀ݎܽܿ

+ Charging status 

- Discharging status 

Parameters 

 ା Storage charging stateݏܾ

 Storage discharging state ିݏܾ

 ெ௔௫ Maximum storage charging stateݏܾ

FF Fitness Function 

ܰாௌௌ Number of ESS 

ܰீ Number of diesel generators 

ܰ௉௏ Number of PV generators 

 Charge-discharge efficiency ߚ

Variables 

 ஼௛ Capacity of chargeܥ

 ஽௖௛ Capacity of dischargeܥ

 ௡ாௌௌ Capacity of storageܥ

௡ܥ
ாௌௌ,ெ௜௡ Minimum of storage capacity 

௡ܥ
ாௌௌ,ெ௔௫ Maximum of storage capacity 

 ௡ாௌௌ Storage energyܧ

௡,୼௧ܧ
ாௌௌ  Storage energy in time step Δݐ 

 Diesel Generator energy ீܧ

 ௅௢௔ௗ Load energyܧ

 ௅ைௌௌ Energy lossܧ

 ௉௏ PV energyܧ

I,I2 Current flow, Squared current flow 

௕,௕ᇱܫ
ெ௔௫ Maximum current between buses 

ܲ஼௛ Charge power 

ܲ஽஼௛ Discharge power 

௡ܲ,௧,௦௖
௖௛,ாௌௌ,  ௡ܲ,௧,௦௖

஽௖௛,ாௌௌ Charging and discharging  power of ESS 

௡ܲ
ாௌௌ Power of ESS 

௡ܲ
ாௌௌ,ெ௜௡ Minimum of storage power 

௡ܲ
ாௌௌ,ெ௔௫ Maximum of storage power 

௕ܲ ,௧,௦௖
ீ  Power generation of Diesel  Generator unit 

ܲீ,ே௢௠ Nominal Diesel Generator power 

௕ܲ ,௧,௦௖
௅௢௔ௗ Electric active load at bus b 
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௕ܲ ,௧,௦௖
௉௏  Power generation of PV unit 

௔ܲ௖௧
௉௏  Actual PV power 

௙ܲ
௉௏ Forecasted PV power 

ௌܲ௕,௧,௦௖
ௐ௛  The injected power from upper grid 

ܲା Active power flows in downstream directions 

ܲି Active power flows in upstream directions 

ܳ௡,௧,௦௖
௖௛,ாௌௌ,  ܳ௡,௧,௦௖

஽௖௛,ாௌௌ Charging and discharging reactive power of ESS 

ܳ௕,௧,௦௖
ீ  Reactive power generation of Diesel  Generator unit 

ܳ௕,௧,௦௖
௅௢௔ௗ  Electric reactive load at bus b 

ܳௌ௕,௧,௦௖
௉௏  Reactive power generation of PV unit 

ܳௌ௕,௧,௦௖
ௐ௛  The injected reactive power from upper grid 

ܳା Reactive power flows in downstream directions 

ܳି Reactive power flows in upstream directions 

ܴ௕,௕ሖ  ,  ܺ௕,௕ሖ  Distribution lines resistance and reactance 

V Voltage 

ெܸ௔௫, ெܸ௜௡ , ܸே௢௠ Maximum, minimum, and nominal voltage 

 Weight vector ݓ

 Input vector of neural network ݔ

 Error ߝ

 ௉௏ PV power prediction errorߝ

 ௉௏ Variance of PV power prediction error(ଶߪ)

 Time step ݐ∆

Δܵ Upper limit in the discretization of quadratic flow (kVA). 

 ௡ா௦௦ Cost of ESS ($/kWh)ߣ

 ௡ீ Cost of Diesel Generator($/kWh)ߣ

 ௡௉௏ Cost of PV ($/kWh)ߣ
෠ܲ௤ forecasted quantile PV power 

௤ܲ observed previous data 

௤ܲ ,௢௣௧  optimum observed previous data 

௣௩,௘௥௥ߤ  mean of normal distribution of prediction error 

 ௩ voltage coefficients of PV moduleܮ

 ௜ current coefficients of PV moduleܮ

 ௣௔௡௘௟ PV panel temperature݌݉݁ݐ

௠.௧.௜௥௥ܤ  function of irradiation 

௧.௜௥௥ߚ  efficiency of irradiation transfer 

 ௧ outage probability functionߩ
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1. Introduction 

Using the Energy Storage System (ESS) can be a crucial solution for reducing the required energy generation in the power system. 

ESS can save the energy in off-peak times and compensate for the shortage of energy for load supporting in on-peak times [1]. Using 

ESS can improve the reliability of the system in load supporting and DG planning. In addition, due to uncertainty of renewable DGs 

such as photovoltaic (PV) and wind turbine (WT), it is necessary to predict the output power to prevent underestimation of loads and 

DG generation/planning. Thus, to overcome these challenges, ESS installation and PV prediction model is used to improve the 

power/voltage profile and reduce the cost of the system. 

ESS reduces the fluctuations of voltage and power of the system and hence increases the reliability and stability of the system [1-3]. 

Various forms of energy storage systems such as capacitive energy storage, thermal energy storage and battery can be used in power 

systems [4-6]. Optimal multi-objective scheduling of combined heat-power (CHP)-based microgrid is proposed in [7] including 

compressed air energy storage (CAES), renewable energy sources and thermal energy storage. Cost reduction and exploiting the 

wasted heat energy to supply the loads in emergency condition are some advantages of this method.  

In this paper, the optimization method which is based on epsilon-constraint technique is presented using fuzzy decision making to 

achieve the optimal selection from all the Pareto solutions. In [8], the usage of EVs and EVCS as energy storage units and optimal 

strategy of charging/discharging considering the distribution network constraints is presented to reduce the total cost and 

improvement performance where the scheduling is done in 24 hours. In [9], conditional value at risk (CVaR)-based random method 

is proposed to compensate the uncertainty of WT by using hydrogen storage system associated with wind power production. Handling 

the risk and compensating the uncertainty are the results of this method.  

