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Abstract

This paper presents a stochastic planning algorithm to plan an operation of a multi-

microgrid (MMG) in an electricity market considering the integration of stochastic

renewable energy resources (RERs). The proposed planning algorithm investigates the

optimal operation of resources (i.e., wind turbine (WT), fuel cell (FC), Electrolyzer,

photovoltaic (PV) panel, and microturbine (MT)) and energy storage (ES). Various

uncertainties (e.g., the power production of WT, the power production of PV, the de-

parture time of electric vehicle (EV), the arrival time of EV, and the traveled distance

of EV) are initially forecasted according to the observed data. The prediction error is

estimated by fitting the forecasted data and observed data using a Copula method. A

Cournot equilibrium and game theory (GT) are applied to model the real-time electric-

ity market and its interactions with the MMG. The proposed algorithm is examined in a

sample MMG to determine the operation of uncertain resources and ES. The obtained

results are compared with a baseline and the other conventional optimization methods

to verify the effectiveness of the proposed algorithm. The obtained results authenticate

the importance of modeling the interaction between the MMG and electricity market,
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especially under the high integration of uncertain RERs, resulting in above 8% cost

reduction in the MMG.

Keywords: Energy planning, Electricity market, Multi-microgrid, Renewable energy

resources (RERs), Uncertainty.

Nomenclature

Abbreviation

DNO Distribution network operator

DR Demand Response

ES Energy storage

EV Electric vehicle

FC Fuel cell

GT Game theory

MCP Market clearing price

MG Microgrid

MMG Multi-microgrid

MT Microturbine

PV Photovoltaic panel

QPSO Quantum particle swarm optimization

RER Renewable energy resource

RMSE Root mean square error

WT Wind turbine
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Indices and Sets

i Microgrid

n Microgrid nodes

t Time

y Planning horizon

Parameters

α Cournot factor ($/kW 2)

αPV Temperature factor of PV (1/◦C)

η Efficiency (%)

ηEV
bat Efficiency of battery of EV (km/kWh)

ηPV
r Rated efficiency of PV (%)

at/dt Arrival time/ departure time (h)

BEV
n /BAC

n /BDW
n /BWM

n Binary variables for presence of EV/ air conditioner/ dishwasher/

washing machine in demand response program at n

BFC
y,n /BES

y,n/BMT
y,n Binary variables for replacement of FC/ MT at y and n

BWT
n /BFC

n /BEL
n /BPV

n /BES
n /BMT

n Binary variables for allocation of WT/ FC/ electrolyzer/

PV/ MT/ ES at n

CCC,WT/CCC,FC/CCC,EL/CCC,PV/CCMT/CCC,ES Capital cost of WT/ FC/ electrolyzer/

PV/ MT/ ES ($/kW )

CCh,EV/CB,EV Cost of EV charger/ battery ($/$/kWh)

COM,WT
y /COM,FC

y /COM,EL
y /COM,PV

y /COM,MT
y /COM,ES

y Maintenance and operation cost

of WT/ FC/ electrolyzer/ PV/ MT/ ES at y ($/kW.year)

CRC,FC
n /CRC,ES

y /CRC,MT
n Replacement cost of FC/ ES/ MT at y ($/kW )
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Closs
t,l Penalty cost for loss of energy at t and y ($/kW )

CDR
t,y Demand response cost at t and y ($/kW )

Capbat Capacity of battery of EV (kWh)

d Daily distance travelled by EV (km)

PEV,re f Reference power consumption of EV per daily distance traveled by EV (kW/km)

PEV
ch /PEV

dch Charge/ discharge power of EV (kW )

PEV
c Power consumption of EV (kW )

PFC
H Power production of hydrogen in FC (W )

PFC
use,t Power consumption of FC at t (W )

PPV
r Rated power of PV panel at G = 1000W/m2 (W )

Pi Power of MG ($/kW )

PES,ch
min /PES,ch

max Minimum/ maximum charge rate of ES (kW/h)

PES,dch
min /PES,dch

max Minimum/ maximum discharge rate of ES (kW/h)

PES
min/PES

max Minimum/ maximum capacity of ES (kW )

PEV,ch
min /PEV,ch

max Minimum/ maximum charge rate of EV (kW/h)

PEV,dch
min /PEV,dch

max Minimum/ maximum discharge rate of EV (kW/h)

PWT
r Rated power of WT (W )

ST
max Maximum capacity of transformer (kW )

SI Solar irradiance (W/m2)

T PV
n Normal temperature of PV panel (◦C)

Tre f Reference temperature (◦C)

vci/vco/vr Cut-in/Cut-out/rated speed of WT (m/s)
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Vmin/Vmax Minimum/ maximum voltage limit (V )

vw Wind speed (m/s)

Variables

ENSt,y Loss of energy expectation at t and y (kW )

MCP Market Clearing Price($/kW )

PFC
t Output power of FC at t (W )

Ploss
t Power loss at t (W )

PPV
t Output power of PV panel at t (W )

Psell
t,l Power sold to amin network at t and y (W )

Pbuy
t,y Power bought from main network at t and y (W )

PWM
t,y /PDW

t,y /PAC
t,y /PEV

t,y Demand response power of washing machine/ dishwasher/ air con-

ditioner/ EV at t and y (W )

SWT/SPV/SFC/SEL/SES/SMT Size of WT/ PV/ FC/ Electrolyzer/ ES/ MT (kW )

Vn,t,y Voltage at n, t, and y (V )

1. Introduction

Today, renewable energy resources (RERs) are gaining more attraction in both so-

ciety and the electricity market, which have become a concrete alternative to increase

the environmental and economic benefits. However, different challenges have arisen by

applying the RERs in the Microgrids (MGs) due to the high intermittencies in these re-

sources [1]. Modifications in the MG structure and going towards the multi-microgrid

(MMG) increase these difficulties [2]. Furthermore, the dynamic nature of the elec-

tricity market and the corresponding price elasticity have grown the complexities in

defining the optimal operation of the MMG [3]. The main challenge in developing

the renewable-based MMG is the increased intermittencies in these resources, which
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can be addressed through designing the optimal stochastic energy planning algorithm.

Hence, it is crucial to precisely model the uncertainties in the renewable resources and

develop an optimal MMG plan.

Various energy planning and management algorithms have been proposed for both

MG and MMG to address the optimal operation of these grids. In [4], the optimal

size of PV and ES is determined to meet the minimized cost due to the operational

constraints. A peak shaving of RERs is investigated through planning the electricity

market, tested in Sweden [5]. A day-ahead optimization is proposed to manage the

RERs, electric vehicles (EVs), and ES due to weather prediction using a mixed-integer

linear programming [6]. Multi-objective optimization is designed to size the RERs in

the MG considering reliability, economic, renewable technology, and pollution aspects

[7]. A planning algorithm is presented, minimizing the cost due to the environmental

objectives in the MGs [8].

There exist two main approaches for MMG energy planning, including determin-

istic energy planning and stochastic energy planning. Among the deterministic energy

planning literature, an energy planning algorithm has been developed for the residential

MMG, which has been justified with an Australian residential MMG case study [9]. In

another study [10], the energy planning algorithm has been devoted to the EVs inte-

gration into the MMG. On the other hand, a large body of the literature is devoted to

stochastic energy management. For example, a reinforcement learning-based approach

has been proposed to decrease the peak-to-average ratio and maximize the profit gained

for the MMG [11]. In [12], the stochastic energy planning has been investigated for the

MMG, where the uncertainties in the RERs and demand response (DR) programs have

also been considered. A stochastic predictive control has been developed for a two-

MG case study due to the coupling constraints, where the robustness of the proposed

method has been verified through the statistical analysis [13]. To meet the robustness

of the MMG under the high intermittencies, authors have investigated decentralized

stochastic energy planning for the MMG [14].

Among these energy planning algorithms, i.e., the deterministic algorithm and

stochastic algorithm, we focus on the stochastic energy planning algorithm, which is

more feasible in practical applications due to the high intermittencies in the RERs.
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The uncertainties in load forecasting by a multi-layer neural network and its impact on

the day ahead scheduling have been investigated in [15], where the weather forecast-

ing using an adaptive neuro-fuzzy inference system has also been added to the former

article to justify a more complex stochastic planning algorithm [16]. A hierarchical

structure has been investigated to minimize the total cost and emission in the MMG

due to the uncertainties in the RERs and loads [17]. In a similar study in terms of un-

certainty analysis, real-time energy planning in the MMG has been addressed through

approximate dynamic programming, where the spatiotemporal uncertainties in wind

speed have also been considered [18]. Moreover, the multi-objective energy planning

approach has been implemented to realize the minimized cost, reduced emission con-

sidering the power quality constraints [19]. None of the abovementioned studies have

focused on the electricity market model and its interactions with the MMG, resulting

in the imperfect model in terms of the MMG and specifically its financial transactions.

Therefore, it is critical to model the electricity market due to its dynamic nature

and price elasticity, which directly impacts the performance of the stochastic energy

planning algorithm. However, there exist several models for interpreting the electricity

transaction and connection structure between the MMG and electricity market, includ-

ing modeling the relation between MMG and real-time electricity market [20], propos-

ing a secure structure for connection between MMG and the national wholesale elec-

tricity market [21], modeling a peer-t-peer electricity market to justify the transactions

between prosumers and consumers [22], etc. Still, a limited number of studies have

been focused on modeling the interactions between MMG and the electricity market,

with an application to stochastic energy planning. A multi-layer stochastic planning

has been proposed for the responsive water pumps, where the dynamic electricity mar-

ket has been modeled [23]. In [24], the authors have focused on the retailer side of the

electricity market, where the energy planning has been solved through the robust opti-

mization method due to the chance constraints of both demand and generation. These

two studies have been devoted to the specific case, limiting the generalized model to

interpret the interactions between MMG and the electricity market. In [25], the transac-

tion between different electricity market participants, including MG, has been modeled

through a hierarchal approach with MG in the lower-level and market operator in the
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upper-level. This study lacks a detailed uncertainty analysis, which is critical due to

the increased implementation of intermittent resources in the MMG.

