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Abstract- During the recent years, the power system has entered a new technological era. The trends associated with increased 

commitment to wind farms (WFs) and energy storage systems (ESSs) as well demand side flexibility require disruptive changes in 

the existing power system structures and procedures. Being at the heart of a paradigm shift from passive users of the grid to active 

prosumers, storage owners and demand responsive actors, this paper expresses a flexible coordinated power system expansion 

planning (CPSEP) while considering local WFs, ESSs and incentive-based demand response programs (DRPs). This model 

minimizes the summation of the expansion planning, operation and reliability costs while taking the network model based on AC 

optimal power flow constraints, and the reliability and flexibility considerations into account. The proposed framework is firstly 

formulated by mixed integer non-linear programming (MINLP), then to have a well-handed optimization model it is converted to 

mixed-integer linear programming (MILP). Additionally, the uncertainties of load, energy price, maximum WF generation and 

availability/unavailability of the network equipment are included in the proposed model where the first three parameters are modeled 

based on the bounded uncertainty-based robust optimization (BURO), and the scenario-based stochastic programming (SBSP) is 

used to model the last uncertain parameter. Finally, the proposed method is examined on several test networks to assess the 

performance of the proposed framework for flexi-reliable transmission network operation and planning. 
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List of Symbols 

Indices 

g, w, s, l Indices of Generating Units (GUs), Wind Farms (WFs), Energy Storage Systems (ESSs) and load, respectively  

i, j, k Indices of bus, bus, scenario, respectively      

m, n Indices of linearized segments for non-linear terms of AC power flow equations     

t, h Indices of years and hours, respectively  

Parameters  

AG, AL, AW, 

AD, AESS 

Incidence matrix between bus and generation, bus and line, bus and wind farm, bus and load, bus and ESS, 

respectively. 

CG, CW ,CL, 

CESS 

Capital cost of GUs, WFs, transmission line, and ESSs in M$. 

CF Coincidence factor 

E / E  Min/max stored energy in ESS in per unit (p.u.)   

g/b Line conductance and susceptance in p.u. 

PD/QD Active/reactive load in p.u. 

GP / GP  min/max active power of GU in p.u. 

WP / ESSP  Max active power of WF/ESS system in p.u. 

GQ / GQ  min/max reactive power of GUs in p.u. 

LS  Capacity of transmission line in p.u. 

V /V  min/max of voltage in p.u. 

VOLL Value of lost load in $/MWh  

/ Operation price of GUs/energy price in $/MWh  

 Percentage of load participation in the demand response  

α Deviation of angle in radian 

 Probability of scenarios 

ch/dch Charging/discharging efficiency of ESSs 

Variables 

Cp, Co, Cr Cost of expansion, operation and reliability in M$  

E Stored energy in ESSs in p.u. 

EENS Expected energy not supplied in p.u. 

Pch/Pdch Active power charging/discharging for ESS in p.u. 
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PDR Active power of demand response programs (DRPs) in p.u.  

PL/QL Active/reactive power flow of transmission lines in p.u.  

PLNS Active load not supplied in p.u. 

PG/PW Active power of GUs /WFs in p.u. 

QG Reactive power generation for GU in p.u. 

sch/sdch Binary variable for charging/discharging operation modes of ESS 

SF System flexibility [without unit] 

UDR/DDR Upward/downward flexibility for DRP in p.u. 

UESS/DESS Upward/downward flexibility for ESS  in p.u. 

UG/DG Upward/downward flexibility for GU in p.u. 

V/ Voltage magnitude (p.u.)/voltage angle (rad)  

xG,xL, xW, 

xESS 

Binary variables indicating the construction status of GUs, transmission lines, WFs, and ESSs, respectively  

,  Auxiliary functions  

 

1. Introduction 

1.1 Motivation and Approach   

The coordinated power system expansion planning (CPSEP) problem is one of important power system planning problems to supply 

the load growth in the future years. This method couples the generation and transmission expansion planning (G&TEP) and optimal 

scheduling of renewable energy sources (RESs) such as wind farms (WFs) and energy storage systems (ESSs). Also, this problem 

can consider different types of demand response programs (DRPs) [1]. Noted that this problem is kind of a complex non-linear 

optimization problem, where its solution method is complex, and it suffers from the high computational burden while the global 

optimal solution cannot be guaranteed [2]. Moreover, this strategy includes different uncertain parameters such as load, wind energy 

generation, energy price, and the forced outage rates (FORs) of the network equipment. Therefore, ignoring the forecasted error of 

different uncertain parameters or using an inappropriate method to model these parameters may lead to critical conditions and error 

in power systems operation and planning in the future years [3]. Hence, the CPSEP problem needs a suitable model based on its 

objective functions and constraints to obtain a robust and optimal solution. 

1.2 Literature Review  

There are different models for power system planning. For instance, in [4], a bi-level optimization model has been proposed for 

G&TEP based on game theory, where the upper-level models the transmission expansion planning (TEP) and the lower-level 

problem refers to generation expansion planning (GEP) in the restructured environment of power systems. In [5], a stochastic 

G&TEP model implemented on the power networks while considering the natural disaster impacts such as earthquake.  
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Also, a probabilistic method is used in [6] to model the uncertain parameters in the reliable G&TEP while presenting linear 

formulations. The multi-objective G&TEP strategy to minimize the expansion planning cost and the effects of environmental 

pollution is proposed in [7]. Also, in [8], the ESS and transmission switching of the grid-connected wind generation have been 

embedded in TEP.  