Note that it is not possible to implement ESS in all buses and therefore, the location and capacity of the ESS are important in the 

system design [10]. It is worth mentioning that ESS implementation costs must be considered and compared to the cost reduction of 

energy generation due to ESS existing which concludes the justification of ESS implementation. Optimal ESS implementation in 

terms of location and size must be performed by the evolutionary algorithms based on minimizing of the cost function. Using this 

optimal installation of ESS (optimal sizes in optimal locations of the system) results in cost reduction, voltage/power profile 

improvement and more reliability in load supporting and load balance.  

In another side, renewable energies are increasingly used in new power systems as efficient power resources [11]. PV or WT can 

support the main part of the system load and help the stability of the system. The main challenge of these renewable resources is the 

uncertainty of power generation [12, 13]. The generated power from PV is non-deterministic and thus, it can be assumed as a 

stochastic random process. Moreover, the PV power fluctuation due to the solar radiation and temperature fluctuations affects the 

microgrid system operation and costs. Therefore, this subject causes the researchers to focus on approaches for forecasting the PV 

output power. The forecasting methods are used to predict the output power of the PV systems, which is valuable in terms of the 

technical and economical points of view [14]. PV output is affected by many factors such as solar radiation, temperature, humidity, 

dust, rain, and so on. Thus, prediction of PV generation depends on these parameters to obtain the accurate model of prediction and 

hence, the performance of the system is noticeably improved. In [15], uncertainty of PV/WT and its effect on performance of 

microgrid is discussed where a new retail electricity pricing method based on CVaR optimization framework is suggested to reduce 

the effects of risk of unpredictable renewable energy sources. In this paper, the energy planning of the next day in microgrid is done.  
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Optimal ESS implementation in [16] based on optimum size and location is discussed while no power forecasting is mentioned. In 

[17], a prediction method is applied for PV output power but forecasting error is not considered. Both stochastic WT power and load 

demand are assumed in [18] where Monte-Carlo sampling of the distributions (assumed as Normal distribution at each time-step) is 

used to determine the optimal storage capacity related to certain reliability index taking into account one-day historical data.  

Energy management and cost reduction based on demand response in the multiple microgrids is proposed in [19] to tackle the 

challenges associated with demand response programs to prevent rebound peaks. Two-stage hybrid stochastic–information gap-

decision theory (IGDT) is proposed in [20] based on joint energy and flexible ramping reserve in CHP-based systems. The 

uncertainties of load demands and WT are considered based on Monte Carlo simulation method to be compensated in the system. 

Probabilistic multi-stage optimization framework with depth analysis using appliance model, consumer operation and AC grid 

considering weather and load demand uncertainty is suggested in [21, 22]. Electricity access specially in developing countries is the 

main goal of these papers.  

Focusing on prediction part, artificial neural network (ANN) can be selected as an efficient tool for this purpose. ANN computation 

ability can be used for the prediction of many scientific events such as PV output power in [23]. Data were measured and recorded 

for one complete year in this study. The use of neural network for the prediction of PV output power is also discussed in some papers 

as [24-27]. Many works have been concentrated on improving the prediction accuracy of ANN architectures [28-30]. Short-term 

forecasting and recurrent neural network are discussed in these papers. In [31], multi-layer perceptron (MLP) ANN is used to 

accurately predict the power of a PV system because of its ability in updating the weights of the network. In [32], SVM is used to 

predict the PV output power with interesting result.   

Due to above, many papers have been focused on the challenges of optimal ESS implementation and accurate PV output power 

prediction. In this paper, both challenges have been considered to minimize the cost of energy generation in power grid. To achieve 

this goal, the cost function is generated including the cost of diesel-generator, PV and ESS elements. To achieve more precise 

prediction that affects the cost profile of the system, the quantile nearest neighbour (QNN) forecasting is used to predict the next data 

based on the regression and prediction error minimization. A window of last Nq samples is used in this approach which offers Nq-

order prediction strategy to obtain more precise prediction. Then multi-layer perceptron artificial neural network (MLP-ANN) is used 

for training and testing of the forecasted data.  

ANN is assumed as the supervised network and some parts of data are used for training and other parts are used for test of the network. 

The effective input parameters in PV output power are completely assumed for more accurate prediction which are fed to ANN. 

These parameters are assumed as temperature, humidity, dust, irradiation of solar, angle of radiation, the surface of the panel, air 

pressure, and the panel efficiency in energy conversion. Due to the various parameters and the complexity of weight updating, genetic 

algorithm (GA) is applied for obtaining the optimum weights of the ANN in the proposed method. To the best authors’ knowledge, 

the analysis of ESS implementation and PV output prediction using QNN, MLP-ANN and GA for cost minimization of a microgrid 

has not been addressed in the literature. A taxonomy table is provided to more highlight the novelties of this paper compared to other 

related papers. 
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Table 1: Taxonomy table (comparison of proposed work to other related efficient works in the literature) 
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[14]               
[16]               
[17]              () 
[18]               
[23]               
[24]               
[25]               
[27]              () 
[26]               
[29]               
[31]               
[42]               
[43]               
[44]               
[45]               

This paper              () 
 

The novel contributions of the paper are summarized as follows:  

 Optimal operation of the microgrid using ESS implementation and PV output prediction. PV output power is assumed as a 

stochastic process where its variance is applied in the cost function problem to consider the uncertainty. ESS optimization in 

size and location using the proposed evolutionary algorithm can enhance the performance of the microgrid. 

 PV output power prediction using quantile nearest neighbour (QNN) forecasting and multilayer perceptron network. QNN 

forecasting is based on regression data and minimization of prediction error applied to MLP-ANN for training and testing 

approach. GA is used for updating weight coefficients in MLP-ANN and location/size optimization of ESS implementation. 