Furthermore, the stochastic energy planning algorithm has been investigated from

different points of view, where considering the reliability constraints guarantees the

optimal operation of this planning algorithm, especially in the MMG structure. The

integration of an islanded MG into the electricity market is addressed through a wild

goat algorithm [2]. A planning algorithm has been investigated to size the resources

and ES due to the reliability constraints and cost minimization [26]. Another study [27]

has investigated the MG operation due to the uncertainties and reliability constraints,

specifically focused on the impacts of the ES on the reliability index. Furthermore, an

optimal and reliable operation of the MMG has been justified through a minimized cost

objective function under the high penetration of the RERs [28]. Meeting the reliability

constraints in the MMG has been justified through the stochastic planning algorithm,

where the stochastic optimization has been reformulated as standard quadratic and lin-

ear programming problems [29].

On the other hand, to facilitate the RER-based MMG implementation, DR pro-

grams should be entirely developed, where the smart homes can participate in the DR

programs and interact with the electricity market. For example, the impacts of the DR

program integrated into the energy planning algorithm on reducing the total cost of the

MG have been shown in [30]. Furthermore, various strategies for pricing of the elec-

tricity market, including real-time pricing and time-of-use pricing, have been tested on

the MG, where the advantage of introducing the DR programs has also been proved

[31]. In [32], the EVs have been highly integrated into the MG, where the stochastic

energy planning and DR programs have been applied to realize the optimal operation.

In a similar study [33], the main focus has been devoted to an industrial MG, showing

the pros of its participation in the DR programs, where the optimal operation has been

determined through stochastic energy planning. Although a large body of literature has

been devoted to the DR programs and their impacts on the economic benefits to the

smart homes and MGs, a few studies have focused on developing long-term stochastic

planning to investigate the effects of the DR programs on developing the RER-based

MG and specifically its important role in increasing the interactions between the MMG
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Table 1: Taxonomy of the stochastic planning and energy management of a microgrid considering integration

of renewable energy resources and electricity market.
Objective and Methodology Technology

Ref. Algorithm Planning DR M&O Objectives PV WT EV ES FC Electrolyzer MT
Uncertainty

Analysis

Electricity

Market

[2] Stochastic Short-term - X
Optimal cost and

optimal reliability
X X - X - - X - X

[12] Stochastic Short-term X X
Optimal cost and

optimal Operation
X X - X - - - - -

[13] Stochastic Short-term - -
Optimal cost and

optimal Operation
X X - X - - - - -

[14] Robust Short-term - -
Optimal cost and

optimal Operation
X X - X - - X - -

[15] Stochastic Short-term - -
Optimal cost and

optimal Operation
X X X X - - - - -

[16] Stochastic Short-term - -
Optimal cost and

optimal Operation
X X X X - - - X -

[17] Stochastic Short-term - -
Optimal cost and

optimal Operation
X X - X - - X - -

[18] Stochastic Short-term - -
Optimal cost and

optimal Operation
X X - X - - X X -

[19] Stochastic Short-term X -
Optimal cost and

optimal Operation
X X X X - - - - -

[23] Stochastic Short-term X -
Optimal cost and

optimal Operation
X X - X - - - - X

[24] Stochastic Short-term - - Maximized risk-sensitive cost - - - - - - - - X

[25] Stochastic Short-term X -
Optimal cost and

optimal Operation
X - - X - - - - X

[27] Stochastic Short-term X -
Optimal cost and

optimal reliability
X X - X X - X - X

[28] Stochastic Short-term - -
Optimal cost and

optimal operation
- X - X - - - - -

[29] Stochastic Short-term - X
Optimal cost and

optimal operation
- X - X - - - - -

[30] Stochastic Short-term X -
Optimal cost and

optimal operation
X X X X X - X - -

[31] Stochastic Short-term X -
Maximized profit and

optimal operation
X X - X - - - - -

[32] Stochastic Short-term X -
Optimal cost and

optimal operation
- X X X - - - - -

Ours Stochastic Long-term X X
Optimal cost, Optimal Size of

RERs, ES, and optimal MCP
X X X X X X X X X

and electricity market. Therefore, increasing the MMG interactions with the electricity

market can highlight the role of a ”price maker”. Taxonomy of the stochastic planning

and energy planning for the RER-based MGs are presented in Table 1.

It should be noted that the MMG has been assumed ”price taker” in the previous

studies, where the MGs do not affect the electricity market. However, one of the main

goals of developing the MMG is to increase the RERs, where due to integrating the

increased RERs into the grid, the RER-based MMG should participate in the electric-
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ity market. Hence, the RER-based MMG will interpret as a ”price maker” that will

affect the electricity market, which is ignored in the previous studies. Using the ES,

introducing the DR programs into the MGs, and the reducing cost of the RERs [34]

have been investigated as the practical solutions to develop the RER-based MMG. The

RER-based MMG is justified to interpret as the price maker in the electricity market,

which can operate either independently or as the MG aggregator. Therefore, investigat-

ing long-term stochastic planning is essential to determine the optimal size of resources

in the MMGs, assuming the MMGs as the price maker.

To the best of our knowledge, until now, there exists no planning algorithm to

consider the operational, economic, reliability, and stochastic aspects of an MMG at

the same time. Hence, our paper aims to propose the stochastic planning algorithm to

address RER-based MMG considering the real-time electricity market. The Cournot

equilibrium and GT model are applied to model the real-time electricity market and its

interactions with an MMG as a price maker. Therefore, the optimal capacities of RERs

(i.e., WT, PV, and FC), non-renewable resources (i.e., MT), electrolyzer, and ES are

determined due to the operational constraints. The final goal is to find the minimized

cost, where the system constraints and reliability constraints are considered. The high

investment cost of RERs is one of the most important challenges in developing these

systems in smart MG. This issue can be addressed with optimal sizing of RERs, which

simultaneously decreases the total cost of MMG. On the other hand, the output power

of RERs, as well as the power consumption of EVs, are forecasted through the observed

data, where the Copula method is applied to improve the prediction error.

The contributions of our paper are discussed as follows:

1. A stochastic planning algorithm is presented to determine the optimal operation

of an MMG due to the operational constraints and fairly minimize the MGs’

costs in an MMG.

2. The GT and Cournot model are applied to model the real-time electricity market

and its interactions with an MMG as a price maker.

3. The stochastic planning algorithm accounts for the uncertainties in the RERs

and EV, initially forecasted through the observed data and estimated using the
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Copula algorithm to improve the prediction error.

4. The stochastic preservation for the EV uncertain variables (arrival time of EV,

departure time of EV, and traveled distance) is justified through a detailed uncer-

tainty analysis that investigates the marginal structure and second-order depen-

dence structure.

The rest of this paper is organized as follows: The structure of an MMG is modeled

in Section 2. In Section 3, the power models of RERs and EV are presented, where the

objective function and its constraints are detailed. Section 4 discusses the uncertainty

modeling. The proposed methodology is presented in Section 5. Section 6 elaborates

on the case study. The simulation and its obtained results are presented in Section 7.

Eventually, the conclusions are expressed in Section 8.

2. Model Structure of Multi-microgrid

A stochastic planning algorithm is presented in this paper to investigate the inte-

gration of the uncertain RERS into an MMG and real-time market. A schematic of the

MMG structure and its interactions with the real-time market is illustrated in Figure

1, including three MGs, distribution network operator (DNO), and the main network.

MG1 is equipped with the WT, PV panel, FC, electrolyzer, and hydrogen tank. Further,

MG2 includes the WT, PV panel, and ES. Finally, the WT, PV panel, MT, and ES op-

erate in the MG3. Hence, the proposed MMG model considers the impacts of various

resources. The MMG is connected to the DNO, where each MG sends its power bid to

the DNO.

Furthermore, the DNO receives the forecasted price from the main network. Hence,

the DNO is responsible for managing all power bids and suggested prices. The MMG is

connected to the electricity market as a price maker, but the main network’s suggested

price highly impacts the MCP. It should be noted that the significant role of the main

network in the current structure of the electricity network results in high dependency

on the main network. However, the increased integration of the MMG reduces the

dependency on the main network and can highlight the importance of the MMG as the

price maker. It should be noted that the MMG is assessed as the price maker, where it
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Figure 1: Schematic of a multi-microgrid and its interaction with the real-time electricity market.

interacts with the real-time electricity market to determine the best structure for future

MMG.

The MMG should keep a two-way connection with the DNO according to the mar-

ket structure, where the MMG aims to minimize its total cost. It is crucial to develop the

planning algorithm to fairly minimize the cost of all MGs due to their interactions in the

MMG structure. Hence, minimizing the total cost of MMG is a complicated problem,

which should be precisely solved. The game theory (GT) model is used to determine

the interactions between MMG and real-time electricity market [35, 36, 37, 38, 39].