In addition, the authors of [9-11] have studied the G&TEP model based on the AC power flow equation, where its solution method 

is based on the conventional evolutionary algorithms such as genetic algorithm (GA), particle swarm optimization (PSO), etc. Also, 

in [12-14], different models of power system planning according to DC power flow equations are introduced to obtain linear 

formulation for these models. The other models of the power system planning are presented in [15-19]; the authors of [15] have 

modeled the impacts of DR and long-run incremental cost (LRIC) based on the pricing signals in the G&TEP formulation. Also, the 

TEP model based on branch-and-cut Benders decomposition (BCBD) algorithm is expressed in [16] to obtain high calculation 

speed. In [17], a tri-level approximation algorithm is used to model the probability of TEP based on the curtailment of wind power 

generation. Finally, the stochastic bi-level model of TEP is studied respectively in [18] and [19] to consider the uncertainty of 

different equipment. To summarize the available literature in the area, the taxonomy of recent research works is addressed in 

Table 1.  

Table 1: Taxonomy of recent research works 

Ref.  Power flow model Flexibility modeling Uncertainty modeling 

[4-7] DC No Stochastic  

[8] DC No Robust 

[9-11] AC No Stochastic  

[12-19] DC No Stochastic  

This paper Linearized AC Yes Hybrid stochastic-robust 

 

1.3 Research Gaps 

Briefly, the main research gaps in the area according to the above-mentioned research works and Table 1 can be summarized as 

follows: 

 Much research consider G&TEP model based on DC power flow equations to adapt linear formulations for this model. 

While the reactive power and power losses of the power system operation are ignored in these models, they result in 

significant errors in the real operation of the power systems. For example, it is possible that a transmission line or a 

generating unit (GU) is not considered to be constructed in the network according to DC-based CPSEP model, but the 

solution of CPSEP model may propose to construct some GUs or transmission lines. Also, the non-linear modeling of the 

G&TEP solved by evolutionary algorithms are not reliable solutions and it suffers from a high computational burden.  

 Also, to the best of authors’ knowledge, the system flexibility as an important index in the current power system planning 

studies is not considered so far. Noted that the flexibility term defined as “the modification of generation injection and/or 

consumption patterns in reaction to an external price or activation signal in order to provide a service within the electrical 

system.” [20-22].  
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 Significant shares of the available research in the area implement the stochastic programming (SP) to model the uncertainty 

sources of the power system planning problem. However, the SP needs a high number of scenarios and complete 

knowledge about the probability density function (PDF) of uncertain parameters to achieve a reliable solution. Noted that in 

the scenario-based stochastic programming (SBSP), the scenario reduction method can decrease the high number of 

generated scenarios to have limited numbers of scenario samples. However, in this approach, significant number of 

scenarios are needed to obtain a reliable solution. For example, considering three scenarios for each uncertainty of active 

and reactive load, energy price, RES power, and availability/unavailability of the network equipment in the proposed 

CPSEP, the proposed problem needs 324 (=35) scenarios.         

1.4 Contributions                         

To cope with the above research gaps, this paper presents a reliable and flexible CPSEP strategy, as shown in Fig. 1, to optimize 

operation and planning of the transmission lines, GUs, WFs, ESSs and incentive based DRPs in power systems. Hence, the SP 

modeling of the proposed strategy is formulated firstly, where it minimizes the summation of operation, expansion planning and 

reliability costs subject to AC power flow equations, ESS, WFs and DRP constraints, system operation limits, reliability and the 

flexibility constraints. Noted that this original model is as mixed integer non-linear programming (MINLP) form that generally 

reveals a locally optimal solution at the high computational burden. Therefore, this MINLP model is converted to mixed integer 

linear programming (MILP) to achieve the global optimal solution with low computational burden and error with respect to the 

original model. In addition, to obtain a robust and secure optimization for the proposed CPSEP formulation, this paper implements 

the hybrid stochastic/robust optimization (HSRO) to model the uncertainty of load, energy price and maximum WF active power 

based on the bounded uncertainty-based robust optimization (BURO), and uncertainty of the availability/unavailability of the 

network equipment is modeled according to the SBSP using Monte Carlo Simulation (MCS).  

 

 
CPSEP 

Planner  WF 

ESS 

Network 
equipment 

 

Transmission network 
including DRP 

Uncertainties    Power  

Hybrid stochastic 
/robust optimization  

: Information   

 
Fig. 1. The proposed CPSEP framework. 
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Accordingly, to the best of authors’ knowledge, the main contributions of this paper can be summarized as follows: 

 Developing non-linear and linear models of the CPSEP problem while considering the reliability and flexibility of the 

system.   

 Modeling the uncertainty using hybrid stochastic/robust optimization to obtain a robust and secure optimal solutions. 

1.5 Paper Organization 

The rest of this paper is organized as follows: In Section 2, the MINLP and MILP stochastic models of CPSEP are expressed. 

Section 3 models the uncertainty in the CPSEP by means of hybrid stochastic/robust optimization. Sections 4 and 5 present the 

simulation results and conclusions, respectively. 

 

2. Original Problem Model  

In this section, the proposed SP is presented for the CPSEP problem to minimize the sum of expansion, operation and reliability 

costs subject to power system operation and planning constraints. 

2.1 Non-linear model 

The original non-linear model of the proposed CPSEP based on the following assumptions is developed in (1)-(30): 

- Wind farms are considered as renewable energy sources in this model. 

- ESSs, non-renewable GUs, and DRPs are flexibility sources in transmission network.  