 Complete describing of effective parameters on the PV output power and applying to the input vector of MLP-ANN. These 

effective parameters are temperature, humidity, dust, irradiation of solar, angle of radiation, the surface of the panel, air pressure, 

and the panel efficiency in energy conversion. 

 Considering four scenarios based on using/not using of optimal ESS implementation and using/not using of proposed accurate 

PV power prediction and comparing of them in terms of voltage/power profile and total cost  

The rest of the paper is as follows. In Section 2, problem formulation and discussion are presented while in Section 3, the proposed 

method is stated. In Section 4, simulation results are discussed and finally, some conclusions are drawn in Section 5. 

 

2. Problem Formulation  

In this section, the cost function is firstly defined to be minimized. The 24-hour model consisting of 2-hour steps is applied and 

analysed in the optimization process. The profiles of load, ESS and PV are considered in each 2-hour step and thus, 12 time steps are 

used for obtaining the cost profile of the system. For the total cost, one-year period is considered where the summation of one-day 

costs is applied in this time period. The function includes the cost of generated power from diesel generators, PV generators and also 

storage elements.  
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The cost function of 24-hour profile is described as below: 

݁݊݋)ܨܨ − (ݕܽ݀ = ෍ቌ෍ߣ௡ீ ௡ܲ
ீ

ேಸ

௡ୀଵ

+ ෍ ௡ா௦௦ߣ ௡ܲ
ா௦௦ + ෍ߣ௡௉௏((ߪ௡ଶ)௉௏ ௡ܲ

௉௏)
ேುೇ

௡ୀଵ

ேಶೄೄ

௡ୀଵ

ቍ
௄

௞ୀଵ

 ௞ݐ∆
(1) 

where ݇ denotes the step-time index for calculation of cost during the time interval of power grid. Obviously, for the one-year profile, 

we have: 

݁݊݋)ܨܨ − (ݎܽ݁ݕ = ෍݁݊݋)ܨܨ − ௜(ݕܽ݀

ଷ଺ହ

௜ୀଵ

 
(2) 

The goal of this paper is to reduce the total cost of the system using the ESS implementation on some buses and accurate PV output 

power prediction. In this minimization, precise PV power prediction can be used to achieve the mentioned purpose and compensate 

the PV-based uncertainty of the system which directly affects the total cost of the microgrid. This optimization can be performed 

subjected to several constraints as below: 

ܲீ ≤ ܲீ,ே௢௠ (3) 

ାݏܾ ≤  ெ௔௫ (4)ݏܾ ߚ

ିݏܾ ≤ (1 −  ெ௔௫ (5)ݏܾ (ߚ

௡ܥ
ாௌௌ,ெ௜௡ < ௡ாௌௌܥ < ௡ܥ

ாௌௌ,ெ௔௫ (6) 

஼௛ܥ =  ஽஼௛ (7)ܥ

ீܧ| + ௉௏ܧ − ௅௢௔ௗܧ − |௅௢௦௦ܧ =  ா௦௦ (8)ܧ

ܲா௦௦ = ஼௛ܲߙ + (1 −  ஽௖௛ (9)ܲ(ߙ

௡ܲ
ாௌௌ,ெ௜௡ < ௡ܲ

ாௌௌ < ௡ܲ
ாௌௌ,ெ௔௫ (10) 

୼௧భܧ
ாௌௌ = ୼௧಼ܧ

ாௌௌ (11) 

ௌܲ௕,௧,௦௖
ௐ௛ + ௕ܲ ,௧,௦௖

ீ + ௕ܲ,௧,௦௖
௉௏ + ෍ ௡ܲ,௧,௦௖

஽௖௛,ாௌௌ

ாௌௌ

−෍ ௡ܲ,௧,௦௖
஼௛,ாௌௌ

ாௌௌ

+ ෍ൣ( ௧ܲ,௕,௕ᇲ
ା − ௧ܲ,௕,௕ᇲ

ି ൯]
௕ᇲ∈஻

− ෍ൣ( ௧ܲ,௕,௕ᇲ
ା − ௧ܲ,௕,௕ᇲ

ି ൯ + ܴ௕,௕ᇲ2ܫ௧,௕,௕ᇲ]
௕ᇲ∈஻

= ௕ܲ,௧,௦௖
௅௢௔ௗ ,ݐ∀               ∀ܾ. 

(12) 

ܳௌ௕,௧,௦௖
ௐ௛ +ܳ௕,௧,௦௖

ீ +ܳ௕,௧,௦௖
௉௏ +෍ܳ௡,௧,௦௖

஽௖௛,ாௌௌ

ாௌௌ

−෍ܳ௡,௧,௦௖
஼௛,ாௌௌ

ாௌௌ

+ ෍ൣ(ܳ௧,௕,௕ᇲ
ା − ܳ௧,௕,௕ᇲ

ି ൯]
௕ᇲ∈஻

− ෍ൣ(ܳ௧,௕,௕ᇲ
ା − ܳ௧,௕,௕ᇲ

ି ൯ + ܺ௕,௕ᇲ2ܫ௧,௕,௕ᇲ]
௕ᇲ∈஻

= ܳ௕,௧,௦௖
௅௢௔ௗ ,ݐ∀               ∀ܾ. 

(13) 

൫ ௧ܲ,௕,௕ᇱ
ା + ௧ܲ ,௕,௕ᇱ

ି ൯ ≤ ܸே௢௠ܫ௕,௕ᇲ
௠௔௫ ,ݐ∀                     ∀ܾ. (14) 
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൫ܳ௧,௕,௕ᇱ
ା +ܳ௧,௕,௕ᇲ

ି ൯ ≤ ܸே௢௠ × ௕,௕ᇲܫ
௠௔௫ ,ݐ∀               ∀ܾ. (15) 

ܸ2௧,௕ − 2ܴ௕,௕ᇲ൫ ௧ܲ,௕,௕ᇲ
ା − ௧ܲ,௕,௕ᇲ

ି ൯ − 2ܺ௕,௕ᇲ൫ܳ௧,௕,௕ᇲ
ା − ܳ௧,௕,௕ᇲ

ି ൯

− ൫ܴ௕,௕ᇲ
ଶ + ܺ௕,௕ᇲ

ଶ ൯2ܫ௧,௕,௕ᇲ − ܸ2௧,௕ᇲ = ,ݐ∀    0 ∀ܾ. 