It should be noted that each MG should carefully assess its power and price bids to

maximize its profit. Further, each MG can independently propose, and its bids are not

affected by the other MGs. However, the MGs need to consider their resources, the

corresponding specifications, the electricity market, and the conditions of other MGs

to gain the highest profit.
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Algorithm 1 Proposed algorithm to calculate primary market clearing price.
1: Initialize smart microgrid, electricity market, and main network data

2: for each microgrid do

3: Calculate marginal cost of microgrid according to its equipment;

4: Announce the marginal costs of microgrids to DNO

5: end for

6: Sort purchasing bids from the highest price to the lowest price and obtain demand

curve;

7: Sort selling bids from the lowest price to the highest price and obtain supply curve;

8: Intersect demand curve and supply curve and determine primary market clearing

price MCP;

The MCP is modeled based on the Cournot model and manage the supply and

demand for MMG. The DNO determines the primary MCP according to the suggested

price by the main network and MMG. The next MCP is calculated by the Cournot

model (1) [40, 41, 42, 43], where this procedure stopped when the stop criteria is met,

as presented in (1). The proposed algorithm to calculate the primary MCP is presented

in Algorithm 1.

MCP j = MCP j−1−α

n

∑
i=1

P j
i (1)

3. Mathematical Modeling

Various RERs, including PV panel, WT, and FC, as well as non-RERs (i.e., MT),

are included in the MMG. The mathematical model of each unit is presented in this

section, where the power model of the EV is also formulated. Then, the objective

function of the stochastic planning of the MMG is presented, which aims to minimize

the total cost of the MMG.

3.1. Photovoltaic panel

The PV panel is applied as the RER to convert the solar energy to electricity, where

the output power is calculated by (2) [44]. The efficiency of PV ηPV is a function of
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ambient temperature, as well as the panel temperature, as formulated in (3) [15]:

PPV
t =

SI
1000

×PPV
r ×η

PV (2)

ηPV = η
PV
r [1−α

PV (T +SI× T PV
n −20

800
−Tre f )] (3)

3.2. Wind turbine

The WT is also applied as the RER in this paper, producing the power according

to the wind speed and the WT specifications (i.e., cut-in speed, rated speed, cut-out

speed). The output power of the WT is formulated as (4) [3].

PWT
t =



0, vw < vcin

PWT
r × ( vw−vci

vr−vci
)3, vci < vw < vr

PWT
r , vr < vw < vco

0, vco < vw

(4)

3.3. Fuel cell

The FC is included in one of the MGs (i.e., MG1) in an MMG framework, where

an integrated WT/PV/FC system operates as the power resources. Although the FC’s

operation and control have matured substantially over the past years; still the high cost

is considered as a barrier to an increased application [45]. However, we will apply the

FC in MG1 for the following reasons:

• In this study, since the peak demand occurs in nights, the PV’s output power is

available over days, applying to produce hydrogen through the electrolysis of

water. Hence, the hydrogen production by the RER’s power is an apparatus and

costly method, which is enabled based on the MG’s structure. The FC output

power supplies the demand overnight when the PV panel and WT cannot meet

the high demand.
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• The FC’s cost has recently decreased according to its application, showing up

to a 60% reduction since 2006 [46]. Therefore, it will be forecasted that this

decreasing trend will continue in the future and increase the FC’s applications.

• Due to the low accessibility to natural gas for heating applications, the FC is

an appropriate option, supplying both electricity and heat. Hence, the FC can

supply the hot water to meet the heating of the residential MG1, resulting in a

lower dependency on natural gas.

• The FC’s dynamic response is fast (i.e., 1 to 3 seconds), which can improve the

MG’s stability [47].

• Finally, selling the excess produced hydrogen by the FC can benefit the MG1,

compensating for the high cost of the FC [48].

The produced power by the FC PFC
t is calculated as follows [49]:

PFC
t = PFC

H ×η
FC−PFC

use,t (5)

3.4. Electric vehicle

The EV can operate as the controllable loads in the smart homes in the MMG,

which can be connected to the network. Hence, the EV can also be considered as

the ES, charging through the power injected by the RER. In this regard, the EVs can

participate in the DR program as the controllable loads [44, 50], assuming that the EV

departs smart home at dt and arrives smart home at at . The power of EV is calculated

by (6), while the EV is not available at home over [dt ,at ] [51]:

PEV
t = PEV

0 −PEV
c +∑

t
(PEV

ch −PEV
dch); at < t < dt (6)

where, the power consumption of EV is calculated due to the reference power con-

sumption of EV and traveled distance, as follows:

PEV
c = PEV,re f ×d (7)

Also, the state of charge of EV, which determines the charge power of EV, is for-

mulated by (8) [52]:

SoC = 100× (1− d
ηEV

bat ×Capbat
) (8)
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3.5. Objective function

The objective function is defined to minimize the total cost of MMG considering its

participation in the real-time electricity market. Hence, it is important to model the cost

of each unit in the MMG (i.e., WT, PV, Electrolyzer, FC, ES, MT), as well as the cost

of electricity transactions with the main network (i.e., selling or buying electricity).

Further, the cost of participating residential consumers in the DR and the reliability

cost should be modeled. It should be notified that the cost of each unit in MG should

be precisely modeled.

The objective function of each MG is presented in (9), where the main objective

function is formulated as (10). The objective function includes the cost of buying elec-

tricity from the main network, the cost of selling electricity to the main network, the

cost of the PV, the cost of the WT, the cost of the electrolyzer, the cost of FC, the cost

of MT, the cost of participating in the DR program, and the cost of reliability. The de-

cision variables of the objective function are optimal sizes of WT, PV, FC, electrolyzer,

ES, MT, and the MCP. Each term of the objective function (9) is precisely modeled

in (12)-(22). The cost of buying electricity from the main network is formulated as

(12) according to the MCP. Similarly, the cost of selling electricity to the main net-

work is modeled according to the MCP (13). The costs of WT, PV, and electrolyzer

are modeled by its capital cost and maintenance and operation cost by (14), (15), (17),

respectively. The FC, ES, and MT may need replacement during the planning hori-

zon, so the FC cost is defined by its capital cost, maintenance and operation cost, and

replacement cost (16), (18), and (19).

Furthermore, the residential MGs consumers can participate in the DR programs

and increase their profit (i.e., decrease the total cost). Hence, several residential appli-

ances are assumed as the controllable loads that can be planned through the stochastic

plan [44]. The controllable loads in our paper are washing machine, dishwasher, air

conditioner, and EV, where the cost of participating in the DR program is formulated

in (21). Finally, the MMG reliability is important, and the planning program should

meet the reliability and supply all demand. Hence, the reliability cost is formulated in
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(22).

FMGi =Costbuy−Costsell +CostPV +CostWT +CostEl

+CostFC +CostES +CostMT +CostEV −CostDR +CostENS
(9)

F = min
u

3

∑
i=1

FMGi (10)

Where,

u ∈U ;U = [SWT ,SPV ,SFC,SEL,SES,SMT ,MCP] (11)

Costbuy =
ymax

∑
y=1

tmax

∑
t=1

MCPt,yPbuy
t,y (12)

Costsell =
ymax

∑
y=1

tmax

∑
t=1

MCPt,yPsell
t,y (13)

CostWT =
nmax

∑
n=1

BWT
n SWTCCC,WT +

ymax

∑
y=1

nmax

∑
n=1

BWT
n SWTCOM,WT

y (14)

CostPV =
nmax

∑
n=1

BPV
n SPVCCC&I,PV +

ymax

∑
y=1

nmax

∑
n=1

BPV
n SPVCOM,PV

y (15)

CostFC =
nmax

∑
n=1

BFC
n SFCCCC,FC +

ymax

∑
y=1

nmax

∑
n=1

BFC
n SFCCOM,FC

y

+
ymax

∑
y=1

nmax

∑
n=1

BFC
y,n SFCCRC,FC

y

(16)

CostEL =
nmax

∑
n=1

BEL
n SELCCC,EL +

ymax

∑
y=1

nmax

∑
n=1

BEL
n SELCOM,EL

y (17)

CostES =
nmax

∑
n=1

BES
n SESCCC,ES +

ymax

∑
y=1

nmax

∑
n=1

BES
n SESCOM,ES

y

+
ymax

∑
y=1

nmax

∑
n=1

BES
y,nSESCRC,ES

y

(18)
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CostMT =
nmax

∑
n=1

BMT
n SMTCCC,MT +

ymax

∑
y=1

nmax

∑
n=1

BMT
n SMTCOM,MT

y

+
ymax

∑
y=1

nmax

∑
n=1

BMT
y,n SMTCRC,MT

y

(19)

CostEV =
nmax

∑
n=1

BEV
n (CCh,EV +CB,EV ) (20)

CostDR =
ymax

∑
y=1

tmax

∑
t=1

nmax

∑
n=1

BWM
n PWM

t,y CDR
t,y +

ymax

∑
y=1

tmax

∑
t=1

nmax

∑
n=1

BDW
n PDW

t,y CDR
t,y

+
ymax

∑
y=1

tmax

∑
t=1

nmax

∑
n=1

BAC
n PAC

t,y CDR
t,y +

ymax

∑
y=1

tmax

∑
t=1

nmax

∑
n=1

BEV
n PEV

t,y CDR
t,y

(21)

CostENS =
ymax

∑
y=1

tmax

∑
t=1

ENSt,yCloss
t,y (22)

The constraints of the objective function are modeled as follows. The power equi-

librium is modeled in (23), where the sum of all power should meet the demand. The

voltage of each bus of the MMG should stay within the acceptable range (24). More-

over, the power transactions should meet the limits of the transformer, as formulated in

(25). It should be noted that the power of the PV, WT, FC, MT, and ES should remain

within the allowable range determined according to the units’ specifications (26)-(35).