- Disconnection of GUs, WFs, ESS, load, and transmission lines from network are modeled by N – 1 contingency criteria,  

- DRP formulation is based on incentive-based model that is depended to energy price.   

min   p op rC C C   (1) 

Subject to: 

,
,

, 2

L
i jG G W W L ESS ESS

p g g w w i j s s
g w i j s

x
C C x C x C C x            (2) 

0

, , , , , , , , , , , , , , , , , , , , , ,
,

.365. ( , , , )

oC

G ch dch DR k G ch dch DR
o g g t h t h s t h s t h y h l y h k o g t h k s t h k s t h k l t h k

t h g s l k
C CF P P P P C P P P P   

 
           

 
    


 
(3) 

, , ,
, , ,

365

EENS
LNS

r k i t h k
i t h k

C VOLL CF P
 
      
  



 (4) 

, , , , , , , , , , , , , , , , , , , , , 0 , ,D G dch ch W L DR
D i l l t h G i g g t h ESS i s s t h s t h W i w w t h L i j i j t h D i l l t h

l g s w j l

A P A P A P P A P A P A P i t h                      (5) 

, , , , , , , , , ,   , ,G L L
Gi g g t h Li j i j t h Di l l t h

g j l
A Q A Q A Q i t h         (6) 
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     
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2

, , , , , , , , , , , , , , , , , , , , ,cos sin  , , ,

i j t h

L L
i j t h i j i t h i t h j t h i j i t h j t h i j i t h j t h i jP g V V V g b x i j t h   

 
               
 
 



 (7) 

     
, , ,

2

, , , , , , , , , , , , , , , , , , , , ,sin cos ; , , ,

i j t h

L L
i j t h i j i t h i t h j t h i j i t h j t h i j i t h j t h i jQ b V V V g b x i j t h   

 
                
 
 



 (8) 

   2 2
, , , , , , ,      , , ,L L L

i j t h i j t h i jP Q S i j t h    (9) 

, ,     , ,i t h iiV V V i t h    (10) 

, ,       ,L L
i j j ix x i j   (11) 

, ,      , ,GG G G G
g g t h g ggx P P x P g t h      (12) 

, ,      , ,GG G G G
g g t h g gg

x Q Q x Q g t h      (13) 

, , , ,0      , ,W W W
w t h w w t hP x P w t h     (14) 

, , , , , ,      , ,D DR D
l l t h l t h l l t hP P P l t h        (15) 

, , 0     ,DR
l t h

h

P l t   (16) 

, , , ,0      , ,ch ch ESS
s t h s t h sP s P s t h     (17) 

, , , ,0      , ,dch dch ESS
s t h s t h sP s P s t h     (18) 

, , , , 1 , , , ,
1= +      , ,ch dch

s t h s t h ch s t h s t h
dch

E E P P s t h
    

 (19) 

, ,      , ,ESS ESS
s s t h s ssx E E x E s t h      (20) 

, , , ,      , ,ch dch ESS
s t h s t h ss s x s t h  

 (21) 

, , , Left sideof Eq.(5)withindices forallpower generationsLNS
i t h kP k  (22) 

, , , , , , , , , , , , , ; , , ,G L L
Gi g g t h k Li j i j t h k Di l l t h k

g j l
A Q A Q A Q i t h k         (23) 

, , , , , , ,0 , , ,LNS D
i t h k Di l l t h k

l

P A P i t h k     (24) 

Constraints (7)-(10) and (12)-(21) for all scenarios; (25) 

 , , , , , , , , , , , , , arg (1) (21) ; , , ,G G G G G
g t h k g t h k g t h k g t h g t hU D P P P g t h k        (26) 

 , , , , , , , , , , , , , , , , , , , ,, arg (1) (21) ; , , ,ESS ESS dch ch dch ch dch ch
s t h k s t h k s t h k s t h k s t h s t h s t h s t hU D P P P P P P s t h k                (27) 

 , , , , , , , , , , , , , arg (1) (21) , , ,DR DR DR DR DR
l t h k l t h k l t h k l t h l t hU D P P P l t h k      

 (28) 



8 
 

, , , , , 0G G DR DR ESS ESSU D U D U D   
(29) 

, , , , , , , , , , , , , , , , , ,

, ,, , , , , , , , ,

. . .
2 2

G G DR DR ESS ESS
g t h k g t h k l t h k l t h k s t h k s t h k

k k kD ESSGG
l l t h sgg t h k l t h k s t h kg

U D U D U D
SF

P PP P
  



  
  

  
    (30) 

 

The proposed objective function of the CPSEP problem is expressed in (1) including three terms. The first term of (1) refers to 

annual expansion costs of the transmission lines, GUs, WFs and ESSs as formulated in (2). Eq. (2) includes four terms referring 

respectively to the annual investment cost of GUs, WFs, transmission lines and ESSs. Each term is equal to the product of annual 

investment cost and binary variable related to the construction status of the candidate elements. The second term of the objective 

function (1) presents the annual operation cost mentioned in (3) including the operation cost of GUs, ESSs and DRP in different 

scenarios. Eq. (3) includes two terms, where the first term refers to summation of the fuel cost of GUs (first term), ESSs and DRP 

energy costs (second and third terms) in the base case (C0
o). In the base case, the deterministic condition is considered, i.e., a 

scenario including forecasted value of uncertainty parameters. The proposed CPSEP model is based on the forecasted value of 

uncertain parameters and all possible scenarios. Hence, the second term of Eq. (3) refers to expected operation cost of GUs, ESSs 

and DRP, where operation cost in scenario k is based on the same equation with C0
o while considering the situation of equipment 

and realized uncertain parameters of each scenario. Noted that Ck
o is a function of PG

g,t,h,k, , , ,
dch

s t h kP  , , , ,
ch

s t h kP  and , , ,
DR

l t h kP  in scenario k. 