(16) 

ܸ2௧,௕
ே௢௠2ܫ௧,௕,௕ᇲ = ෍(2߬ − 1)∆ܵ௧,௕,௕ᇲ

ఛ

∆ܲ௧,௕,௕ᇲ

+ ෍(2߬ − 1)
ఛ

∆ܵ௧,௕,௕ᇲ∆ܳ௧,௕,௕ᇲ           ∀ݐ, ∀ܾ. 

(17) 

௧ܲ,௕,௕ᇲ
ା + ௧ܲ,௕,௕ᇲ

ି = ෍∆ܲ௧,௕,௕ᇲ

ఛ

,ݐ∀             (߬) ∀ܾ. (18) 

ܳ௧,௕,௕ᇲ
ା + ܳ௧,௕,௕ᇲ

ି = ෍∆ܳ௧,௕,௕ᇲ

ఛ

,ݐ∀                (߬) ∀ܾ. (19) 

∆ܲ௧,௕,௕ᇲ(߬) ≤ ∆ܵ௧,௕,௕ᇲ    ,   ∆ܳ௧,௕,௕ᇲ(߬) ≤ ∆ܵ௧,௕,௕ᇲ ,ݐ∀      ∀ܾ. (20) 

2௧,௕,௕ᇲܫ ≤ ൫ܫ௕,௕ᇲ
ெ௔௫൯ଶ         ∀ݐ, ∀ܾ. (21) 

 

ெܸ௜௡
ଶ ≤ ܸ2 ≤ ெܸ௔௫

ଶ ,ݐ∀     ∀ܾ. (22) 

 

ܸ2௧,௕
ே௢௠ = (ܸே௢௠)ଶ     ∀ݐ, ∀ܾ. (23) 

∆ܵ௧,௕,௕ᇲ =
ܸே௢௠ܫ௕,௕ᇲ

ெ௔௫

߬ ,ݐ∀         ∀ܾ. 
(24) 

 

௧ܲ,௕
௎ഥ ൯(ߠ−)ଵିݏ݋൫ܿ݊ܽݐ ≤ ܳ௧,௕

௎ഥ ≤ ௧ܲ ,௕
௎ഥ ,ݐ∀    ൯(ߠ)ଵିݏ݋൫ܿ݊ܽݐ ∀ܾ.  (25) 

ாௌௌ,௧ାଵܧ = ாௌௌ,௧ܧ + න ܲாௌௌ,௨݀ݑ
௧ାଵ

௧
 

(26) 

where constraint (3) describes that the diesel generated power is up to the rated value. The charge state of ESS is bounded to the 

maximum of storage in (4) and also it is set for discharge state in (5). Combining of (4) and (5) shows the non-simultaneous charge 

and discharge of ESS in which ߚ represents the efficiency of charge-discharge operation. Constraint (6) states that capacity of storage 

is between minimum and maximum value of existing devices capacity. In this paper, maximum and minimum values are 0.9 and 0.1 

of the storage capacity, respectively. Also, the total storage capacity of charge must be equal to the total discharge capacity for all 

storage elements (Eq. 7). Constraint (8) states that the generated energy from diesel and PV minus the consumed in load and loss is 

equal to the storage energy. Indeed, the total generated power subtracted by the loss and load demand can be stored in storage units. 

Moreover, if the inside of absolute sign in the left side of this equation is lower than zero, the system must use the discharge state of 

ESS to support the extra demand power. Obviously, in the extra power generation, the ESS can be charged. Eq. (9) also mentions 

the total storage equals the combination of charging and discharging with weighting coefficients of ߙ and (1 −  determined due (ߙ

to ܾݏା and ܾିݏ. Eq. (10) states that the power of ESS is limited to its maximum and minimum value. Finally, the Eq. (11) presents 

that the initial storage energy in the first time step is equal to the storage energy in the last time step for the cyclic analysis of the 

optimization problem. Equations (12)-(13) describe the power balance for both active and reactive power considering all units in the 

microgrid. The bound on active and reactive power due to nominated voltage are presented in Equations (14) -(15) while equation 
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(16) presents the voltage balance in the buses due to input or output power of buses. Linearization of branch power flow is done for 

radial networks in equations (17) – (24). Linearized active and reactive power is performed in (17). Piecewise linearization of 

constraints is denoted in (18) – (24) [33, 34]. The constraint related to the power factor is stated in (25) where in (26), the energy 

updating of ESS in each time-step is presented. In all constraints, it must be noted that charging and discharging cannot be occurred 

simultaneously and because of that, the variables ܾିݏ and  ܾݏା are used for the charge and discharge states, respectively. 

 

3. Proposed Method  

In Eq. (1), all parameters and variables are deterministic except the PV generated power. PV generated power is stochastic and 

depends on solar radiation, temperature, humidity, dust, rain, and so on. Thus, this parameter is weighted by (ߪ௡ଶ)௉௏  that is the 

variance of PV power generation. Accurate prediction of PV generated power in time interval analysis of the system can significantly 

influence on the cost reduction. Moreover, using the optimal ESS implementation in this system can efficiently improve the cost and 

performance. In this paper, QNN is used for PV output power forecasting. The method is described as: 

෠ܲ௤ = ݂(࢞, ௤ܲ) (27) 

where ෠ܲ௤ is reperesented for forecasted quantile PV power, ࢞ is the vector of input and ௤ܲ is the observed previous data. The role of 

the function of forecasting (݂(. )) must be allocated to minimize the prediction error. One of the best option is linear combination of 

previous observations and input parameters with different weights known as linear weighted moving average (LWMA). To select 

the related previous samples, nearest neighbour strategy based on quantile regression method is stated as: 