Pbuy
t,y −Psell

t,y −Ploss
t +PWT

n,t,y +PPV
n,t,y +PFC

n,t,y +PMT
n,t,y±PES

n,t,y = PD
n,y (23)

Vmin ≤Vn,t,y ≤Vmax (24)

0≤ Pbuy
t,y ,Psell

t,y ≤ ST
max (25)

0≤ PPV
t,y ≤ PPV

max (26)
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0≤ PWT
t,y ≤ PWT

max (27)

0≤ PFC
t,y ≤ PFC

max (28)

0≤ PMT
t,y ≤ PMT

max (29)

PES
min ≤ PES

t,y ≤ PES
max (30)

PES,ch
min ≤ PES,ch

t ≤ PES,ch
max (31)

PES,dch
min ≤ PES,dch

t ≤ PES,dch
max (32)

PEV,ch
min ≤ PEV,ch

t ≤ PEV,ch
max (33)

PEV,dch
min ≤ PEV,dch

t ≤ PEV,dch
max (34)

PEV
min ≤ SOCEV

t ≤ SOCEV
max (35)

4. Uncertainty Modeling

In this study, we assume five uncertain variables, including wind speed vw, solar

irradiance SI, arrival time of EV at , departure time of EV dt , and daily distance of EV

d. To forecast the uncertain variables used in the stochastic planning algorithm, these

parameters are initially modeled according to the historical recorded (i.e., observed)

data.
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4.1. Modeling of uncertain variables

Solar irradiance and wind speed: To address the uncertainties in the solar irra-

diance and wind speed, we use the hourly measured data over 5 years at a residential

site located in Tehran, Iran (latitude 35.7109 ◦N, longitude 51.3114 ◦E, and elevation

above sea level 1191 m; data from [53]). The mean and standard deviation of the wind

speed are 6.37 m/s and 4.27 m/s, respectively. Also, The mean of the solar irradiance

is 227.5 W/m2.

To model the uncertainties in the observed data X , we use the machine learning

toolbox in MATLAB, where several methods are tested, and the obtained data (i.e.,

predicted data) X∗ are justified through the mean square error (MSE) and root mean

square error (RMSE), formulated as follows.

MSE =
1
n

n

∑
i=1

(X∗i −Xi)
2 (36)

RMSE =

√
1
n

n

∑
i=1

(X∗i −Xi)2 (37)

To model the uncertainties in the wind speed, normal distribution, Weibull distribu-

tion, Gaussian process modeling, and spline method are tested. After fitting different

methods, the MSE and RMSE of normal distribution, Weibull distribution, Gaussian

process modeling, and spline method are calculated 106.9266 (10.3405 m/s), 43.1965

(6.5724 m/s), 28.3524 (5.3247 m/s), and 14.6751 (3.8308 m/s), respectively, where

inside parentheses are the values of the RMSE. The obtained results verify that the

spline method shows better performance in modeling the wind speed uncertainties.

Furthermore, the solar irradiance observed data are fitted through normal distribu-

tion, beta distribution, Gaussian process modeling, and spline method. After testing

various methods, the calculated MSE and RMSE for normal distribution, beta distri-

bution, Gaussian process modeling, and spline method are 17.9429 (4.2359 W/m2),

2.7231 (1.6502 W/m2), 1.5637 (1.2505 W/m2), and 0.2234 (0.4726 W/m2), respec-

tively, where inside parentheses are the values of the RMSE. Hence, the spline method

shows the best performance, which is chosen to model both solar irradiance and wind

speed.
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The spline method consists of flexible functions, as normally interpreted by the

piecewise polynomials joined together with a certain degree of smoothness [54]. Among

the spline methods, the B-spline of order k ≥ 1 has gained attention due to its property

to be formulated as X = Bβ + ε , where X ∈ {vw,SI}, ε is a sequence of independent

and identically distributed random variables with zero mean and finite variance, B is a

matrix with B j defined as follows:

Bk
j(x) =

x− t j

t j+k− t j
Bk−1

j (x)+
t j+k− x

t j+k− t j+1
Bk−1

j+k(x) (38)

where, j ∈ {−k,−k+1, ...,k}, and t j denotes as knots and sets the shape of the function

selected by the user. To model the uncertain variable X , an estimate of β should be

formulated, which is obtained through the least squares criterion and minimizing the

residual sum of squares as follows:

β̂ = (BT B)−1BT X (39)

Electric vehicle: The uncertainties in EV are commonly interpreted with three

variables, including arrival time at , departure time dt , and travelled distance d. To

model these uncertain variables, three probability distribution functions (PDFs) pre-

sented in [55] are used, as follows:

f (at) =
1

σa
(1+ ka(

t−µa

σa
))−(1+

1
ka
)e−(1+ka(

t−µa
σa ))

− 1
ka (40)

f (d) =
1

σd
(1+ kd(

d−µd

σd
))
−(1+ 1

kd
)e−(1+kd(

d−µd
σd

))
− 1

kd
(41)

f (dt) =
β

α
(

t
α
)(β−1)e−(

t
α
)β

(42)

It should be noted that the estimated uncertain variables correspond with error,

which can be decreased through improving the prediction precision. In this paper, we

apply the Copula algorithm according to the presented method in [56], where the Cop-

ula algorithm has been used to decrease the prediction error and improve the estimation.

Hence, the Copula algorithm and the proposed method to improve the prediction are

discussed in the following section.
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Figure 2: Scatter plot of the observed data along with a predicted data.

4.2. Copula-based algorithm for uncertainty modeling

As discussed, the Copula algorithm is applied to improve the prediction error,

which has been initially proposed in [56]. Hence, the predicted data of uncertain

variables are justified with the observed data over the same period, where the joint

conditional distribution estimation of prediction error is generated through the Copula

algorithm (Figure 2). As illustrated in Figure 2, a sample time series of the observed

data is compared with the predicted data to highlight the difference between these two

data and the importance of applying the Copula algorithm. Note that Figure 2 is only

an illustration for sample data, and detailed uncertainty analysis on the stochastic vari-

ables of our paper (solar irradiance, wind speed, arrival time of EV, departure time

of EV, and traveled distance of EV) are presented in Section 7.2.1. Let X̂ represents

the estimation from the uncertain variable of X , and X∗ denotes the predicted variable,

where the estimation is improved through the prediction error e obtained by the Copula

algorithm formulated as follows:

X̂ = X∗+ e (43)
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To obtain the prediction error e, the joint conditional distribution should be cal-

culated through the Copula function C. Assuming that FX (x) = u and FX∗(x∗) = v,

the joint distribution between observed uncertain variable X and predicted X∗ is deter-

mined as follows:

FXX∗(x,x∗) =C(FX (x),FX∗(x∗)) (44)

where, the joint conditional distribution is obtained as follows:

C(u,v) = F(x,x∗) = F(F−1
X (u),F−1

X∗ (v)) (45)

To construct the Copula function, an Archimedean method is used, which is thor-

oughly discussed in [57] and briefly explained here, as well as the basic specifications

of the Copula function.

Copula function: Copula functions C are defined as functions to couple multi-

variate distribution functions and showing as a one-dimensional marginal distribution

function [58], where C includes n variables X ∈ [0,1]n. The main specifications of

the Copula functions are: (i) C ∈ [0,1]; (ii) C(u) is zero if at least one coordinate

ui is zero, assuming u = [u1, ...un] ∈ [0,1]n; and (iii) C(u) = ui if all coordinates are

one except ui. In this study, among Copula functions, such as Gaussian Copula and

Archimedean Copula, we choose an Archimedean method to obtain the Copula func-

tions. The Archimedean Copula is selected since it has a closed form, which is suitable

to interpret various dependence structures; still, the Archimedean Copula is not derived

from multivariate distributions by Sklar’s theorem, resulting in some doubts in its effi-

ciency in higher-dimension Copulas [59]. Therefore, Copula function C(u) is obtained

by the Archimedean method as follows [60]:

C(u|α) = φ
−1(

n

∑
i=1

φ(ui)) (46)

where, α is the parameter of the Archimedean Copula, and φ(.) is a generator function

defined by (47) for Frank Archimedean Copula:

φ =−log(
exp(−αu)−1
exp(−α)−1

) (47)

In our problem, the Copula is applied to find the joint distribution between observed

uncertain variable and predicted variables so that n = 2 in (46), which is rewritten as
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follows [59]:

C(u,v) =
−1
α

log(1+
(exp(−αu)−1)(exp(−αv)−1)−1

exp(−α)−1
) (48)

4.3. Uncertainty analysis

To investigate the uncertainties of the stochastic variables, an uncertainty analysis

is performed in this paper. In this regard, the marginal structures of the stochastic vari-

ables are modeled through the L moment, which can also be addressed through the

central moments [61]. Furthermore, the dependence structures of the stochastic vari-

ables are analyzed through an index named climacogram (i.e., variance of the averaged

stochastic variable x(k) vs. continuous time scale in time units k) [61]. It should be

noted that the climacogram is linked to the autocovariance; still, climacogram shows

less bias compared to the autocovariance [62].

