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Abstract: To ensure the autonomous power supply in MGs in stand-alone mode while also maintaining stability, 

energy storage systems (ESSs) and demand-side flexibility can be utilized together. Motivated by this fact, in this 

study, a scenario-based energy management system (EMS) modelled as a mixed-integer linear programming (MILP) 

problem is presented by taking the stochastic nature of wind and photovoltaic (PV) sources into account in order to 

analyze the operational behaviour of MGs and thereby to reduce the network energy losses. Direct load control 

(DLC) based demand response (DR) program is implemented to the system with the objective of exploiting the 

remarkable potential of thermostatically controllable appliances (TCAs) for energy reduction while satisfying 

comfort and operational constraints. Furthermore, a common ESS with a bi-directional power flow facility is 

incorporated in the proposed structure and electric vehicles (EVs) are employed as an additional flexible load in grid-

to-vehicle (G2V) mode. To testify the effectiveness of the proposed optimization algorithm, different case studies are 

conducted considering diverse scenarios. Moreover, the performance is compared with a deterministic method from 

the perspective of achieving loss reduction and capturing the uncertainties. 
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1. Introduction  

1.1 Motivation and Background 

Microgrids (MGs) are small-scale low-voltage energy systems that play an increasingly important role in the modern power grid, 

recently. These autonomous systems consist of modular and distributed generation (DG) units, energy storage systems (ESSs), and 

a cluster of local loads with distinct electrical boundaries [1]. MGs can be operated in either grid-connected or stand-alone mode 

effectively. In a grid-connected mode operation, a point of common coupling enables bi-directional power exchange, allowing 

energy to be fed from or injected into the upstream grid [2]. 

Apart from various benefits, the MG structure has also some problems in terms of high resistance losses due to the low operating 

voltage [3]. Besides, it is widely accepted that MGs currently rely on renewable energy systems (RESs) in energy generation 

instead of carbon-intensive energy sources due to environmental concerns [4]. However, the unpredictable nature of RESs brings 

about significant challenges in MG operation. Moreover, in addition to the fluctuation on the power supply side, electricity prices, 

end-users’ demand, and heterogeneity of electric loads have also caused uncertainties for demand side. These changes becloud 

supply-demand equality and frequency/voltage stability in MGs [5].  

The aforementioned major issues can be handled with various methods, such as employing ESSs, including controllable 

generating units, and integrating demand response (DR) programs into the operational tools to enhance the system’s reliability and 

security. One of the well-known types of DR, the direct load control (DLC) based DR strategies are conducted for thermostatically 

controlled appliances (TCAs), such as refrigerators, air conditioners (ACs), and electric water heaters. These flexible loads are 

utilized as ancillary services for instantaneous changes in switching conditions due to their rapid response and thermal inertia [6]. 

It is evidently seen that modern MGs are complicated energy structures that integrate RESs, dispatchable generating units, 

different types of prosumers together with the heterogeneity of the appliances and ESSs. Therefore, the development of an energy 

management system (EMS) is an attractive solution and plays a critical role in long-term MG planning with coordinating above 

mentioned frameworks in order to enhance the system performance. Also, there is an opportunity to provide sustainable energy to 

the end-users thanks to DR programs by mitigating power imbalances associated with intermittent RESs. 

1.2 Relevant Background 

Various methods are available in the literature for modelling MG’s complicated architecture to accomplish technical, economic, 

and environmental benefits associated with MG deployment. Most of the existing studies are concentrated on deterministic-based 

mathematical frameworks [7, 8] in which it is possible to determine the output value by the given parameters and initial conditions 

[9]. Although the deterministic approach is evaluated as one of the widely-used techniques in MG operation [10], consideration of 

uncertainties has attracted great interest from the academic community and industry. In this sense, different methodologies have 

been introduced for uncertainty management in the operating of a traditional distribution system and/or MG.  
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Stochastic techniques [11]-[12], sensitivity analysis [13]-[14], and fuzzy modelling approaches [15]-[16] have been broadly used 

methods in the literature for dealing with various unpredictable natural phenomena. Natural variability is considered as 

uncertainties [17] in sensitivity analysis, on the other hand, membership functions are identified in fuzzy modelling based on the 

personal experiences [18]. Hence, it is important to emphasize that a stochastic methodology is superior to others when comparing 

the benefits and drawbacks of the aforementioned techniques. 

 It has become one of the most widely-used schemes for not only energy management systems but also transportation models, 

logistics, financial instruments, and network design [19]. In essence, the intermittent nature of RESs can be addressed in the MG 

concept by creating numerous scenarios that ensure a probabilistic guarantee for constraint satisfaction [20] and also taking into 

account worst-case situations [10]. 