௤ܲ ,௢௣௧ =  {௡ܪ}݀ݎܽܿ ݔܽ݉݃ݎܽ

.ݏ .ݐ ௜݌൛݀൫ݔܽ݉:௡ܪ , ௝൯ൟ݌ ≤ ݉݅݊൛݉݅݊൛݀൫݌௜ , ,௝൯ൟ݌  ௛ൟ்ߝ

{௡ܪ}݀ݎܽܿ ≤ ௤ܰ 

௡ܪ
௣௥௘௙ = ௡,௢௣௧ܪ  

(28) 

where ܿܽ݀ݎ is the cardinality operator. Thus the vector of predicted data for training set is described as: 

௤ܲ = [ ௤ܲ ,ଵ, ௤ܲ ,ଶ, … , ௤ܲ,ே೜] (29) 

The criteria on which the best samples chosen and the minimum regression data can be achieved can be stated as: 

ܳ௣,௤ =
1
௤ܰ
෍ቐ

ݍ) − 1). ቀ ෠ܲ௡ − ݂൫࢞, ௤ܲ൯ቁ   ෠ܲ௡ < ݂൫࢞, ௤ܲ൯

.(ݍ) ቀ ෠ܲ௡ − ݂൫࢞, ௤ܲ൯ቁ ݁ݏ݈݁                     

ே೜

௡ୀଵ

 

ܳ௣ = ݉݁ܽ݊൛ܳ௣,௤ଵ,ܳ௣,௤ଶ, … , ܳ௣,௤ேൟ 

(30) 

where N quantile is selected and the average values are applied. For example, in 100 selected samples, each quantile is selected in 

step of 0.01 to obtain the accurate model of forecasting. The proposed predictive model can be used by an evolutionary algorithm 

such as artificial neural network to be trained and tested with actual data. To achieve this goal, multi-layer perceptron artificial neural 

network (MLP-ANN) has been applied to accurately predict the PV output power. The input vector to the proposed forecasting 

method includes temperature, humidity, dust, irradiation of solar, angle of radiation, the surface of the panel, air pressure, and the 

panel efficiency in energy conversion. The values of these parameters are obtained from the dataset of [35] in the one-year time 

interval. The updating of the weights is based on the back propagation analysis where genetic algorithm (GA) is used to achieve the 

optimum weights with the constraints of prediction error minimization. Using cross over and mutation in many iterations, the 
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optimum weights are finally obtained. In each generation of GA, the error is evaluated and checked by MLP-ANN. The forecasted 

PV output in each time step can be described as below: 

                         ܲ௉௏(݅ + 1) = ܲ௉௏(݅) +  ௜࢞ (31)ߝ࢝

where ࢝ is the weight vector of time-step i, ߝ௜ is the error of this time and ࢞ is the input vector In fact, in each iteration, the calculated 

error is feedback to be applied in GA. The chromosomes of the genetic algorithm are selected based on neural network layers and 

number of neurons. This issue can be noticed in MCS strategy and the populations of genetic algorithm can be selected from the 

output of MCS. The characteristic of MCS in selecting different populations prevents falling the problem into the local minimum 

and taking the global minimum instead. Considering the QNN method, ௤ܰ samples instead of Markov model in (31) stated as below: 

ܲ௉௏(݅ + 1) = (݅)ଵܲ௉௏ߛ + ݅)ଶܲ௉௏ߛ − 1) + ݅)ଷܲ௉௏ߛ − 2) +⋯

+ ௟ାଵܲ௉௏൫݅ߛ − ௤ܰ൯ 

(32) 

Indeed, the total prediction process can be stated in state-space model as: 

݅)ݔ + 1) = (݅)ݔܣ + ,(݅)ݑܤ ݅ = 1,2, … ௤ܰ 

(݅)ݕ = (݅)ݔܥ +  (݅)ݑܦ

(33) 

where u(i) is the input parameters to the prediction system and due to iterative scheme of state space, different samples of PV can be 

used for prediction. The global prediction process with details is depicted in Figure 1. For error calculation, different criteria can be 

used as mean square error (MSE) described in below: 

ܧܵܯ =
1
݉
෍ߝ௜ଶ
௠

௜ୀଵ

 
(34) 

Where m denotes the iteration numbers of genetic algorithm. Through the optimization, Monte-Carlo simulation (MCS) is used to 

denote the uncertainties of the problem knowing that the error distribution tends to be normal distribution. Due to error probability 

(normal distribution) we have: 

௣௩,௘௥௥ߤ = 0 

,(݅)ݎݎ൫݁ܧ ݅)ݎݎ݁ − 1)൯ = ,݅)ݒ݋ܿ ݅ − 1) 

(35) 

Also in relation of correlation and variance of prediction error, we have: 

൯(݅)ݎݎ൫݁ݎܽݒ =  ௜ଶ (36)ߪ௜௜ߩ

where the correlation coefficient is defined as (37). 