5. Proposed Methodology

The main objective of our stochastic planning algorithm is to determine the optimal

operation of the MMG, where the RERs and ES are optimally sized. There exist sev-

eral motivations and drivers behind our proposed methodology to address the stochastic

energy planning of the MMG. First, the MMG is assumed ”price maker” despite the

previous studies, where the MMG has been considered a ”price taker”. Since the en-

vironmental concerns motivate the increased RERs, the RER-based MMG will highly

penetrate in the near future, and it is of interest to evaluate the MMGs as the price

makers and investigate their interactions with the electricity market. Second, the RER-

based MMG has become a feasible and practical option through using the ES and DR

programs, which are investigated in our paper to balance the size of RERs, stability, and

MMG’s costs. Third, the demand side should participate in the power transactions to

address the environmental issues, energy crisis, increased RERs, and reliability that are

thoroughly investigated in our paper. Finally, it is critical to devise long-term stochastic

planning for the MMG to manage its operation due to the uncertain parameters. We

present long-term stochastic energy planning of the MMG considering the increased
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Algorithm 2 Algorithm to manage multi-microgrid considering its participation in a

real-time electricity market.
1: Initialize wind speed, solar irradiance, loads, and features of resources and energy

storage in multi-microgrid;

2: for i = 1, ...,Ni do

3: for each microgrid do

4: Optimize each microgrid according to its objective function;

5: Announce power bid from each microgrid to distribution network operator;

6: end for

7: Check the constraints of objective function (23)-(35);

8: Calculate Market Clearing Price MCP and announce it to microgrids;

9: Check Cournot equilibrium ∆MCP = MCPi−MCPi−1;

10: if ∆MCP = 0 then

11: Obtain optimal size of resources and energy storage in the multi-microgrid;

12: else

13: i = i+1

14: end if

15: end for

integration of the uncertain RERs and the existence of a two-way interaction between

MMG and the electricity market.

The stochastic planning algorithm is presented in Algorithm 2, where the MMG

interacts with the real-time electricity market. In our proposed algorithm, each MG

should be optimized in the MMG framework so that the optimal operation is satisfied

for all MGs, interacting with the real-time electricity market and operate as the price

maker. The RESs and ES are optimally sized when the Cournot equilibrium is met, and

the final MCP is determined.

A detailed flowchart of our proposed stochastic planning algorithm is demonstrated

in Figure 3. As shown in this figure, the stochastic planning algorithm is initialized

by the environmental, load, MG, and EV data, where the technical specifications of

resources and ES should also be defined as the inputs for the algorithm. The future

25



Start

End

Time (t) = 1

Particle numbers (N) = 1

Planning Horizon (y) = 1

Time (t) = 1

Particle numbers (N) = 1

Planning Horizon (y) = 1

Determine the primary size of the equipment. Determine the primary size of the equipment. 

Determine the primary MCP using Algorithm 1.Determine the primary MCP using Algorithm 1.

Calculate the total cost of MMG and announce 

power bid to DNO.

t = t+1; y = y+1;

Calculate the total cost of MMG and announce 

power bid to DNO.

t = t+1; y = y+1;

Initialize stochastic management algorithm with:

Solar irradiance, wind speed, load data, grid data, EV 

data (arrival time, departure time, and traveled 

distance), and specifications of microturbine, energy 

storage, fuel cell, electrolyzer, PV panel, wind turbine, 

and EV.

Initialize stochastic management algorithm with:

Solar irradiance, wind speed, load data, grid data, EV 

data (arrival time, departure time, and traveled 

distance), and specifications of microturbine, energy 

storage, fuel cell, electrolyzer, PV panel, wind turbine, 

and EV.

t < tmax

y < ymax

Calculate the objective function for each particle.Calculate the objective function for each particle.

Perform load flow using Digsilent tool.Perform load flow using Digsilent tool.

Solve the objective function by QPSO algorithm.

N = N+1

Solve the objective function by QPSO algorithm.

N = N+1

N < Nmax

Check the resource, and reliability constraints.Check the resource, and reliability constraints.

Check the operational constraints.Check the operational constraints.

Calculate MCP by updated values and check 

the Cournot equilibrium.

Calculate MCP by updated values and check 

the Cournot equilibrium.

△MCP < ε  

Determine the optimal size of equipment and 

optimal MCP.

Determine the optimal size of equipment and 

optimal MCP.

Predict uncertain data (wind speed, solar irradiance 

, and EV data) 

Predict uncertain data (wind speed, solar irradiance 

, and EV data) 

Fit the data with the Copula algorithm and 

compensate the prediction error.

Fit the data with the Copula algorithm and 

compensate the prediction error.

Yes

NO

No

Yes

No

Yes

Yes

No

Start

End

Time (t) = 1

Particle numbers (N) = 1

Planning Horizon (y) = 1

Determine the primary size of the equipment. 

Determine the primary MCP using Algorithm 1.

Calculate the total cost of MMG and announce 

power bid to DNO.

t = t+1; y = y+1;

Initialize stochastic management algorithm with:

Solar irradiance, wind speed, load data, grid data, EV 

data (arrival time, departure time, and traveled 

distance), and specifications of microturbine, energy 

storage, fuel cell, electrolyzer, PV panel, wind turbine, 

and EV.

t < tmax

y < ymax

Calculate the objective function for each particle.

Perform load flow using Digsilent tool.

Solve the objective function by QPSO algorithm.

N = N+1

N < Nmax

Check the resource, and reliability constraints.

Check the operational constraints.

Calculate MCP by updated values and check 

the Cournot equilibrium.

△MCP < ε  

Determine the optimal size of equipment and 

optimal MCP.

Predict uncertain data (wind speed, solar irradiance 

, and EV data) 

Fit the data with the Copula algorithm and 

compensate the prediction error.

Yes

NO

No

Yes

No

Yes

Yes

No

Figure 3: Flowchart of the proposed stochastic planning algorithm to determine the optimal operation of the

multi-microgrid under its interaction with the real-time electricity market.

wind speed, solar irradiance, arrival time of EV, departure time of EV, and traveled

distance of EV are forecasted using the smoothing spline method discussed in Section

4. The predicted data and the true data are fitted through the Copula algorithm to reduce

the prediction error, where the prediction error is modeled. Hence, the predicted data

are revised according to the prediction error, and more precise estimation is achieved.

After setting time, particle number, and planning horizon to 1, the size of the re-

sources and ES are determined by the initial guesses. For each particle, the objective

function (10) is solved through the QPSO algorithm due to the predefined constraints

(23)-(35). Then, the load flow is performed by the Digsilent tool due to the operational
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Algorithm 3 Algorithm to solve optimization problem using QPSO
1: Initialize parameters of QPSO algorithm;

2: for N = 1,2, ...,Niteration do

3: for each decision variable do

4: calculate cost of particle xit(N) using objective function (10);

5: end for

6: if Cost(xit(N))<Cost(Pbestit) then

7: Put Pbestit = xit ;

8: else

9: if Cost(xit(N))<Cost(Gbestit) then

10: Put Gbestit = xit ;

11: end if

12: end if

13: Obtain optimal response;

14: end for

constraints. The primary MCP is determined by Algorithm 1, where the total cost of

MMG is calculated and announced to the DNO. The MCP is updated, and the optimal

size of the resources and ES are determined when ∆MCP < ε .

The Algorithm for finding the optimal decision variables using the Quantum Parti-

cle Swarm Optimization (QPSO) method is presented in Algorithm 3. As presented in

Algorithm 3, the particle cost should be calculated for each decision variable according

to the objective function (10). The obtained cost is compared to the best value of that

iteration and the best global value. As the QPSO algorithm progresses, it is converged

and finds a global minimum very quickly.

5.1. Proposed simulation structure

The schematic of the proposed simulation algorithm is shown in Figure 4. As

observed in Figure 4 (a), the main blocks of the simulation algorithm include MMG

and QPSO algorithm. The MMG is initialized by the input data, where the objective

function is calculated. The QPSO algorithm is applied to minimize the total cost and
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find the optimal decision variables (11). The detailed steps of the proposed stochastic

planning simulation algorithm are illustrated in Figure 4 (b). The solar irradiance,

wind speed, and EV data are considered as the inputs to the prediction block, where

the Copula method is applied to improve the prediction error. The objective function

is calculated and minimized according to the technical specifications of MGs, loads,

resources, and ES, which is minimized by the QPSO algorithm. Finally, the optimal

cost, the optimal size of resources and ES, and MCP are found as the outputs of the

stochastic planning algorithm.

6. Case Study

In this section, a sample case study is modeled as the MMG, which is used to test

the efficiency of our proposed method. A residential MMG is modeled as a case study

in our paper, where the detailed line data is presented in [63]. The residential complex

named Ekbatan town includes 15500 apartments in an area of 2208570 m2, located

in Tehran, Iran. This residential MMG has three independent sets of buildings called

block 1, block 2, and block 3, determined as MGs in our study. The residential MGs

are connected to the medium voltage (i.e., 20 kV ). A schematic of the case study is

shown in Figure 5.

The smart MG1 is equipped with the WT, PV panel, FC, electrolyzer, hydrogen

tank, controllable loads (i.e., washing machine, dishwasher, air conditioner, and EVs),

and non-controllable loads. The equipment in MG2 is WT, PV panel, ES, control-

lable loads, and non-controllable loads similar to the MG1. Furthermore, the MG3

includes WT, PV panel, MT, ES, controllable loads, and non-controllable loads, where

the controllable loads are washing machine, dishwasher, air conditioner, and EVs. A

schematic of nodes of each MG is shown in Figure 5, where the peak demand of each

node is shown in Table 2 [64]. It should be noted that the nodes of MG1, MG2, and

MG3 are denoted by Ai, Bi, and Ci, respectively. The demand profile of the modeled

residential MMG is shown in Figure 6, based on the real measured peak demand data

given from the Iran grid planning company [64] and the normalized IEEE residential

load curve [65]. The normalized load curve (Figure 6 (a)) is the basis to calculate the
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Figure 4: Schematic of the proposed simulation algorithm: (a) main blocks of the simulation algorithm; (b)

detailed steps of the proposed stochastic planning simulation algorithm.

demand for each node of the MMG, where a sample annual load profile of node A1 is

shown in Figure 6 (b).