Finally, the reliability cost is expressed in the third term of (1) and formulated by (4) with considering blackout cost of network 

loads that is dependent of the expected energy not supplied (EENS) [6]. Noted that, it is assumed that WFs have unity power factor; 

hence, the AC optimal power flow constraints, in this case, is formulated as (5)-(11) which are respectively nodal active and reactive 

power balance, line active and reactive power flow, buses voltage and line capacity limitations as well as logical conditions on the 

binary variable of lines’ investment [2]. The constraints (12) and (13) present the active and reactive power limit of the GUs in the 

base case, respectively. Also, the WF capacity limit is presented in (14) where it’s upper limit ( WP ) depends on the wind speed; 

hence, it is variable for different times and scenarios [2].  

In this paper, the incentive-based model of the DRP is used in the CPSEP formwork where it is formulated as (15) and (16) [23-25], 

and it is assumed that all loads can participate in the proposed DR scheme. Hence, constraint (15) refers to the DR power limit that is 

equal to  percent of the network loads. In the proposed method, the required daily energy of loads should be provided in the 24-

hours operation according to (16); therefore, they can shift their consumption from the peak load time to the off-peak load period 

based on the energy price and cost function of DRP in (3). The equations (17) to (21) refer to ESS operation and planning constraints 

[8, 26], where they respectively refer to the charging and discharging active power limits of the ESS, stored energy equation and 

limit in the ESS, and a logical condition for ESS where it prevents the simultaneous operation of charging and discharging modes. 

Finally, the binary variables xL, xG, xW and xESS respectively refer to the investment of the transmission line, GUs, WFs and ESSs. 

Hence, each element can be connected to the network if the related binary variable is equal to 1.  
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For the calculation of the reliability cost in (4), the nodal active and reactive power balance for all scenarios related to the 

uncertainty of load, energy price, WF and availability/unavailability of the network equipment are explained in (22) and (23) to 

obtain active load not supplied ( , , ,
LNS

i t h kP ) that is limited by (24) [6].  

Moreover, equations (7)-(10) and (12)-(21) are repeated for all scenarios as shown in (25), wherein , , ,
DR

l t h kP , Es,t,h,k, , , ,
G
g t h kP , , , ,

G
g t h kQ , 

, , ,
W
w t h kP , , , , ,

L
i j t h kP , , , , ,

L
i j t h kQ , ch

s,t ,h,kP , dch
s,t ,h,kP , ch

s,t,h,ks , dch
s,t,h,ks , Vi,t,h,k and i,t,h,k, are replaced respectively with , ,

DR
l t hP , Es,t,h, , ,

G
g t hP , , ,

G
g t hQ , 

, ,
W
w t hP , , , ,

L
i j t hP , , , ,

L
i j t hQ , ch

s ,t ,hP , dch
s ,t ,hP , ch

s ,t ,hs , dch
s ,t ,hs , Vi,t,h and i,t,h.  

It is noted that the numerical indices are considered to investigate network flexibility [27]. Hence, the upward and downward 

flexibility capacity of the flexible sources (FSs) such as GUs, ESSs and DRP are calculated by (26)-(28), respectively. Accordingly, 

the FS will be provided with the upward flexibility in scenario k if the difference between its power in the scenario k and the base 

case is positive; otherwise, it will provide downward flexibility. Noted that the flexibility capacity is a positive variable based on 

(30). Also, system flexibility (SF) is calculated according to (31) while the SF is equal to the summation of the rate of the total FS 

flexibility to FS power range [27]. 

 

2.2 Linear model  

The proposed original CPSEP model is a non-convex MINLP model due to the presence of product of binary and continuous 

variables and non-linear equations (7)-(9) as well as non-convex constraints (7)-(8) [28-30]. Accordingly, as mentioned before, this 

model cannot achieve the global optimal solution due to the non-convex formulation. In addition, it suffers from high computational 

burden due to the large-scale size of the problem and non-linear formulations [28-30]. Accordingly, the proposed MINLP is 

converted to the MILP model based on some linearization techniques to obtain a more accurate globally optimal solution with a low 

computational burden based on the following assumptions: 

- The voltage angle difference between adjacent buses is in the range of [-/6 /6] in the transmission networks [2] to ensure 

stability in this system,  

- The range of voltage deviations from 1 p.u. is [0.95 1.05] p.u., 

- The value of R/X ratio in the transmission lines is low.  

Accordingly, the linear model of (7) and (8) is respectively as (31) and (32) based on Big-M method and the piecewise linearization 

approach [6, 31]: 

     , , , , , , , , , , , , , , , , , , , , , , , ,(1 ) 2 1 1 (1 ) , , , ,L L L
i j i j m t h i j i t h i j m i j t h i j m t h i j m i t h j t h i jM x P g V V V M x i j m t h                        

(31) 

     , , , , , , , , , , , , , , , , , , , , , , , ,(1 ) 2 1 1 (1 ) , , , ,L L L
i j i j mt h i j i t h i j m i j t h i j mt h i j m i t h j t h i jM x Q b V V V M x i j mt h                        


 

(32) 

where M is a large constant that is considered to be 106, i,j is equal to  i j  , and the parameters of  ,  ,   and   are 

obtained by the following formula: 
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, ;m m m m m m m       
 
 

       
 

  
 

(33) 

, ;m m m m m m m                 
 

(34) 

Note that inequality (9) will be expressed as (35) considering the linearization method of AC power flow constraints in the circular 

plane. Then, this plane can be converted into a polygon as Fig. 2 where each edge is a linear equation function as cos(n)P + 

sin(n)Q = S [28]. Therefore, the polygon can be modeled as cos(n)P + sin(n)Q S, where n {1, 2, …, nn} is the index of 

circular plane’s linearization segments with the total number of nn,  is angle deviation that is equal to 360/nn. Hence, the 

linearized model of (35) is written as (36). 