௜,௜ିଵߩ =
∑ ݅)௘௥௥݌(݅)௘௥௥݌ − 1)்
௞ୀଵ − ∑ ∑(݅) ௘௥௥݌ ݅) ௘௥௥݌ − 1)்

௞ୀଵ
்
௞ୀଵ

ඥ∑ ௘௥௥ (݅)ଶ݌ − (∑ ்(݅)௘௥௥݌
௞ୀଵ )ଶ்

௞ୀଵ ඥ∑ ݅) ௘௥௥݌ − 1)ଶ − (∑ ݅)௘௥௥݌ − 1)்
௞ୀଵ )ଶ்

௞ୀଵ
 (37) 

The probability of the error of prediction is presented as: 

௣௩൯ݎݎ൫ܾ݁݋ݎܲ =
1

ඥ2ߪߨ௣௩ଶ
ට݁

ିଵ
ఙ೛ೡమ

(௘௥௥ುೇିఓುೇ,೐ೝೝ)మ
 

(38) 

It must be noted that the PV model and its power generation is presented as below: 

௣ܲ௩ = ܰ௉௏( ௠ܸ௔௫ܫ௠௔௫
ைܸ஼ܫ௦௖

) ቀ ைܸ஼ − ௣௔௡௘௟൯ቁ݌݉݁ݐ௩൫ܮ ௦௖ܫ)ݎݎ݅ + ௣௔௡௘௟݌݉݁ݐ)௜ܮ − 30) (39) 

where ܮ௩ and ܮ௜ are the voltage and current coefficients of PV module, respectively. Considering the panel temperature, we have: 
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௣௔௡௘௟݌݉݁ݐ = ௘௡௩݌݉݁ݐ + )ݎݎ݅
௔௩௘݌݉݁ݐ − 25

0.75 ) (40) 

Considering different scenarios in panel conditions, probability of occurrence of outage and other efficient factors in PV modelling, 

the scenarios can be stated as summation of probabilities due to uncertainty of irradiation of solar energy and we have: 

ܵ݁݊௧ = ෍ ௠.௧.௜௥௥ܤ

ேೞ೎

௠ୀଵ

௧.௜௥௥ߚ ∙  ௧ߩ
(41) 

 

Figure 1. Flowchart of the prediction process based on QNN approach 

௠.௧.௜௥௥ܤ  is the function of irradiation and ߚ௧.௜௥௥ is the efficiency of irradiation transfer. ߩ௧ is the outage probability function defined 

as: 

௧ߩ = ௧.௜௥௥(1ܤ − ௢ܲ௨௧) + (1 − (௠.௧.௜௥௥ܤ ௢ܲ௨௧ (42) 

Considering the input vector of MLP-ANN, the input layer of neural network includes 9 neurons, and the output layer consists of 

one neuron as a decision on the PV output power. For the number of neurons of hidden layer, no rigid rule exists and some papers 
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state the law of thumb that indicates the number of neuron in hidden layer as the average of input and output layer neurons [36]. 

Thus, the number of neurons of hidden layer is selected as 5. Also, lasso regression is used for testing the convergence criteria and 

preventing over fitting of the network. The benchmark of the proposed method is also compared with recurrent neural network in 

the results of prediction. 

In ESS case, due to many options of buses to be selected, genetic algorithm is also used to select the suitable buses for ESS 

implementation. The goal is to select some buses for ESS implementation to achieve cost reduction and performance improvement. 

The process can be performed by the genetic algorithm simultaneously with the weight updating of MLP-ANN. Thus, using the cost 

function optimization, best buses for ESS implementation can be determined via GA. Note that AC power flow is executed to 

determine the voltage and powers of all buses before the algorithm iteration for ESS-bus selections. Power System Analysis Toolbox 

in MATLAB is used for this power flow [37]. The genetic algorithm flowchart is depicted in Figure 2.  

 

4. Simulation Results and Discussion 

In the system model, the per-unit power is used based on 100 KVA and the allowed range of voltage is between 0.95 and 1.05 p.u. 

[38]. The 24-hour profile is separated into twelve 2-hour sections and the analysis is performed for these time intervals. In this section, 

the model of Figure 3 is used as IEEE 15-bus microgrid for simulation tests. As shown in Figure 3, one diesel generator with capacity 

of 100 KVA is applied in bus 6 to support the load demand of the system. One PV generator with 150 kW rated power is also used 

in bus 13. 9 constant-power type loads are implemented in the microgrid and the system total active and reactive loads are 1250 kW 

and 380 kVA, respectively. Other data are derived from [39, 40]. The load level considered for the system is shown in Figure 4 for 

the one day-night in each 2-hour time step. The diagram of load level is resulted from the experimental data. The usage of ESS can 

control and reduce the voltage and power losses of the system. Note that the load level directly affects the storage status as, in the 

last part of night, the load demand is decreased and thus the storage level can be increased. 

The problem of cost function in Eq. (1) is a mixed linear integer program and thus, GAMS optimization and CPLEX solver is used 

to solve the optimization problem. The results of applying the proposed method on the 15-bus IEEE model (test system) are obtained 

and discussed in this section. The result of prediction and its effect on the system cost is described in this section. Moreover, the 

optimal ESS implementation impact on the system performance and cost is discussed in the sequel. Note that the cost is calculated 

based on the data in [41] and the database for information of parameters of PV power is obtained from the 1-year dataset in [35].  

Firstly, the effect of variance of prediction error is stated. As described in follow, the effect of error variance on the cost function in 

one-month, one-season and one-year time-period are described in Tables 2-4, respectively.  As can be seen from this table, with 

increasing error variance, the cost of the system is increased consequently. Thus, the accuracy of prediction is an important factor in 

the system cost. As observable from these tables, the prediction error directly influences on the cost in different time periods. The 

variance of prediction exists in Eq. (1) and thus increasing the error variance causes the cost increasing consequently. Precise 

prediction prevents the energy wasting in the power system and provides more improvement in performance of all elements of the 

system. 

The track property of proposed prediction method using the updated weighting steps is depicted in Figure 5. Forecasted output power 

is resulted from QNN and MLP-ANN using the updated weight by genetic algorithm as discussed in the previous section. As can be 

seen, the forecasted power desirably tracks the reference power after some iterations and error back propagation. Also, the steps of 
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prediction process is shown to highlight the accuracy of the proposed strategy in achieving and tracking the reference power. The 

result is interesting which shows that the proposed method tracks the PV power precisely with minimum error.  