The number of studies in the literature on EMS strategies that take various combined structures into account for providing 

optimal MG operation has increased recently. Table 1 provides a comprehensive classification of specialized literature in the 

proposed research area. Although the DR is foreseen to be an essential part of MGs operations, the literature studies [13]-[33] did 

not take it into consideration together with EV integration. It should be underlined that neither any type of DR implementation nor 

EV integration was taken into account in [34], [38]-[40]. Also, the models in [38]-[40] disregard the power flow constraints, while 

optimizing their decision making algorithms. Furthermore, a non-convex mixed integer nonlinear program based model was 

presented in [38] which does not guarantee global optimality. In addition, uncertainties due mainly to RESs were not even touched 

in [39]. On the other hand, the price-based demand response (PBDR) program was the issue in [35]-[37], [41] while the most 

effective demand reduction application, DLC-based DR was neglected. 

It can be deduced from the taxonomy table that this study has some crucial differences from the existing literature, especially 

considering uncertainty handling method, DR implementation, optimal power flow tool, and objective function. Collaborated 

operation of DLC-based DR program, RESs-based distributed power generation units, EV, and common ESS has been provided 

under the effective energy management system framework. 

1.3 Contributions and Organization of the Paper  

It can be stated that the uncertain generation of wind and PV along with the power flow analysis have been neglected in the most 

recent literature according to the comprehensive review. Considering this fact, a scenario-based stochastic optimization framework 

is presented in this study by incorporating multivariant participants (industrial, commercial and residential) together with 

controllable and non-controllable appliances in MG with the aim of maximizing total loss reduction. The detailed MILP-based 

mathematical model makes it possible to ensure global optimality.  
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Table 1: Classification of specialized literature in the proposed research area  

 
 

Ref. 
RES DR ESS EV 

Type of End-user 
Power 
Flow 

Method of Component Modelling Mode of Operation 
Objective 
Function Res. Com. Ind. Det. Rob. Sensitivity 

Analysis 
Stochastic 
Approach 

Fuzzy 
Model 

Mixture Grid-
connected 

Stand
-alone 

[13] ✔ ✖ ✔ ✖ N/A N/A N/A ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✔ ✖ Cost optimization 

[14] ✔ ✖ ✔ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✔ Cost optimization 

[15] ✔ ✖ ✔ ✖ N/A N/A N/A ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✔ ✖ 

Minimizing 
operating 

costs&fossil fuel 
consumption 

[16] ✔ ✖ ✔ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✔ Minimizing the 
operational cost 

[21] ✔ ✖ ✔ ✖ N/A N/A N/A ✔ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✔ 
Minimizing capital 
investment&fuel 

costs 

[22] ✔ ✔ ✔ ✖ N/A N/A N/A ✔ ✔ ✖ ✖ ✖ ✖ ✖ ✔ ✔ Minimizing total 
cost&comfort 

[23] ✔ ✖ ✔ ✖ N/A N/A N/A ✔ ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✔ 

Minimizing 
operating 

costs&pollutant 
emissions 

[24] ✔ ✖ ✔ ✖ N/A N/A N/A ✔ ✖ ✖ ✖ ✔ ✖ ✖ ✔ ✖ 
Minimizing 

fuel&operation&loss
es cost 

[25] ✔ ✖ ✔ ✖ N/A N/A N/A ✔ ✔ ✖ ✖ ✖ ✔ ✔ ✔ ✔ 

Minimizing 
operating 

cost&enviromental 
impact 

[26] ✔ ✖ ✔ ✖ ✔ ✖ ✖ ✔ ✔ ✖ ✖ ✖ ✖ ✖ ✔ ✖ 
Minimizing 

electricity grid 
losses 

[27] ✔ ✔ ✖ ✖ ✔ ✔ ✔ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✔ Cost minimization 

[28] ✔ ✔ ✖ ✖ ✔ ✔ ✔ ✔ ✔ ✖ ✖ ✖ ✖ ✖ ✔ ✖ Cost minimization 

[29] ✔ ✔ ✔ ✖ ✖ ✔ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✔ ✖ 
Peak load 

reduction&cost 
minimization 

[30] ✔ ✔ ✔ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✔ Cost&emission 
minimization 

[31] ✔ ✔ ✖ ✖ ✔ ✔ ✔ ✔ ✔ ✖ ✖ ✖ ✖ ✖ ✔ ✖ Minimizing MG 
operational cost 

[32] ✔ ✔ ✔ ✖ N/A N/A N/A ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✔ ✖ Minimizing the 
operational cost 