It should be noted that we assume an hourly representation for the load in our paper

to address long-term planning and stochastic planning for the MMG, which have been
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Figure 5: Schematic of case study, including three microgrids.

Table 2: Peak demand of each node for the residential multi-microgrid.

Node A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 B1

Peak Demand [kW ] 500 500 500 500 500 600 600 600 600 500 300

Node B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12

Peak Demand [kW ] 400 400 500 500 400 500 500 400 400 400 400

Node B13 B14 B15 B16 B17 B18 B19 C1 C2 C3 C4

Peak Demand [kW ] 500 500 300 300 300 600 300 600 600 400 400

verified as an adequate option for the long-term planning and management in the MGs

[2, 23, 66]. Hence, all input data are represented on an hourly basis. Further, a large

number of parameters are included in this paper, which will increase the complexity

of the problem. On the other hand, since the MMG is planned to interact with the

electricity market, the clearing time is also an essential factor in defining the timestep

basis in our study. Therefore, we choose the hourly basis for our study to justify the
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Figure 6: Load profile: (a) normalized load profile of the multi-microgrid; (b) annual load profile of node

A1; (c) monthly load profile of node A1; (d) daily load profile of node A1.

real electricity market in Iran [67] so that the MCPs are calculated on an hourly basis.

7. Simulation and Results Discussion

In this section, the comparative results of testing our proposed methodology on a

sample case study are presented. The proposed stochastic energy planning algorithm is

31



Table 3: Parameters of wind turbine [69].

Parameters Value Unit

CCC,WT 1500 [ $/kW ]

COM,WT 15 [ $/kW.year]

vci 3.5 [ m/s]

vr 10 [ m/s]

vco 25 [ m/s]

PWT
r 50 [ kW ]

Table 4: Parameters of photovoltaic panel [3, 68].

Parameters Value Unit

CCC&I,PV 5402 [ $/kW ]

COM,PV 20 [ $/kW.year]

ηPV 37 [ %]

PPV
r 1 [ kW ]

designed to find the optimal operation of the MMG, where the optimal size of various

equipment is found.

7.1. Simulation setup

To show the performance of the proposed method, it is tested on the sample case

study presented in Section 6. The MMG is equipped with WT, PV panel, FC, hydrogen

tank, and ES. The parameters of the equipment are presented in Table 3 to Table 6.

Furthermore, the parameters of EV is presented in Table 7. Note that the EV charger

and battery cost are 24000 $ and 720 $/kWh [68]. The historical data for the wind

speed, solar irradiance, arrival time of EV, departure time of EV, and traveled distance

of EV are modeled according to the discussed model in Section 4. Then, the Copula

algorithm is used to minimize the prediction errors. The stochastic planning algorithm

is applied according to the predicted data and the parameters of all equipment.
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Table 5: Parameters of fuel cell and electrolyzer [70].

Parameters Value Unit

CCC,FC 3000 [ $/kW ]

COM,FC 175 [ $/kW.year]

CRC,FC 2500 [ $/kW ]

CCC,EL 2000 [ $/kW ]

COM,EL 25 [ $/kW.year]

Table 6: Parameters of energy storage [44].

Parameters Value Unit

CCC,ES 500 [ $/kW ]

COM,ES 400 [ $/kW.year]

CRC,ES 400 [ $/kW ]

7.2. Results

7.2.1. Uncertainty Analysis

In this section, we present the uncertainty analysis of the stochastic variables (i.e.,

wind speed, solar irradiance, the arrival time of EV, departure time of EV, and distance

in our study). To enable this uncertainty analysis, as explained in Section 4, we use

the hourly recorded time series of stochastic variables. Also, we compare the observed

data along with the estimated data obtained through fitting the appropriate model and

the Copula algorithm. To justify an acceptable estimation from a stochastic variable,

its marginal structure and second-order dependence structure should be preserved so

that we compare these structures for observed data and simulated data (i.e., estimated

data). The marginal structure of the stochastic variable can be investigated through the

probability distribution function or the first few central or L moments, and we present

our results based on the L moments in this paper. Hence, the L moments of the observed

data, along with the simulated data for stochastic variables, including wind speed, solar

irradiance, the arrival time of EV, departure time of EV, and distance, are presented in

Table 8.

As shown in Table 8, the marginal structure is preserved by an error between ±5%
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Table 7: Parameters of electric vehicle [71].

Parameters Value Unit

σa 0.85 [ hour]

µa 17.27 [ hour]

ka -0.06 [ hour]

σd 7.12 [ km]

µd 17.66 [ km]

kd 0.05 [ km]

β 21.38 [ hour]

α 7.67 [ hour]

Table 8: L moments of the observed data along with the simulated data for stochastic variables, including

wind speed, solar irradiance, arrival time of EV, departure time of EV, and distance.

L moment Wind Speed Solar Irradiance Arrival Time Departure Time Distance

Obs. Sim. Obs. Sim. Obs. Sim. Obs. Sim. Obs. Sim.

1st moment 6.370 7.017 227.525 238.680 17.925 18.807 6.961 7.445 17.472 18.869

2nd moment 2.657 2.867 131.281 143.096 1.692 1.572 1.016 0.935 4.035 3.712

3rd moment 0.639 0.565 40.347 43.666 0.030 0.054 0.051 0.043 0.023 0.025

4th moment 0.272 0.243 10.219 11.036 0.068 0.073 0.028 0.029 0.176 0.195

to±15%, which is acceptable in our planning application. However, more accurate es-

timation from the stochastic variables realizes a more accurate result. Furthermore, the

dependence structure of the stochastic variables are analyzed through the climocagram,

as shown in Figure 8. To account for the double periodicity (diurnal and seasonal) of

the stochastic variables [72], we also show the daily scale and annual scale, which

causes changes in the climocagram, as shown in Figure 8. Also, we show a 8760

days window of the observed data vs. simulated data, where some deviations can be

observed between the simulated data and observed.

One of the main features of the hydrometeorological processes (such as wind speed

[73] and solar irradiance [74]) is the double periodicity, interpreting the diurnal and

seasonal variation of these uncertain variables. Note that the seasonality occurs con-

sidering the deterministic movement of the earth in orbit around the sun and around its

axis of rotation [74]. Hence, we represent the double periodicity of the solar irradiance
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Figure 7: Uncertainty analysis results of stochastic variables, including wind speed, solar irradiance, arrival

time of EV, departure time of EV, and distance: [left] climacograms for the empirical and simulated data;

[right] a 8760 days window of the observed data vs. simulated data.

and wind speed in Figure 8. It is worthwhile to mention that it is expected to see a

double periodicity for the EV stochastic parameters (arrival time, departure time, and

traveled distance); however, it is beyond of our study and should be addressed in future

works.

There exist several methods to improve the estimation from the stochastic vari-

ables and preserve its marginal structure, which may rely on the sufficient length of

time series. Although in practical applications, it is difficult to find sufficiently long

data for a specific geographical area. Also, the more accurate estimation for preserv-

ing the marginal structure of the stochastic variable can be enabled through producing

a synthesis time series using approximating the marginal structure and dependence

structure, which is justified as an acceptable approach for modeling the intermitten-

cies. It is shown that for an acceptable estimation from the uncertain variable, a time

series with a sufficient length is required (e.g., 105 for a Hurst-Kolmogorov process)

[75], while our time series has a length of n = 5×8760. It has been proposed in [61]

to model the intermittencies of the stochastic variables through the extended symmet-
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Figure 8: Double periodicity diagram for wind speed (top) and solar irradiance (bottom), interpreting average

recorded value for each hour.

ric moving average method, which has been justified to preserve the structure of the

stochastic variables. We will aim to apply the extended symmetric moving average

method presented by [76], which seems very efficient and more practical, to model the

uncertainties and produce the estimated data in future work and justify the obtained

results with the estimated data through the machine learning algorithm.

7.2.2. Simulation results of the proposed method

To visualize the performance of the proposed method, the voltages of the MMG

nodes are presented in Figure 9, describing the voltage range of each node over a

one-year period. Hence, the voltage stability goal, i.e., keeping the voltage profile

at each node within the safe limits of 0.95 to 1.05 pu, is met. The voltage results

verify finding the optimal solution for our stochastic planning algorithm that satisfies

the operational constraints, e.g., voltage limits. Furthermore, keeping the voltage under

1.05 pu decreases the power losses and extra cost for electricity production to supply

the demand.

The primary MCP should be determined to advance the power transactions in the

electricity market, which is thoroughly discussed in Section 2. To determine the pri-

mary MCP, the DNO receives the power bids from the MMG. Afterward, the power
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Figure 9: Voltages of the multi-microgrid nodes.

bids and the prices are sorted, and the primary MCP is found. The electricity price of

the DNO, the primary MCP, and the final MCP are illustrated in Figure 10. As observed

in this figure, the final MCP interprets the dynamic real-time electricity market, provid-

ing competitive trading circumstances. Hence, the RER-based MMG can participate in

the real-time electricity market and compete with fossil fuel-based resources.

Furthermore, the optimal cost and size of RERs and ES in the MMG are repre-

sented in Figure 11. The main objective of the proposed stochastic planning algorithm

is to minimize the MMG’s cost, which impacts all the MGs’ cost. The optimal costs

obtained through the stochastic planning algorithm are justified with considering no in-

teractions with the electricity market, where the decreasing cost verifies the importance

of modeling interactions between the MMG and the electricity market. The cost reduc-

tion due to MMG participation in the electricity market as the price maker occurs for

MGs, but the cost reductions are not the same for all MGs. As discussed earlier, due to

the high cost of the FC compared to other resources, the MG1 experiences less cost re-

duction than other MGs. Moreover, the optimal size of RERs and ES are determined by

the proposed methodology and compared with the case of considering no interactions

with the electricity market, showing the size reduction in all resources considering the

interactions between the MMG and electricity market. All the RERs and ES face the

size reduction after the MMG participation in the electricity market. Comparing the
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Figure 10: Electricity price in the real-time electricity market.