 

Figure 2. Flowchart of the genetic algorithm 

 

Figure 3. The IEEE 15-bus model of the microgrid 
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Figure 4. Load level in one-day profile 

 

Table 2: Comparison of prediction error variances on the monthly cost of the system (by ESS implementations) 

Prediction error variance (MSE) Monthly cost ($/month) 
0.0001 231.3 
0.0005 240.8 
0.001 261.1 
0.005 271.1 

 

Table 3: Comparison of prediction error variances on the seasonal cost of the system (by ESS implementations) 

Prediction error variance (MSE) Seasonal cost ($/season) 
0.0001 640.1 
0.0005 678.8 
0.001 702.9 
0.005 724.7 

  

Table 4: Comparison of prediction error variances on the annual cost of the system (by ESS implementations) 

Prediction error variance (MSE) Annual cost ($/year) 
0.0001 2843.8 
0.0005 3188.8 
0.001 3400 
0.005 3736 

 

 

Figure 5. Track property of the proposed method related to the reference power 
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In the next test, the predicted PV power in different climate conditions as sunny, cloudy, overcast and rainy is depicted. As shown in 

Figure 6, in sunny day, the peak PV power is achievable where in cloudy day, the power variation is increased without peak power. 

Indeed, the uncertainty of PV power is more in cloudy day than sunny day. In the overcast and rainy days, the power peak is lost in 

which the maximum power occurs in two or three points without meaningful peak power. 

The comparison of proposed QNN and MLP-ANN with gradient-descent ANN and recurrent neural network (RNN) is done in 

Table 5. In this comparison, gradient- descent and RNN are implemented as benchmarks for the verification of the proposed strategy 

and cost function is used for calculation of the annual cost. As described in this table, the annual cost of the proposed method with 

GA weight updating is less than other two similar algorithms which indicates the accuracy of the prediction process in the proposed 

strategy.  

In Table 6, the optimum ESS location and capacity using GA is described. As described in the previous section, all buses are 

candidates for ESS implementation in which location and capacity of ESS are the input variables for the GA. In each iteration, GA 

is applied on the population of all buses and more proper buses with lower cost function are selected for the next generation. It must 

be noted that for better convergence of algorithm, the ESS capacity bound is limited to the range of 100-200 kWh and the number of 

optimum buses is set to 3. Thus, the results of Table 6 are achieved. As can be understood, the buses in the canter and more 

cooperation with other buses are selected as the best options for the candidates of ESS implementation. Implementing the proposed 

ESS in the selected buses improves the performance of the power grid and voltage/power profile as will be described in the following 

of the paper. 

In Figure 7, the generated power is shown in two states, with and without optimal ESS deployment in the system. Optimal ESS 

implementation can support the load in peak time and prevent the extra power generation in the power system. It is worth mentioning 

that although the investment of ESS implementation and its repair cost may be high, the overall cost of the power system is reduced 

using the optimal ESS installation. As can be seen in Figure 7, the generated power with optimal ESS implementation in 3 selected 

buses (see Table 6) results in less power generation and consequently, the total cost of the power system is reduced noticeably. The 

analysis of Figure 7 is done based on the power generation of the proposed system in the 2-hour step of the day profile (24-hour).  

 

Table 5: Comparison of the annual cost of the proposed MLP-ANN with gradient-descent and RNN (MSE=0.001) 

Method Annual cost ($/year) 
Proposed MLP-ANN 3356.67 

MLP-ANN gradient descent 3792.15 
Recurrent neural network (RNN) 3508.42 

 

 

Table 6: Optimal ESS locations, sizes and costs 

Implementation cost ($/year) Location Capacity ESS number 
820 bus 4 200 kWh ESS1 
668 bus 7 100 kWh ESS2 
820 bus 12 200 kWh ESS3 
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(a) Sunny day 

 

(b) Cloudy day 

 

(c) Overcast day 

 

(d) Rainy day 
Figure 6. Predicted PV power in different climate conditions 
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Figure 7. The generated power with and without optimal ESS implementation (analysis in 2-hour step of 24-hour profile) 

In Figure 8, the generated energy with optimal ESS implementation in two cases of high and low variance of prediction error of PV 

output power is presented. As discussed previously, increasing the variance of prediction error causes the extra energy generation 

because of inaccurate prediction and thus, the cost of the system is increased. Inaccurate PV power prediction leads to more energy 

generation from diesel generator or more charge-discharge cycles of ESS. It is shown in Figure 8 that with low error variance, the 

required generated energy is less than high-error case and this shows the impact of efficient prediction on the cost of the system and 

energy generation. 

The main goal of this paper i.e. the cost of the proposed power system is analysed in different cases and the results are reported in 

Table 7. Four scenarios in 1-year time period including No ESS-no PV prediction (scenario 1), No ESS with proposed PV prediction 

process (scenario 2), optimal ESS implementation with no PV power prediction (scenario 3), and optimal ESS installation with PV 

power prediction (proposed method, scenario 4) are considered in this analysis. This table shows that in the scenario 4, although 

prediction and ESS implementation have imposed some costs on the system, the total cost is decreased due to the energy saving of 

optimal ESS implementation and accurate PV prediction. It is also understood that although the effect of prediction on the total cost 

is less than ESS implementation, its influence on the total cost is obvious and highly noticeable in Table 7. The effect of simultaneous 

applying of optimal ESS and proposed PV power prediction in proposed method is obvious in this table in which the cost reduction 

in scenario 4 is improved as 24% and 31% compared to scenario 3 and scenario 2, respectively.  

 

Figure 8. Total generated energy with two different variances of prediction error 
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 Table 7: Comparison of annual cost of different scenarios   

System Model Annual cost ($/year) 

ESS and PV prediction  (scenario 4) 3377.6 
ESS with no PV prediction (scenario 3) 4193.3 
PV prediction with no ESS (scenario 2) 4452.1 

No ESS and no PV prediction (scenario 1) 5752.2 
 

In Figure 9, the regression diagram of proposed prediction process related to the real data of PV power is presented. As understood 

from this figure, the prediction accuracy is desirable and the proposed method tracks the real data which is desirable in the design of 

microgrid. The probability function of prediction error is normal distribution which occurs maximally in zero error with minimum 

variance as shown in Figure 10. Thus, the prediction error is desirably low which overcomes the bad effect of PV power uncertainty 

on the microgrid design and cost. 