2 2

, , , , , , , , , , , , ,L L L L
i j m t h i j m t h i j i j

m m

P Q x S i j t h
   
      
   
   
   

(35) 

, , , , , , , , , ,cos( ) sin( ) , , , ,L L L L
i j m t h i j m t h i j i j

m m
n P n Q x S i j t h n           

(36) 

Finally, the proposed MILP model for the CPSEP is written as follows: 

min  p op rC C C 
 

(37) 

Subject to: 

(2)-(6), (10)-(32), (36)
 (38) 

 

P 

Q n = {1,2,…,nn = 6},  = 2/nn = /3 
n = 1,  
Line equation: cos(/3).P + sin(/3).Q = S  
Feasible region: cos(/3).P + sin(/3).Q  S  
 

 

S 

6 

n = 6,  
Line equation: cos(6/3).P + sin(6/3).Q = S  
Feasible region: cos(6/3).P + sin(6/3).Q  S  

 
Fig. 2. The proposed linearization method to the circular plane [28]. 

 

3. Hybrid Stochastic/Robust CPSEP Model 

It is noted that the proposed problem, (37)-(38), includes the uncertainty of load, PD and QD, energy price, , maximum WFs active 

power, WP , and availability/unavailability of the network equipment. Also, it is stated that one of the important indices in the 

proposed CPSEP method is the reliability index or EENS that is independent from energy price and is highly dependent on the 

uncertainty of the availability/unavailability of the network equipment. Moreover, it is not highly changed with respect to the 

uncertainty of load due to the low forecasted load error.  
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Therefore, the uncertainty of availability/unavailability of the network equipment can be modeled by SBSP using MCS to generate 

the significant number of scenario samples based on the forced outage rates (FORs) of GUs and transmission lines which follow the 

Bernoulli probability distribution function [6]. Also, the other uncertain parameters are modeled based on the BURO [28], where its 

theory has been presented in [28]. In this method, the true value of the uncertain parameter is equal to  1 maxP P          or 

 1 maxP P          in the worst-case scenario according to the objective function and its location, where  and  are the 

adjusting parameters that introduce uncertainty level and feasibility tolerance, respectively. P  refers to the forecasted value of the 

uncertain parameter [28].  

The first step of the BURO is to reformulate the proposed CPSEP problem as the standard form of this robust method, where the 

uncertain parameters should be placed in the inequality constraints. Therefore, the standard format of the CPSEP, (37)-(38) can be 

written as follows: 

min  p op rC C C 
 (39) 

Subject to: 

Constraints (2), (4), (10)-(13), (15)-(32), (36) (40) 

Constraints (10), (12), (13), (15)-(21), (24), (26)-(32), (36) for all scenarios (41) 

side of ERigh q.(t 3) 0oC    (42) 

, , , , , , , , , ,   , ,G L L
Gi g g t h Li j i j t h Di l l t h

g j l
A Q A Q A Q i t h         (43) 

, , , , , , , , , , , , , , , , , , , , , , ,G W dch ch L DR D
G i g g t h W i w w t h ESS i s s t h s t h Li j i j t h Di l l t h D i l l t h

g w s j l l
A P A P A P P A P A P A P i t h                   

 
(44) 

, , , , 0     , ,W W W
w t h w w t hP x P w t h     (45) 

 , , , , , ,Left side of Eq.(43) with indices for all powers , , ,LNS D
i t h k D i l l t h

l

P k A P i t h k     (46) 

In the above model, constraints (42)-(44), and (46) are the same as (3), (6), (5), (22) and (23), respectively. Because the equations a 

= b and a  b is the same in the optimization theory of the minimization strategy. Finally, the hybrid stochastic/robust optimization 

with adjusting parameters of uncertainty level () and feasibility tolerance () for the CPSEP problem can be written as follows 

while index k is removed from the uncertain parameters of load, energy price and maximum WF power: 

min  p op rC C C 
 

(47) 

Subject to: 

, ,
,

sideof Eq.(3) 0Righto y h y h
y h

C u     
(48) 

,

, , , , , , , , , , , , , , ,365

t h

ch dch DR ch dch DR
s t h s t h l t h k s t h k s t h k l t h k

s l k s l

f u f

f CF P P P P P P

  

                       
    

(49) 
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 , , , , , , ,L sidef of Eq. 4e mt ( 3) ax , ,D D D
D i l l t h l t h l t h

l
A P P P i t h          

(50) 

 , , , , , , , , , , , , , ,max , ,G L D D D
Gi g g t h Li j i j t h Di l l t h l t h l t h

g j l
A Q A Q A Q Q Q i t h               

(51) 

, , , , , ,. 0     , ,W W W W W
w t h w w t h w w t hP x P x P w t h       

(52) 

, , , , , , , , , , , , , ,+ . - .max - . + .max      , ,D D D DR D D D
l l t h l l t h l t h l t h l l t h l l t h l t hP P P P P P P l t h                    

(53) 

   , , , , , , ,L sidee of Eq.(46) max , , ,ft D D D
Di l l t h l t h l t h

l

A P P P i t h k          
(54) 

 , , , , , , , , , ,0 max , , ,LNS D D D
i t h k Di l l t h l t h l t h

l

P A P P P i t h k           
(55) 

Constraints (40)-(46) (56) 

Note that in the proposed HSRO, problem of (47)-(56) uses BURO to model the uncertainty of load, energy price, RES power, and it 

is solved for different generated scenarios related to the uncertainty of FOR. Hence, the proposed method implements stochastic and 

robust programming, simultaneously. The main advantage of the proposed HSRO based on BURO is the simplicity of 

implementation which results in low calculation time and high accuracy. But, in the other robust model based on the adaptive robust 

programming, the formulation is more complex with the higher calculation time with respect to BURO [3, 28]. In other words, there 

are different robust models such as adaptive robust optimization (ARO), BURO and etc. The BURO benefits from simple process. 