[33] ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✔ Minimizing total 
cost 

[34] ✔ ✖ ✔ ✖ N/A N/A N/A ✔ ✖ ✔ ✖ ✖ ✖ ✖ ✔ ✖ Cost minimization 

[35] ✔ ✔ ✔ ✖ N/A N/A N/A ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✔ ✖ 
Optimization of 
cost&emission 

[36] ✔ ✔ ✔ ✖ N/A N/A N/A ✔ ✖ ✖ ✖ ✔ ✖ ✖ ✖ ✔ Cost minimization 

[37] ✔ ✔ ✔ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✔ ✖ Cost minimization 

[38] ✔ ✖ ✔ ✖ ✔ ✔ ✖ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✖ ✔ Cost&emission 
minimization 

[39] ✔ ✖ ✔ ✖ ✔ ✔ ✔ ✖ ✔ ✖ ✖ ✖ ✖ ✖ ✔ ✖ 
Maximizing the 

profit 

[40] ✔ ✖ ✔ ✖ ✔ ✔ ✖ ✖ ✔ ✖ ✔ ✖ ✖ ✔ ✖ ✔ Cost optimization 

[41] ✔ ✔ ✔ ✖ N/A N/A N/A ✖ ✖ ✖ ✖ ✔ ✖ ✖ ✔ ✖ Cost minimization 

This 
Study ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✖ ✖ ✔ ✖ ✔ ✔ ✖ 

Minimizing 
distribution grid 

losses 
 
Note: N/A=Not Available, RES=Renewable Energy Source, DR= Demand Response, ESS=Energy Storage System, EV=Electric Vehicle, Res=Residential end-user, 

Com=Commercial end-user, Ind= Industrial end-user, Det=Deterministic, Rob= Robust 
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The major contributions of this study are as follows: 

1) Flexibility provisioning through a DLC-based DR program that allows more efficient energy management by utilizing the 

gathered flexibility in loss minimization and performance enhancement of the MG is considered in the proposed scheme. The 

thermal model enables to alteration of the power profiles of the thermostatically manageable loads while still satisfying the 

requirements of temperature ranges. 

2) The intermittency associated with the RES generation, namely wind and PV farms is dealt with scenario-based system 

modelling in a stochastic day-ahead planning context, which has been rarely considered in the literature. The detailed framework 

provides coordinated operation of EVs alongside the dynamic component of ESS and RESs.   

3) The performance of the proposed stochastic model is compared with the deterministic method by simulation validation under 

several case studies to demonstrate the effectiveness of the proposed scenario-based EMS framework on the considered multi-

component MG structure. 

The remainder of the paper is organized as follows: Section 2 presents the mathematical basis of the generation and ESS units, 

and also all operational possibilities in the MG structure. Afterward, Section 3 includes the case studies for evaluating the 

effectiveness of the proposed scheme and, finally, Section 4 draws the conclusions. 

2. Problem Formulation 

2.1 General Scheme of the Proposed Framework 

The demonstration of the proposed MG structure that has bi-directional power flow capability is shown in Fig. 1. The demand of 

this MG is provided by the upstream grid and/or locally distributed power sources. The surplus energy may be stored in a shared 

storage system and/or injected into the upstream grid by means of optimal MG operation. Industrial, commercial and residential end 

users are considered in this structure. To address the uncertainties, a scenario-based stochastic optimization approach is proposed. 

2.2 Mathematical Formulation 

This subsection elucidates the mathematical formulation of MILP-based EMS together with the system operational constraints 

and power flow. 

2.2.1 Objective Function 

Aiming at minimizing the total losses in MG, an objective function given by (1) is proposed. To calculate total losses during the 

whole simulation period in a stochastic manner, 푃 , , ,  should be multiplied with equal probabilities of PV and wind scenarios 

(휋 , 휋 ).    

푀푖푛푖푚푖푧푒 퐿표푠푠푒푠  

휋 ∙ 휋 ∙ 푃 , , ,   ,∀푏 ∈ 퐵, 푡 ∈ 푇,∀푣,푤 
(1) 
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Fig. 1. Proposed smart microgrid structure. 