In Figure 11, the voltage profile in four scenarios is depicted. The allowed voltage range of the proposed system is between .95 to 

1.05 p.u. and as can be seen in the figure, without optimal ESS and PV power prediction (scenario 4), the voltage dip or overvoltage 

is under or over the permitted range. However, using the proposed method in scenario 4, the voltage changes are in the desired range 

which results in lower power loss and performance improvement of the power grid. It is observable from this figure that using optimal 

ESS in the selected buses (4, 7 and 12) improves the voltage profile in these buses and adjacent buses. Moreover, the effect of PV 

power prediction is observable comparing scenario 2 and scenario 4 in which the voltage profile is more stable in scenario 4 and the 

over and under-voltage is less than scenario 2.   

In view of current flow in lines of  test system model (IEEE 15-bus model) shown in Figure 12, it can be seen that with the proposed 

method including optimal ESS installation and PV power prediction, the overcurrent and undercurrent are limited and more stability 

is observable in current flow. In other scenarios, the current fluctuations are seen in the lines of the model which leads to more power 

losses. Moreover, the current flow in lines between buses consisting of ESS is more stable and have lower changes from the 

nominated value. In scenario 3 (optimal ESS without PV power prediction), the current profile is more stable than the scenario 2 (PV 

power prediction without optimal ESS implementation) because the presence of optimal ESS in the microgrid has more important 

role related to PV power prediction. However, the importance of PV power prediction is observable comparing scenario 2 and 4. The 

improvement of the current profile of the proposed method (scenario 4) related to scenario 1, 2 and 3 is 11%, 17% and 22%, 

respectively. 

 

Figure 9. Regression of the prediction process compared with real data as target 
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Figure 10. Probability function of the prediction error of the 
Proposed prediction process  

 

Figure 11. Voltage profile of buses in four scenarios 

 

Figure 12. Current profile of lines in four scenarios 
 

Figure 13 shows the power flow in the lines of test system model. As depicted in the figure, more fluctuations exist in scenarios 1, 2 

and 3 compared to scenario 4 (proposed method) which leads to more non-stable power flow, overflow, underflow and high power 

losses in the microgrid. Using the proposed strategy, the power fluctuation is decreased to obtain more stable power profile. The 

buses of optimally implemented ESS are enhanced in power flow which verifies the effect of the optimal size and location of ESS in 
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the system. Also, PV power prediction gives more stability to the generated power which leads to more stable power profile. 

Comparing the proposed method (scenario 4) with other scenarios in view of power profile stability, it can be understood from Figure 

13 that the improvement is achieved as 14%, 21% and 28% related to scenario 3, 2 and 1, respectively. In addition, in Figure 14, the 

effect of optimal ESS implementation compared to non-optimal ESS and No EES implementation is depicted to emphasize the 

proposed method efficiency in the power profile improvement.  

Considering the state of charge (SOC) of implemented ESS, Figure 15 is presented to show this status in two cases of proposed PV 

power prediction and without that. As can be seen, the fluctuations of charge and discharge states without prediction are more than 

the case of using proposed PV power prediction. Moreover, without PV power prediction, the charging and discharging rate and the 

difference between maximum charge and discharge is higher than the case of proposed PV power prediction (see Figure 15). 

Discussing the correlation coefficient of prediction error, Figure 16 shows the prediction error versus the correlation factor. As 

observable in lower correlation factor, the prediction error is also reduced and this affects the performance of the system. Lower 

correlation causes lower prediction error which consequently improves the performance of the microgrid with more accurate 

prediction. 

In the detailed prediction in time duration of a day, DG power generation and SOC of ESS in each time point are presented in Figures 

17 and 18, respectively. Smaller time steps are used to obtain more accurate prediction in detail. Figure 17 shows the accuracy of 

power generation of each time point in the microgrid. As observable, the peak power is generated in time of 8-13 in a day. Low error 

between actual data and predicted one is interesting as observable from this figure. Also, Figure 18 accurately shows the status of 

charge and discharge of ESS in the microgrid in which, the charge state is shown in negative values and discharge is presented by 

positive powers. The tracking property of the proposed model is interesting observing this figure. Thus, the accuracy of proposed 

prediction method is verified where it causes significant improvement in the performance of the microgrid.   

 

 

Figure 13. Power profile of lines in four scenarios 
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Figure 14. Power profile of lines in optimal, non-optimal and no ESS implementation 

 

Figure 15. SOC of ESS with and without PV power prediction 

 

Figure 16. Effect of correlation factor on the prediction error 

 

Figure 17. DG power generation in actual and predicted cases 
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Figure 18. SOC of ESS in actual and predicted cases 

5. Conclusion 

This paper proposed PV output power prediction with QNN selection algorithm and applying these data to MLP-ANN and GA in 

addition to the optimized ESS locations and capacities to minimize the cost function in the IEEE 15-bus microgrid. Using the 

predicted PV output power and optimal ESS installation based on the proposed strategy, the generated power is decreased and 

consequently, the cost of the system is also decreased noticeably. According to the results, the cost reduction of the proposed method 

is enhanced by 24% and 31% relatively to the cases of optimal ESS installation without PV prediction (scenario 3) and PV prediction 

without optimal ESS implementation (scenario 2), respectively. The accuracy of the proposed method is more than the gradient-

descent and RNN methods by about 12% and 5%, respectively. The uncertainty of PV is compensated using the proposed accurate 

PV power prediction, as shown in the results of this paper. The proposed method is defined as scenario 4, which improves the power 

profile as 14%, 21% and 28%, relatively to the scenarios 3, 2 and 1, respectively. For the future work, minimization of the cost 

function including green-house gases emission term can be performed using the proposed prediction strategy of PV power and 

optimal ESS implementation in the test microgrid. 
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