That is, the formulation of the robust models is much more complex using ARO or other available methods in the area, which results 

in the higher calculation time. Also, since the problem is linear, therefore, the accuracy of the BURO is high [28]. 

 

4. Numerical Results and Discussion 

In this section, the proposed HSRO model of the CPSEP problem is implemented on the 6-bus and 30-bus IEEE networks in the 

GAMS software environment, and thus, the simulation results are done by CPLEX solver [32]. The number of linearization 

segments of AC power flow equations and circular inequality is assumed to be 5 [31] and 45 [28], respectively. 

4.1 Case studies   

The following case studies are simulated in this paper to evaluate the capabilities of the proposed strategy: 

Case A: Coordinated G&TEP 

Case B: Coordinated G&TEP considering WF planning    

Case C: Coordinated G&TEP including WF planning and DR operation 

Case D: Flexible CPSEP without DR operation (Coordinated G&TEP including WF and ESS planning) 

Case E: Flexible CPSEP with DR operation 

Case F: Flexible-reliable CPSEP   
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In Cases A-E, there are uncertainties of load, energy price and maximum WF active power; hence, these cases will be solved by the 

robust model. Therefore, there is only one worst-case scenario, and the equations related to reliability and flexibility indices will be 

removed from formulation (47)-(56). However, to calculate the system flexibility in these cases, the results of the proposed robust 

and deterministic CPSEP method should be firstly extracted, and then, the flexibility of the system can be calculated by (26)-(30) 

while considering  = 1. In addition, Case F includes all considered uncertain parameters; hence, it is modeled as (47)-(56). Also, 50 

scenario samples are generated to model the availability/unavailability of the network equipment by MCS. 

4.2 6-bus IEEE network 

In this section, the proposed linear CPSEP method is implemented on the modified 6-bus IEEE network presented in [6], where 

different characteristics, i.e., location, operation cost, investment cost, capacity, resistance, reactance, and FOR, of the existing and 

candidate transmission lines and GUs as well as WF are available in [2, 6]. Moreover, it is assumed that there are 30%, 30% and 

40% of the total network load with power factor 0.9 lag in the buses 3-5, respectively. Also, the daily load factor curve is shown in 

[28] and the yearly load factor for years 1-10 are respectively 0.95, 0.961, 0.972, 0.983, 0.994, 1.005, 1.016, 1.027, 1.039, and 1.05 

with assuming coincidence factor to be 0.7. The base power and voltage in this network are 100 MVA and 230 kV, and the 

allowable range of voltage is [0.95 1.05] p.u.. Moreover, the daily power percentage and energy price curves are obtained from [33] 

and [28], respectively. The VOLL is considered to be 1000 $/MWh [6], and load participation rate in the DRP is 0.30 [2]. In 

addition, three ESSs are planned in this network, where they have 88% charging/discharging efficiency, 5 MW maximum active 

power, 2 MW and 20 MW minimum and maximum stored energy, respectively. Also, the investment cost is 20 $/kWh/year. 

 

- Complexity of model and solution methodologies: Table 2 reports the convergence results of the proposed scheme in case F for 

load level 60 MW and different models. In the deterministic model (there are no uncertainty and forecasting error), the convergence 

of the mixed integer non-linear programming (MINLP) and mixed integer linear programming (MILP) formulations is investigated.  

Based on this table, solvers of MINLP model (BARON, BONMIN, DICOPT and KNITRO [32]) cannot obtain a unique optimal 

solution. Also, DICOPT and KNITRO are not able to achieve a feasible solution, and the objective function value is not same as 

BARON and BONMIN while the total number of variables (equations) is same for these solvers. But it is not the issue for MILP 

model while its solvers (BONMIN, CBC and CPLEX [32]) obtain a unique optimal solution at low calculation time in comparison 

with MINLP model. Noted that, the total number of variables (equations) in MILP is more than MINLP. Among these solvers, 

CPLEX has superior solution results with respect to other solvers while it finds the solution at the least calculation time. In addition, 

the convergence results of the hybrid stochastic-robust optimization model using different robust models, i.e., BURO, adaptive 

robust optimization (ARO) [3, 8] and information-gap decision theory (IGDT) [34], for uncertainty level of 0.1 have been addressed 

in Table 2. Noted that, IGDT generally obtains the maximum value of the uncertainty level. As seen in Table 2, the objective 

function values are close in the robust models, while, BURO has the least calculation time. Because the total number of equations 

and variables for BURO is lower than others. As inferred from the results, the proposed MILP model using BURO has the most 

satisfactory solution from the viewpoint of model complexity.                     
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Table 2. Results of the complexities in the different models for the load level 60 MW in Case F. 