2.2.2 Power Balance, Limits of Branch Flow and Substation 

푃 ,
, + 푃 ,

, + 푃 , ,
, , + 푃 , , ,

, + 푓 , , , − 푓 , , ,  
∈ : ∈

 
∈ : ∈

= 푃 , ,
, + 푃 , ,

,  + 푃 + 푃 , ,
, ,    ∀푖 ∈ 퐼,∀푡 ∈ 푇,∀푣,푤 

(2) 

−푓 ≤  푓 , , , ≤  푓    ∀푏 ∈ 퐵, 푡 ∈ 푇,∀푣,푤 (3) 

푃 , , , =  푃 , , ,
, + 푃 , , ,

∈

+ 푃 , ,
,    ∀푖 ∈  훺 ,∀푡 ∈ 푇,∀푣,푤 (4) 

푃 , , , ≤ 푁 ∙ 푢 , ,  (5) 

푃 , ,
, ≤  푁 ∙ (1 − 푢 , , ) (6) 

0 ≤  푃 , , ,  ≤ 푃 ,   ∀푖 ∈  훺 ,∀푡 ∈ 푇,∀푣,푤 (7) 

In this MG architecture, the general power balance formulation is stated in (2) which is important to match supply and demand 

in every single period. Total produced power by renewable-based DG units, actual power provided by ESS discharging, and the 

transferred power from the upstream grid for meeting demand are represented on the supply side.  

From the demand side perspective, total residential consumption including inflexible demand, flexible demand, and possessed 

EV charging power, commercial end-users’ total consumption including inflexible demand, flexible demand, and EV charging 

power and industrial premise inflexible load are taken into consideration. Also, herein the total ESS charging power should be 

considered for the scenario 푣 and 푤 during the period 푡. Moreover, the power which flows from bus 푖 to bus 푗 (mirror set of nodes) 

and is sent to load busses from slack bus 푖 are included in (2) by representing as ∑ 푓 , , ,∈ : ∈ , ∑ 푓 , , ,  ∈ : ∈ , respectively. 
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In this formulation, it should be highlighted that 푏 ∈ 퐵: 푖 ∈ Ω  in summation ∑ 푓 , , ,  ∈ : ∈  indicates flowing active power from 

bus 푗 to 푖; while ∑ 푓 , , ,  ∈ : ∈  states leaving power from bus 푖.       

The flowing power can be positive or negative depending on the optimal solution of the problem and this should be maintained 

between maximum branch flow limits as indicated in (3). Also, the load demand of busses, as well as power losses, should be 

covered by the upstream grid as stated in (4) by also taking into selling option account. However, it is not possible to draw/inject 

energy from/to the upstream grid simultaneously. Therefore, binary variable (푢 , , ) is necessary in the mathematical model in 

order to determine power transactions between upstream grid and MG by inequalities (5) and (6). Finally, (7) enforces the fact that 

a range of injected power from the upstream grid cannot exceed the specified constraint (푃 , ).    

2.2.3 Linear Approximation of the Losses 

푃 , , , = 푏 ∙ 푓 , , , + 푐 ∙ 푓 , , ,       ∀푏 ∈ 퐵,∀푡 ∈ 푇,∀푣,푤    (8) 

푧 , , , ,
∈

= 1                       ∀푏 ∈ 퐵,∀푡 ∈ 푇 (9) 

푓 , , , = 푋
∈

∙ 푧 , , , ,      ∀푏 ∈ 퐵,∀푡 ∈ 푇 (10) 

퐹 , , , =  푌
∈

∙ 푧 , , , ,      ∀푏 ∈ 퐵,∀푡 ∈ 푇 (11) 

Equation (8) expresses the power losses on a branch which is approximated using a second-order function of power flow in the 

lines multiplying with the coefficients 푞 and 푗. It is clearly evident that this statement is not appropriate for MILP formulation due 

to its nonlinear characteristic. Thus, the Special Order Sets of Type 2 (SOS2) technique is considered in the linearization process as 

denoted in Eqs. (9)-(11). SOS2 has computational advantages. It is highlighted in the literature that the technique of SOS2 has 

minor approximation errors in linearization enabling the model of the system accurately. 

2.2.4 DG Production 

푃 ,
,  =  ∑ 푃 , ,    (12) 

푃 ,
,  =  푃 , ,  (13) 

Equations (12) and (13) denote the total power production by PV farms in scenario 푣 during period 푡 and wind turbines in 

scenario 푤  during period 푡, respectively. It is considered that there are two PV farms indicating 푓  and 푓  subsets while wind 

plants are 푐  and 푐 .        

3.2.5 Residential Model 

푃 , ,
, =  ∑ ∑ 푃 , , , ,    (14) 
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푃 , , , ,  =  푃 , ,
, + 푃 , , , ,

,  +  푃 , , , ,
,  (15) 

The total residential consumption is shown in (14) and its inflexible demand, flexible demand, and EV charging power in 

scenarios 푣 and 푤 are denoted by (15). 