MMG participation as a price maker in the electricity market to the case of MMG as a

price taker highlights the better performance of the proposed method.

Finally, to validate the efficiency of the QPSO algorithm to solve the optimization

problem (i.e., cost minimization in our problem), the obtained results are compared

with two heuristic optimization algorithms of genetics algorithm (GA), as well as par-

ticle swarm optimization (PSO) method. Hence, the optimization algorithm is solved

through the GA and PSO methods, where the QPSO algorithm shows better accuracy

and convergence speed than other algorithms. The total costs of MMG considering

no interactions with the electricity market, optimization enabled through the GA, op-

timization enabled through the PSO, and optimization enabled through the QPSO are

457.694 million $, 429.737 million $, 424.537 million $, and 416.850 million $, re-

spectively. Furthermore, the QPSO transcends other methods in convergence speed

due to its powerful search in response space.

7.3. Discussions

In this study, we present a stochastic planning algorithm, which investigates the per-

formance of the MMG as a price maker and the corresponding effects on the MMG’s

operation and cost. In this regard, our study differs from the previous studies, assuming

the MMG as a price taker, where a significant role of this approach in decreasing the
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Figure 11: Optimal cost and size for a multi-microgrid considering no interactions with electricity market

vs. proposed methodology, assuming the multi-microgrid as a price maker in the electricity market.

total cost of the MMG, as well as the reduced size of the RERs are verified. Due to

the increased integration of the uncertain resources to the MG, we perform a detailed

uncertainty analysis by comparing the simulated (i.e., estimated) data along with the

observed data. Specifically, we focus on the five stochastic variables, including wind

speed, solar irradiance, arrival time of EV, departure time of EV, and distance in this

study, where we show the stochastic variable structure in terms of marginal structure

and second-order dependence structure. Although our method for modeling the uncer-

tainties in the stochastic variable is accurate enough for our application, better accuracy

may be achieved through the stochastic methods to estimate the synthesis time series

[61], which will be investigated in future studies. It should be noted that the stochastic

planning of the MMG improves the reliability of the future MMG. The proposed ap-

proach analyzes the MMG role as the price maker in the electricity market to pave a

way towards the increased RER-based MMG; however, the MMG is considered a price
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taker in the current structure.

8. Conclusions

We presented a stochastic planning algorithm for an MMG considering the high

penetration of RERs and participation of the MMG as the price maker in the real-

time electricity market. The dynamic behavior of the real-time electricity market and

the uncertain parameters were thoroughly modeled, enabling the algorithm to hedge

against intermittencies that may increase the total cost and followed with an unreliable

grid. A cost minimization problem was formulated to model the stochastic planning

optimization algorithm due to the operational constraints. The presented methodology

was verified through a sample MMG, where its superiority was shown compared to the

case of considering no interactions with the electricity market. A detailed uncertainty

analysis was presented in our paper, where we considered the Copula method to correct

the error arisen due to the prediction based on the observed data. The obtained results

verified an average 8% cost reduction in the MMG due to the active participation in the

real-time electricity market.

Future work will focus on the dynamic analysis and shifting to a minute basis due

to the sudden changes in load and generation that happen on a minute by minute basis,

which was not considered in our study. Also, one of the major problems in developing

the price maker MMG is their size and corresponding effects on the electricity market,

which will be thoroughly analyzed in future works. On the other hand, the uncertainty

analysis should be thoroughly expanded in future work to justify various approaches in

estimating the uncertain variable while preserving the stochastic structure. One of the

main research gaps is to analyze the double periodicity of the EV stochastic variables,

which should be addressed through detailed analysis of sufficient recorded data for

EV. Finally, it is of interest to extend the proposed methodology to the energy market,

assuming the thermal loads and resources, as well as electrical resources.
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[5] M. Åberg, D. Lingfors, J. Olauson, J. Widén, Can electricity market prices control

power-to-heat production for peak shaving of renewable power generation? the

case of sweden, Energy 176 (2019) 1–14.

[6] J. Faraji, A. Abazari, M. Babaei, S. Muyeen, M. Benbouzid, Day-ahead opti-

mization of prosumer considering battery depreciation and weather prediction for

renewable energy sources, Applied Sciences 10 (8) (2020) 2774.

[7] P. Li, R.-X. Li, Y. Cao, D.-Y. Li, G. Xie, Multiobjective sizing optimization for

island microgrids using a triangular aggregation model and the levy-harmony al-

gorithm, IEEE Transactions on Industrial Informatics 14 (8) (2017) 3495–3505.

[8] J. Faraji, M. Babaei, N. Bayati, M. A Hejazi, A comparative study between tra-

ditional backup generator systems and renewable energy based microgrids for

power resilience enhancement of a local clinic, Electronics 8 (12) (2019) 1485.

[9] C. Wouters, E. S. Fraga, A. M. James, An energy integrated, multi-microgrid,

milp (mixed-integer linear programming) approach for residential distributed en-

ergy system planning–a south australian case-study, Energy 85 (2015) 30–44.

41



[10] D. Wang, X. Guan, J. Wu, P. Li, P. Zan, H. Xu, Integrated energy exchange

scheduling for multimicrogrid system with electric vehicles, IEEE Transactions

on Smart Grid 7 (4) (2015) 1762–1774.

[11] Y. Du, F. Li, Intelligent multi-microgrid energy management based on deep neu-

ral network and model-free reinforcement learning, IEEE Transactions on Smart

Grid 11 (2) (2019) 1066–1076.

[12] S. E. Ahmadi, N. Rezaei, A new isolated renewable based multi microgrid op-

timal energy management system considering uncertainty and demand response,

International Journal of Electrical Power & Energy Systems 118 (2020) 105760.

[13] N. Bazmohammadi, A. Tahsiri, A. Anvari-Moghaddam, J. M. Guerrero, Stochas-

tic predictive control of multi-microgrid systems, IEEE Transactions on Industry

Applications 55 (5) (2019) 5311–5319.

[14] H. Qiu, F. You, Decentralized-distributed robust electric power scheduling for

multi-microgrid systems, Applied Energy 269 (2020) 115146.

[15] J. Faraji, A. Ketabi, H. Hashemi-Dezaki, M. Shafie-Khah, J. P. Catalão, Optimal

day-ahead scheduling and operation of the prosumer by considering corrective

actions based on very short-term load forecasting, IEEE Access 8 (2020) 83561–

83582.

[16] J. Faraji, A. Ketabi, H. Hashemi-Dezaki, M. Shafiekhah, J. P. Catalão, Optimal

day-ahead self-scheduling and operation of prosumer microgrids using hybrid

machine learning-based weather and load forecasting, IEEE Access.

[17] F. H. Aghdam, N. T. Kalantari, B. Mohammadi-Ivatloo, A stochastic optimal

scheduling of multi-microgrid systems considering emissions: A chance con-

strained model, Journal of Cleaner Production 275 (2020) 122965.

[18] X. Mo, J. Zhu, J. Chen, Y. Guo, Y. Xia, M. Liu, A stochastic spatiotemporal

decomposition decision-making approach for real-time dynamic energy manage-

ment of multi-microgrids, IEEE Transactions on Sustainable Energy.

42



[19] L. Xiong, P. Li, Z. Wang, J. Wang, Multi-agent based multi objective renewable

energy management for diversified community power consumers, Applied energy

259 (2020) 114140.

[20] Z. Liu, J. Gao, H. Yu, X. Wang, Operation mechanism and strategies for trans-

active electricity market with multi-microgrid in grid-connected mode, IEEE Ac-

cess 8 (2020) 79594–79603.

[21] A. D. Tesfamicael, V. Liu, M. Mckague, W. Caelli, E. Foo, A design for a secure

energy market trading system in a national wholesale electricity market, IEEE

Access 8 (2020) 132424–132445.

[22] J. An, M. Lee, S. Yeom, T. Hong, Determining the peer-to-peer electricity trad-

ing price and strategy for energy prosumers and consumers within a microgrid,

Applied Energy 261 (2020) 114335.

[23] H. Golmohamadi, A. Asadi, A multi-stage stochastic energy management of re-

sponsive irrigation pumps in dynamic electricity markets, Applied Energy 265

(2020) 114804.

[24] Y. Zhou, W. Yu, S. Zhu, B. Yang, J. He, Distributionally robust chance-

constrained energy management of an integrated retailer in the multi-energy mar-

ket, Applied Energy 286 (2021) 116516.

[25] H. Haghighat, H. Karimianfard, B. Zeng, Integrating energy management of au-

tonomous smart grids in electricity market operation, IEEE Transactions on Smart

Grid 11 (5) (2020) 4044–4055.

[26] U. Akram, M. Khalid, S. Shafiq, Optimal sizing of a wind/solar/battery hy-

brid grid-connected microgrid system, IET Renewable Power Generation 12 (1)

(2017) 72–80.

[27] P. Firouzmakan, R.-A. Hooshmand, M. Bornapour, A. Khodabakhshian, A com-

prehensive stochastic energy management system of micro-chp units, renewable

energy sources and storage systems in microgrids considering demand response

programs, Renewable and Sustainable Energy Reviews 108 (2019) 355–368.

43



[28] M. Dabbaghjamanesh, S. Mehraeen, A. Kavousi-Fard, F. Ferdowsi, A new effi-

cient stochastic energy management technique for interconnected ac microgrids,

in: 2018 IEEE Power & Energy Society General Meeting (PESGM), IEEE, 2018,

pp. 1–5.