Deterministic model 
Model Solver Total number of equations Total number of variables Objective function Calculation time (s) Solution state 

MINLP BARON 9472 56121 103.7 2695.3 Feasible 
BONMIN 9472 56121 97.6 1247.5 Feasible 
DISOPT 9472 56121 - - Infeasible 
KNITRO 9472 56121 - - Infeasible 

MILP BONMIN 12739 68428 90.9 104.7 Feasible 
CBC 12739 68428 90.9 95.2 Feasible 

CPLEX 12739 68428 90.9 81.4 Feasible 
Hybrid stochastic-robust model 

Robust model Total number of equations Total number of variables Objective function Calculation time (s) Solution state 
BURO 13933 68428 112 98.4 Feasible 
ARO 16893 73483 112.1 134.2 Feasible 
IGDT 14078 68428 111.8 107.3 Feasible 

 

– Uncertainty parameter in the robust model: Firstly, the true values of the active and reactive load, energy price and maximum 

active power of WF for cases A-F in the worst-case scenario are presented in Table 3. This table shows the results of the robust 

model for the sixth year of the planning period based on the peak load (60 MW) and different adjusting parameters of model, i.e.,  

and . According to this table, it is observed that in the worst-case scenario, if the level of uncertainty () is increased compared to 

the corresponding deterministic model of load scenario ( and  = 0), the rate of active and reactive load increases and the maximum 

generation capacity of WF is decreased. However, the decline or rise in energy prices depends on the type of the case study such that 

in Case C (that includes DRPs and ignores ESS) the price has been reduced by increasing , because the coefficient of the DRP 

operation cost is negative in the objective function (47) according to (48). Thus, the energy price should be reduced in the worst-case 

scenario to decrease the DRP benefit in the robust model. But it will be increased by increasing  in Case D that includes only ESS 

as the flexible source, because the coefficient of the ESS operation cost is positive in the objective function. In Cases E and F, the 

DRP impact has overcome with the ESS impact; hence, the value of the energy price will be increased if the uncertainty level 

increases. Finally, it is noted that the results of the robust model by increasing  in the worst-case scenario in comparison with the 

deterministic model in Cases A-E or stochastic model in Case F are not in the same direction as a result of increasing . 

Table 3. The true values of uncertain parameters for the load level of 60 MW in the sixth year of planning in different cases.  

Uncertain parameter Total daily active load (MW) 
 and  0 & 0 0.01 & 0 0 & 0.1 

Case A-F 914 905 1005 
Uncertain parameter Total daily reactive load (MW) 

 and  0 & 0 0.01 & 0 0 & 0.1 
Case A-F 442.5 438 487 

Uncertain parameter Daily energy price ($/MWh) 
 and  0 & 0 0.01 & 0 0 & 0.1 

Case A-B - - - 
Case C 550 555.5 495 
Case D 550 544.5 605 
Case E 550 551.3 523.4 
Case F 550 551.3 523.4 

Uncertain parameter Daily total WP  (MW) 
 and  0 & 0 0.01 & 0 0 & 0.1 
Case A - - - 

Case B-E 79.2 80 71.3 
Case F 79.2 100 89.1 
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– Economic results: Table 4 presents the investment, operation and reliability costs of the proposed CPSEP in all cases for different 

load levels and adjusting parameters of the robust model. Accordingly, there are some considerations which are inferred from this 

table as follows: 

Table 4. The costs in the proposed scheme for different load levels in all case studies and robust models.  

Cost (M$) Planning and operation/Reliability   

 and  0 & 0 0.01 & 0  0 & 0.1 

Load level=20 MW 

Case A 19.5/- 19.3/- 21.5/- 

Case B 18.5/- 18.3/- 20.3/- 

Case C 17.7/- 17.5/- 19.5/- 

Case D 18.5/- 18.3/- 20.3/- 

Case E 17.7/- 17.5/- 19.5/- 

Case F 20.1/1.2 19.8/0.9 23.3/1.7 

Cost (M$) Planning and operation/Reliability   

 and  0 & 0 0.01 & 0  0 & 0.1 

Load level=40 MW 

Case A 44.8/- 44.5/- 54/- 

Case B 42.3/- 41.9/- 50.3/- 

Case C 37.3/- 36.9/- 43.2/- 

Case D 42.3/- 41.9/- 50.3/- 

Case E 37.3/- 36.9/- 43.2/- 

Case F 46/4.7 45.4/4.2 57.5/6.1 

Cost (M$) Planning and operation/Reliability   

 and  0 & 0 0.01 & 0  0 & 0.1 

Load level=60 MW 

Case A 81.1/- 80.2/- 98.3/- 

Case B 76.8/- 77.9/- 89.2/- 

Case C 66.1/- 65.3/- 76.5/- 

Case D 70.4/- 69.6/- 81.5/- 

Case E 62.3/- 61.5/- 74.3/- 

Case F 83.3/8.8 82.5/8.2 101.4/10.6 

Cost (M$) Planning and operation 

 and  0 & 0 0.01 & 0  0 & 0.1 

Load level=80 MW 

Case A 116.3/- 115.1/- 132.4/- 

Case B 113.4/- 112.2/- 127.3/- 

Case C 100.1/- 99.1/- 115.2/- 

Case D 105.4/- 104.4/- 121.3/- 

Case E 96.6/- 95.5/- 109/6/- 

Case F 121.3/11.4 120.1/10.8 138.7/13.2 

 

– The reliability cost will be increased if the load level is increased, because the load not supplied and EENS will be increased in 

this condition.   

– Increasing the load level in all cases causes an increase in the investment and operation costs due to the increasing number of 

equipment and energy demand in this condition.  

– By increasing the uncertainty level, the cost of the proposed scheme increases due to increasing/decreasing load/WF capacity 

in the worst-case scenario which highlights the need for more equipment in this condition and consequently the increased cost 

of energy and power outages. However, the results of increasing  is in the opposite direction of increasing . 
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– For different load levels and robust models, Case E has the least cost with respect to the other cases, but the cost value in the 

Case F is the highest. Accordingly, it can be inferred that the G&TEP cost is low in the presence of local sources such as WF, 

ESS and DRP, and also, improving the system reliability needs a high cost due to the increasing equipment number in the 

expanded network. 