2.2.5.1. Residential AC Model 

푇 , , , ,
, = 1− ∆

∙ ∙ ∙ ,
∙  푇 , , , ,

, + ∆
∙ ∙ ∙ ,

∙  푇  − 푢 , , , ,
, , ∙ ,

, ∙∆

. ∙ ∙
 ∀푡 > 1,∀푣,푤   (16) 

푆푃 , ,
, − 푆 , ,

,  ≤  푇 , , , ,
, ≤  푆푃 , ,

, + 푆 , ,
,    ∀푡: 푆푃 , ,

, ≠ 푁푎푁  (17) 

푃 , , , ,
, =  푃 ,

, ∙  푢 , , , ,
,  (18) 

푇 ,
, − 푇 ,

, ≤ 푇 , , , ,
, ≤  푇 ,

, + 푇 ,
,   ∀푡 ∈ [푡 , 푡 ],∀푣,푤 (19) 

The model depending on thermodynamic properties of materials and air, outdoor temperature, etc. is derived and expressed by 

(16)–(18). The indoor temperature limits are determined by the occupants and up/down variation of the temperature from the ideal 

point represented as positive 푆 , ,
, , 푆 , ,

,  variables respectively. These mentioned constraints are written for the thermostat set-

point control mechanism (TSCM) method. Inequality (19) denotes the room temperature up/down limitations determined by end-

users during DR horizon. With respect to these constraints, MG operator can switch on/off AC by direct compressor control 

mechanism (DCCM). Finally, the amount of energy consumption can be calculated using (18). Inside mass of air and equivalent 

house thermal resistances are used to control the power consumption of their possessed AC. These expressions are calculated from 

different formulas derived from [42]. 

2.2.5.2 Residential EV Model 

0 ≤ 푃 , , , ,
,  ≤  푅 ,

,  ∙  푢 , , , ,
,   , ∀푡 ∈ [푇 , ,  ,푇 , , ] (20) 

푆푂퐸 , , , , =  푆푂퐸 ,
, + 퐶퐸 ,

,  ∙  푃 , , , ,
, ∙ ∆푡 , 푖푓 푡 =  푇 , ,  (21) 

푆푂퐸 , , , , =  푆푂퐸 , , , , + 퐶퐸 ,
,  ∙  푃 , , , ,

, ∙ ∆푡 , ∀푡 ∈ (푇 , ,  ,푇 , , ] (22) 

푆푂퐸 ,
, ≤ 푆푂퐸 , , , ,   ≤  푆푂퐸 ,

,  , ∀푡 ∈ [푇 , ,  ,푇 , , ] (23) 

푆푂퐸 , , , , =  푆푂퐸 ,
,   , 푖푓 푡 =  푇 , ,  (24) 

 
For each residential end-user, EV is formulated in (20)-(24). It should be noted that the Vehicle-to-Grid (V2G) operation is not 

taken into account in this study. The EV charging limits are given by (20). Taking the battery’s specifications as well as arrival and 

departure times into account, the EV’s state-of-energy (SOE) is defined in (21) and (22). For limiting the bounds of SOE in order 

to avoid over-charging and deep-discharging, inequality (23) is defined. In (24), it should be underlined that before the departure of 

occupants, EVs should be fully charged. 
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2.2.6. Commercial Model 

푃 , ,
, =  ∑ 푃 , , ,    (25) 

푃 , , ,  =  푃 ,
,  +  푃 , , ,

, + 푃 , , ,
,  (26) 

The power demand of each commercial end-user including inflexible load, flexible load, and EV charging power is denoted by 

(26). It is to be highlighted that commercial end-users’ EV and AC models can be derived from those of residential end users. 

Therefore, their formulation is not explained in this subsection considering paper length limitations.  

2.2.7. ESS Model 

푃 , ,
, , =  푃 , ,

,  ∙  퐷퐸              ∀푡, v, w  (27) 

푃 , ,
, , = 푃 , ,

,  ∙  퐶퐸                 ∀푡,푣,푤 (28) 

0 ≤ 푃 , ,
,  ≤  푅 ,  ∙  푢 , ,                   ∀푡,푣,푤       (29) 

0 ≤ 푃 , ,
,  ≤  푅 ,  ∙ 1−  푢 , ,   ∀푡,푣,푤    (30) 

푆푂퐸 , , = 푆푂퐸 , , + 퐶퐸 ∙ 푃 , ,
, ∙ ∆푡 − 퐷퐸 ∙ 푃 , ,

, ∙ ∆푡, 푡 ≥ 1 (31) 

푆푂퐸 , , =   푆푂퐸 ,        , 푖푓  푡 = 1               (32) 

푆푂퐸 , ≤ 푆푂퐸   ≤  푆푂퐸 ,      ∀푡   (33) 

The ESS operation for MG is represented by (27)-(33) and has similar characteristics of the EV model explained before. 