[29] P. Kou, D. Liang, L. Gao, Distributed empc of multiple microgrids for coordinated

stochastic energy management, Applied energy 185 (2017) 939–952.

[30] A. S. Farsangi, S. Hadayeghparast, M. Mehdinejad, H. Shayanfar, A novel

stochastic energy management of a microgrid with various types of distributed

energy resources in presence of demand response programs, Energy 160 (2018)

257–274.

[31] S. Nojavan, K. Zare, B. Mohammadi-Ivatloo, Optimal stochastic energy manage-

ment of retailer based on selling price determination under smart grid environ-

ment in the presence of demand response program, Applied energy 187 (2017)

449–464.

[32] F. Sheidaei, A. Ahmarinejad, Multi-stage stochastic framework for energy man-

agement of virtual power plants considering electric vehicles and demand re-

sponse programs, International Journal of Electrical Power & Energy Systems

120 (2020) 106047.

[33] S. M. Nosratabadi, R.-A. Hooshmand, Stochastic electrical energy management

of industrial virtual power plant considering time-based and incentive-based de-

mand response programs option in contingency condition, International Journal

of Emerging Electric Power Systems 1 (ahead-of-print).

[34] J. Chen, F. Wang, K. A. Stelson, A mathematical approach to minimizing the cost

of energy for large utility wind turbines, Applied energy 228 (2018) 1413–1422.

[35] S. Abapour, B. Mohammadi-Ivatloo, M. T. Hagh, Robust bidding strategy for

demand response aggregators in electricity market based on game theory, Journal

of Cleaner Production 243 (2020) 118393.

44



[36] W. Amin, Q. Huang, M. Afzal, A. A. Khan, K. Umer, S. A. Ahmed, A converging

non-cooperative & cooperative game theory approach for stabilizing peer-to-peer

electricity trading, Electric Power Systems Research 183 (2020) 106278.

[37] Y. Jiang, K. Zhou, X. Lu, S. Yang, Electricity trading pricing among prosumers

with game theory-based model in energy blockchain environment, Applied En-

ergy 271 (2020) 115239.

[38] M. Pied, M. F.Anjos, R. P.Malhame, A flexibility product for electric water heater

aggregators on electricity markets, Applied Energy 280 (2020) 115168.

[39] H. Khaloie, M. Mollahassani-pour, A. Anvari-Moghaddam, Optimal behavior of

a hybrid power producer in day-ahead and intraday markets: A bi-objective cvar-

based approach, IEEE Transactions on Sustainable Energy.

[40] Q. Chen, P. Zou, C. Wu, J. Zhang, M. Li, Q. Xia, C. Kang, A nash-cournot

approach to assessing flexible ramping products, Applied Energy 206 (2017) 42–

50.

[41] M. Motalleb, P. Siano, R. Ghorbani, Networked stackelberg competition in a de-

mand response market, Applied Energy 239 (2019) 680–691.

[42] F. S. Oliveira, C. Ruiz, Analysis of futures and spot electricity markets under risk

aversion, European Journal of Operational Research.

[43] S. M. Hakimi, H. Bagheritabar, A. Hasankhani, M. Shafie-khah, M. Lotfi, J. P.

Catalão, Planning of smart microgrids with high renewable penetration consid-

ering electricity market conditions, in: 2019 IEEE International Conference on

Environment and Electrical Engineering and 2019 IEEE Industrial and Commer-

cial Power Systems Europe (EEEIC/I&CPS Europe), IEEE, 2019, pp. 1–5.

[44] S. M. Hakimi, A. Hasankhani, M. Shafie-Khah, J. P. Catalão, Demand response

method for smart microgrids considering high renewable energies penetration,

Sustainable Energy, Grids and Networks (2020) 100325.

45



[45] L. Gubler, G. G. Scherer, Trends for fuel cell membrane development, Desalina-

tion 250 (3) (2010) 1034–1037.

[46] [link].

URL https://www.energy.gov

[47] E. Shahrabi, S. M. Hakimi, A. Hasankhani, G. Derakhshan, B. Abdi, Develop-

ing optimal energy management of energy hub in the presence of stochastic re-

newable energy resources, Sustainable Energy, Grids and Networks 26 (2021)

100428.

[48] F. Ramadhani, M. A. Hussain, H. Mokhlis, M. Fazly, J. M. Ali, Evaluation of

solid oxide fuel cell based polygeneration system in residential areas integrating

with electric charging and hydrogen fueling stations for vehicles, Applied Energy

238 (2019) 1373–1388.

[49] X. Gong, F. Dong, M. A. Mohamed, O. M. Abdalla, Z. M. Ali, A secured energy

management architecture for smart hybrid microgrids considering pem-fuel cell

and electric vehicles, IEEE Access 8 (2020) 47807–47823.

[50] H. Khaloie, A. Anvari-Moghaddam, N. Hatziargyriou, J. Contreras, Risk-

constrained self-scheduling of a hybrid power plant considering interval-based

intraday demand response exchange market prices, Journal of Cleaner Produc-

tion 282 (2021) 125344.

[51] M. Nizami, A. Haque, P. Nguyen, M. Hossain, On the application of home energy

management systems for power grid support, Energy 188 (2019) 116104.

[52] A. Hasankhani, S. M. Hakimi, Optimal charge scheduling of electric vehicles in

smart homes, in: Electric Vehicles in Energy Systems, Springer, 2020, pp. 359–

383.

[53] Renewable energy and energy efficiency organization (satba).

URL http://www.satba.gov.ir

46

https://www.energy.gov
https://www.energy.gov
http://www.satba.gov.ir
http://www.satba.gov.ir


[54] M. Mehrjoo, M. J. Jozani, M. Pawlak, Wind turbine power curve modeling for

reliable power prediction using monotonic regression, Renewable Energy 147

(2020) 214–222.

[55] E. Pashajavid, M. A. Golkar, Charging of plug-in electric vehicles: Stochastic

modelling of load demand within domestic grids, in: 20th Iranian Conference on

Electrical Engineering (ICEE2012), IEEE, 2012, pp. 535–539.

[56] E. Shahryari, H. Shayeghi, B. Mohammadi-Ivatloo, M. Moradzadeh, A copula-

based method to consider uncertainties for multi-objective energy management

of microgrid in presence of demand response, Energy 175 (2019) 879–890.

[57] H. V. Haghi, M. T. Bina, M. Golkar, S. Moghaddas-Tafreshi, Using copulas for

analysis of large datasets in renewable distributed generation: Pv and wind power

integration in iran, Renewable Energy 35 (9) (2010) 1991–2000.

[58] S. Hagspiel, A. Papaemannouil, M. Schmid, G. Andersson, Copula-based model-

ing of stochastic wind power in europe and implications for the swiss power grid,

Applied energy 96 (2012) 33–44.

[59] F. Ielpo, C. Merhy, G. Simon, Engineering Investment Process: Making Value

Creation Repeatable, Elsevier, 2017.

[60] W. P. J. Philippe, S. Zhang, S. Eftekharnejad, P. K. Ghosh, P. K. Varshney, Mixed

copula-based uncertainty modeling of hourly wind farm production for power

system operational planning studies, IEEE Access 8 (2020) 138569–138583.

[61] P. Dimitriadis, D. Koutsoyiannis, Stochastic synthesis approximating any process

dependence and distribution, Stochastic environmental research and risk assess-

ment 32 (6) (2018) 1493–1515.

[62] P. Dimitriadis, D. Koutsoyiannis, Climacogram versus autocovariance and power

spectrum in stochastic modelling for markovian and hurst–kolmogorov processes,

Stochastic environmental research and risk assessment 29 (6) (2015) 1649–1669.

47



[63] S. M. Hakimi, A. Hasankhani, M. Shafie-khah, J. P. Catalão, Optimal sizing and

siting of smart microgrid components under high renewables penetration consid-

ering demand response, IET Renewable Power Generation 13 (10) (2019) 1809–

1822.

[64] Iran grid management company.

URL https://www.igmc.ir/en

[65] V. P. Gountis, A. G. Bakirtzis, Efficient determination of cournot equilibria in

electricity markets, IEEE Transactions on Power Systems 19 (4) (2004) 1837–

1844.

[66] R. Bahmani, H. Karimi, S. Jadid, Stochastic electricity market model in net-

worked microgrids considering demand response programs and renewable energy

sources, International Journal of Electrical Power & Energy Systems 117 (2020)

105606.

[67] [link].

URL https://www.irema.ir

[68] R. Ioannidis, T. Iliopoulou, C. Iliopoulou, L. Katikas, A. Petsou, M.-E. Mer-

akou, M.-E. Asimomiti, N. Pelekanos, G. Koudouris, P. Dimitriadis, et al., Solar-

powered bus route: introducing renewable energy into a university campus trans-

port system, Advances in Geosciences 49 (2019) 215–224.

[69] H. Hashemi-Dezaki, H. Askarian-Abyaneh, H. Haeri-Khiavi, Impacts of direct

cyber-power interdependencies on smart grid reliability under various penetra-

tion levels of microturbine/wind/solar distributed generations, IET Generation,

Transmission & Distribution 10 (4) (2016) 928–937.

[70] N. T. Nguyen, R. Matsuhashi, T. T. B. C. Vo, A design on sustainable hybrid en-

ergy systems by multi-objective optimization for aquaculture industry, Renewable

Energy 163 (2021) 1878–1894.

48

https://www.igmc.ir/en
https://www.igmc.ir/en
https://www.irema.ir
https://www.irema.ir
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