–  Investigating network indices: The indices of the technical performance, flexibility and peak load carrying capability (PLCC) of 

the network in different robust models are depicted in Fig. 3. This figure shows the network technical indices such as maximum 

voltage deviation and energy loss for the load level of 60 MW in different robust models, RO(, ). As shown in Fig. 3, the cases E 

and A respectively have the minimum and maximum voltage deviation and energy loss as results of the benefits of local sources, 

ESSs and active loads operation in G&TEP. In addition, variations of / have small impacts on the changes of voltage deviation 

and energy loss for cases E and F in the robust model in comparison with the results of the deterministic model.  

Figs. 4 and 5 show respectively the PLCC and system flexibility curves in the different robust/HSRO models and cases. It is noted 

that in comparison with the deterministic model of the cases A to E and the stochastic model of case F ( =  = 0), it can be 

concluded that the local sources, ESSs and active loads in the G&TEP problem can increase the PLCC based on the results of Case 

E with respect to Case A. Also, adding fast-flexible sources such as ESS and DRP to CPSEP in Case E can obtain the higher 

flexibility level in the network versus Case B (Fig. 5). Moreover, the difference of these indices between cases E and F (considering 

reliability equations) is low that indicates the proposed method can acquire high reliability, flexibility and PLCC, together with the 

low voltage deviation and energy loss with the rational cost, as shown in Table 4. Finally, increasing the uncertainty level/feasibility 

tolerance in the robust model or hybrid stochastic/robust model causes that the PLCC and system flexibility to be 

increased/decreased due to reducing/increasing the feasibility space of the proposed problem in this condition. 

 

 
(a) 

 
(b) 

Fig. 3. Technical network indices, (a) maximum voltage deviation, (b) energy loss for the load of 60 MW, in robust/HSRO models of all cases. 
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Fig. 4. The PLCC value in all cases and robust models, RO(, ). 

 

 

Fig. 5. System flexibility for the load level 60 MW in all cases of robust models, RO(, ). 

 

4.3 30-bus IEEE network 

In this section, the proposed strategy is simulated on the 30-bus IEEE network, where the data of GUs, WFs, transmission lines 

and load is addressed in [35]. The other data such as daily load factor, energy price, WF power percentage curves, load participation 

rate and other parameters is similar  to  the 6-bus IEEE network data. Also, ESS can be connected to each bus, and in this network, 8 

ESSs are considered.  In Fig. 6, the daily DRP power curve in Case E at last year of planning considering the peak load of 400 MW 

has been illustrated for different robust models. In this figure, the positive/negative values mean the load power is 

reducing/increasing. As seen, all consumers reduce their load at high energy price hours, 14:00-22:00, and they increase their 

consumption at a low energy price period, 1:00-13:00 and 23:00-24:00. Therefore, DRP reduces the cost of the proposed strategy by 

shifting the load at peak load times to off-peak load hours. In addition, the DRP power will increase, if the uncertainty level is 

increased to satisfy the power balance constraint in the power system. But if the feasibility tolerance is increased then it would be 

reduced to satisfy this constraint. Fig. 7 depicts the daily energy curve of ESS in the last year of planning for Case E with the load 

level of 400 MW. In this figure, increasing/decreasing energy means charging/discharging modes of the ESS. As seen in Fig. 7, the 

ESS is charged in the period of low energy price, 1:00-7:00, and discharged at the period of 18:00-22:00 that is related to high 

energy price. Therefore, as the DRP and ESS reduce the cost of the CPSEP method, they will increase/decrease their power with 

increasing / to satisfy the power balance constraint.  

PL
C

C
 (M

W
)

Sy
st

em
 fl

ex
ib

ili
ty



18 
 

Fig. 8 provides data about the reliability cost and the sum of investment and operation cost versus VOLL for different robust models. 

Accordingly, increasing the penalty price of VOLL causes decreasing reliability cost and increasing operation and planning costs for 

all hybrid stochastic/robust models; hence, this cost is rational for reducing the EENS. In addition, increasing the  or  

increases/decreases different costs, but it can reduce the EENS in the worst-case scenario by considering enough extra costs. 

 

 

Fig. 6. Daily power curve DRPs for case E at the load level of 400 MW in the last year of planning in different robust models, RO(, ). 

 

 

Fig. 7. Daily energy curve of ESSs for Case E at the load level of 400 MW in the last year of planning in different robust models, RO(, ). 

 

 

Fig. 8. The cost variations versus VOLL in case F at the load level of 400 MW in different robust models, RO(, ). 
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5.  Conclusion 

In this paper, a hybrid stochastic/robust CPSEP strategy has been presented to perform the expansion planning of the transmission 

lines, generation units, wind farms and energy storage systems in a power system considering the incentive-based demand response 

programs. The proposed method minimizes the sum of investment, operation, and reliability costs subject to AC optimal power flow 

constraints in the presence of different local sources, storages, and active loads. The original model of this strategy is in the form of 

MINLP, where in this paper it was converted to the MILP counterpart by means of linearization methods to obtain a globally 

optimal solution with low calculation time and error. Also, BURO has been used to model the uncertainty of load, energy price and 

maximum active power output of WF, and the SBSP has been used to model the uncertainty of availability/unavailability of the 

network equipment in this paper. Finally, according to the numerical results, it is concluded that the proposed strategy can provide a 

reliable and flexible power system operation and planning including low energy loss and voltage deviation via optimal planning and 

scheduling of the network equipment, local sources, storages, and active loads. Noted that in the CPSEP problem, different indices 

such as security, emissions, cost, and operation are important to achieve a more secure and robust expanded network. While 

improving one index has no guarantee of improving another. Thus, to cope with this issue, the future studies in this area can focus on 

developing multi-objective CPSEP model based on decomposition techniques.     
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