However, ESS discharging option is also considered in order to provide energy to MG or injected to the upstream grid during 

energy shortages or peak periods. The other difference is that ESS is always available in MG as energy storage and can be charged 

or discharged at any time. It should be noted that binary variable  푢 , ,  is used for preventing charging and discharging of ESS at 

the same time interval. 

3. Test and Results 

A centralized loss reduction maximization oriented energy management system is modelled in the scope of the study. The main 

target of the developed framework is to investigate the impacts of the flexible sources on the distribution system operation from 

different perspectives. With the aim of minimizing the line losses in the branches during optimal operation of grid-connected MG, 

the propounded MILP model is tested in GAMS v.24.1.3 with CPLEX v.12 solver. With incorporating uncertain behaviour of wind 

turbines and PV farms, stochastic optimization-based strategy is taken into consideration.  

To evaluate the effectiveness of the proposed methodology, the problem is solved by using a computer with a 2.3 GHz CPU and 

32 GB RAM. The input data and related results from the different case studies will be discussed in the following subsections, 

respectively. 
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3.1 Input Data 

The time granularity is chosen as 5 mins (0.0833h) in this study. The sample system with five nodes that have DGs, common 

ESS, and different types of end-users at different nodes as shown in Fig. 2 is derived from [43] to investigate the operational 

behaviour of the EMS. It should be reminded that the upstream grid-connection is provided by Node 1; PV farms and the 

commercial end-users have link with Node 2; common ESS is supposed to be connected at Node 3; industrial end-user and two 

wind turbines are connected from Node 4 and lastly, different types of all houses are connected from Node 5. Active power loss 

coefficients are 0.001 and 0.0003 푀푊 , and branches maximum power capacity was defined to be 3 MW [43]. Three end-user 

types (i.e., industrial, commercial and residential) are assumed to exist in the MG structure, and also, each end-user is equipped 

with non-controllable appliances whereas some end-users (commercial, residential) possess flexible appliances and EVs.  

 

Fig. 2. The considered distribution system including 5 nodes. 

 

Fig. 3. Daily inflexible demand belonging to different types of residential end users. 
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(a) 

 

 
(b) 

Fig. 4 (a) Power production curves of PV farms for each scenario, (b) 200 kW wind turbine power production curves for each 

scenario. 
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The residential end-users can be categorized into three groups by taking into account their lifestyle and as a result, this 

classification affects controllable appliances’ operational period and the arrival-departure time of the EVs. The corresponding 

inflexible load profiles of each residential end-user type is determined considering commonly used domestic appliances’ nominal 

power and duration of usage as portrayed in Fig. 3. Office building and pet production plants are selected as commercial and 

industrial premises, respectively. It should be highlighted that industrial end-users have great potential in terms of incorporating 

DR programs for utilizing their energy reduction capability. However, it is assumed that the industrial premise has fixed loads and 

it is not possible to change its power curve in this study. On the supply side, it is considered that MG includes wind turbines and 

PV farms with different generation capacities.  

Wind speed, temperature, and irradiance values are taken from National Renewable Energy Laboratory and afterward, power 

production curves of DGs are obtained based on real data as depicted in Fig. 4 (a) and Fig. 4 (b) [44]. In this stochastic framework, 

the scenarios are created assuming equal probability occurrences same as the other literature studies [45]-[46]. The PV generation 

is taken into consideration 4 different scenarios (called as 푣 − 푣 ) for both 100 kW and 70 kW PV farms. Also, in order to assess 

the uncertain behaviour of wind production, 3 different scenarios are generated (called as 푤 − 푤 ) for both 200 kW and 300 kW 

wind turbines. After combining PV and wind scenarios, 12 different scenarios are obtained to get accurate results that reflect the 

stochastic programming nature of the system as given in Table 2. It should also be reminded that the proposed methodology is 

appropriate for applying the desired number of scenarios. 

All residential and commercial end-users are assumed to be equipped with EVs which can only allow grid-to-vehicle (G2V) 

power flow and the suitable EVs to satisfy the needs of the residential end-users are selected on the market [47]. BMW i3, 

Volkswagen E-Golf, or Chevy Volt can be preferred by any residential end-user. On the contrary, Ford Transit Jumbo is the single 

option for commercial end-users allowing 90 kW charging power [48], which is evaluated as fast charging. The specifications of 

these vehicles are presented in Table 3. Arrival and departure times along with DR horizon are directly related to the end-user type 

and its behaviour. 

In order to testify only how different charging strategies change proposed optimal energy management response as well as 

power losses, this issue is taken into consideration in different case studies. TSCM and DCCM methods are suggested for the 

residential and commercial end-users’ flexible load of AC to utilize its energy reduction capability in the considered concept. In the 

DCCM DR program, load serving entity (LSE) can directly switch on/off ACs and determines the scheduling periods of TCLs 

while satisfying end-user’s comfort requirements for aiding to the minimization of losses. On the other side, according to the given 

data in Table 4, AC’s thermostat set-point is controlled between 25℃ and 26℃ at different time periods for every type of end-users 

in TSCM mode. Also, the same structural parameters are adopted for clarity and simplicity while assuming that all commercial and 

residential buildings are identical. The relevant data for commercial end-users are summarized in Table 5 and those for residential 

end-users are taken from [49]. 
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Table 2: Created Scenarios for Case Studies 

PV↓ \ Wind → 풘ퟏ 풘ퟐ 풘ퟑ 
풗ퟏ Scenario 1 Scenario 2 Scenario 3 
풗ퟐ Scenario 4 Scenario 5 Scenario 6 
풗ퟑ Scenario 7 Scenario 8 Scenario 9 
풗ퟒ Scenario 10 Scenario 11 Scenario 12 

 

Table 3: Specifications of the Electric Vehicle, Renewable Energy Sources and Common Storage System 

 Staff service Energy Storage System 
Battery capacity[kWh] 51.2 350 
Charging/discharging                 
rate [kW]                          

90 100 

Charging/discharging 
efficiency [%]                         

95 95 

Initial SOE [%] 30 350 
Minimum SOE [%] 20 50 

Wind Installation 
Wind turbine I [kW] Wind turbine II [kW] 

200 300 

PV Installation 
PV farm I [kW]                                                   PV farm II [kW]                                                   

100 70 
 

Table 4: Various Temperature Values used for Houses 

Parameter Quantity Unit Parameter Quantity Unit 
푇 ,  20 ℃ 푆 ,  1 ℃ 
푇 ,   4 ℃ 푆 ,  1 ℃ 
 푇 ,  3 ℃    

 

Table 5: Structural Parameters of the Commercial End-Users 

Parameter Value Units Parameter Value Units 
Office length  51.3 m Windows area 1.615 푚  

Office width  16 m Wall thermal coefficient 359.57 
퐽

h ∙ 푚 ∙ ℃
 

Office height  3.6 m 
Window thermal 
coefficient 

2808 
퐽

h ∙ 푚 ∙ ℃
 

Angle of roof 30 ° Window thickness  0.1 m 
Window number 15 - Wall Thickness 0.2 m 

 

DLC-based DR strategies are mainly targeted at maximizing the penetration and utilization of RESs with the objective of 

minimizing total losses while remaining within the comfort and operational constraints. Regarding the air density and its thermal 

capacity, which are normally related to its thermodynamic properties (temperature, pressure, etc.), the standard values are used as 

given in [49] while considering them as constant. With respect to AC rated power, 2 kW and 10 kW are chosen for residential 

houses and commercial buildings, respectively. Also, a coefficient-of-performance (COP) of 2 is assumed for ACs. 
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3.2 Simulation Results and Discussion 

To investigate the capability of the developed stochastic programming-based algorithm, it is applied to a five-node sample 

distribution system for a grid-connected MG and different case studies are performed to analyze the operational behaviour of EMS. 

Seven case studies are considered in this study as follows: 

 Base Case: Flexible loads are unavailable. EVs and ACs operational periods are determined deterministically.  

 Case-2: EVs are used as DR source and controlled at both residential and commercial end-users. 

 Case-3: Fast charging is used for the EV of commercial end users in addition to the conditions in Case-2.  

 Case-4: Besides EVs, residential end-users’ flexible load of ACs are controlled by EMS. 

 Case-5: Fast charging is used for the EV of commercial end users in addition to the conditions in Case-4. 

 Case-6: ACs of commercial and residential end-users together is controlled. 

 Case-7: Fast charging is used for the EV of commercial end users in addition to the conditions in Case-6. 

The substation node power-energy balance comprising of drawn energy from the upstream grid, energy losses in the branches, 

injected energy to the upstream grid and power flow from Node 1 to other nodes are depicted in Fig. 5 for the Case 7 under 

Scenario 4. Fig. 6 graphically presents the power balance composed of 푙  and 푙  commercial premises’ inflexible and flexible loads 

consumption, PV production and power flow between upstream grid and Node 2 for the Scenario 4. In the case studies, EVs having 

similar specifications are considered for commercial end-users for simplicity, and two charging strategies are taken into 

consideration in order to investigate its impact on the system. Arrival and departure time of the 푙  and 푙  EVs are assumed to be 9 

am-6 pm, and 10 am-7 pm, respectively. Even though the EVs are connected to Node 2 in a large period of the time, they are 

charged for a relatively small period only during 12 am to 3 pm. During these periods, the commercial users’ inflexible load 

doesn’t reach to its highest value while both PV output powers are continuously increasing, as depicted in Fig. 6. It is observed that 

ACs are operated intermittently from 11 am to 2 pm, 5 pm to 6 pm and lastly 8.30 am to 8.55 am in the reference scenarios 

depending on the PV power output and fixed load of commercial premises. At certain conditions, it is necessary to operate them to 

prevent comfort violation while EMS sends the signals so as to reduce losses at different conditions. On the other hand, ACs are 

permanently operated from 12.10 am to 12.35 am even though the inside temperature is within the normal range. This is caused by 

the fact that PV power production reaches its maximum value and also inflexible load decreases.  

Fig. 7 (a) shows that ESS is continuously discharging to cover the electricity demand of residential premises by supplying 350 

kWh energy to the system. Since the minimum SOE of the ESS is considered as 50 kWh, a smaller amount of power is used for 

discharging when losses reduce. Wind turbines cannot generate sufficient power in Scenario 4 as shown in Fig. 7 (b) and as a 

result, this demand should be covered by the upstream grid. Thus, the mentioned problem leads to an increase in power flowing 

from the upstream grid to the nodes and in losses according to the loss function.  
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Fig. 8 shows the power balance at Node 5 including total inflexible load, different types and numbers of residential end-users’ 

EVs charging power, and ACs demand for Case 7 in Scenario 4. The residential end-users are divided into three types and this 

separation has an effect on the departure and arrival times of EVs and ACs operational period. Since no DG unit is connected to 

Node 5, the power need should be met by upstream grid or common ESS. 

 

Fig. 5. Power-energy balance for Case-7 Scenario 4 at Node 1. 

In order to simplify interpretation of the results for the considered 12 scenarios, Fig. 9 (a) is depicted to show the variations of 

the drawn power from Node 1. The line in the middle of the boxes presents the median of the supplied power for all scenarios 

during the day. The median separates the data into two parts which are called the first and third quartiles. Lastly, whiskers show the 

maximum and minimum power values with the end of the vertical lines.  

For example, the drawn power varies between 182 kW to 610 kW; 25% of the data is lower than 244 kW, while 25% of the data 

is greater than 548 kW at 9 am considering all possibilities. It is clear that the supplied power has increased from 8 am to 5 pm 

depending on the power need of industrial/commercial premises and DG’s energy production. On the other hand, it reached its 

minimum values due to the closure of these facilities and high wind energy production from 6 pm to 7 am. Excess energy has been 

injected into the upstream grid and there is no need for matching electricity demand by the upstream grid at these mentioned 

periods. Fig. 9 (b) shows loss variations in the branches. It is clearly seen that dramatically different results are obtained in the 

variations of loss energy at particularly 9 am, 6 pm, and 7 pm compared to the other periods.  
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Actually, they all occur because of different reasons, but box-whisker graphs enable the interpretation of all conditions as the 

first-seen. At 9 am, the ever-increasing power demand of the industrial premise leads to increasing 푓푏  power flow through the 

upstream grid to Node 4 in some scenarios in which wind turbines production is low. Secondly, 푓푏  power flow increases since PV 

farms are unable to meet the commercial premises’ high electricity demand at this time and as a result, losses are sufficiently high. 

Thus, 50% of the data is higher than 35 kWh, which can be evaluated as an unnatural event. At 6 pm, although the median is 

around 2 kWh, it is seen that 25% of the obtained values are greater than 48 kWh. The reason for high deviations can be explained 

that DG’s power production reaches the maximum values for fewer scenarios while nodes’ demand decreases in the corresponding 

time periods as mentioned before and also similar conditions caused to rise in the lost energy at 7 pm. Consequently, it is indicated 

that the DG system capacity planning is a critical issue and has a non-negligible effect on the system operation considering the 

objective function. 

 

 

Fig. 6. Power balance for Case-7 Scenario 4 at Node 2. 
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(a) 

 
(b) 

Fig. 7 (a) Power balance for Case-7 Scenario 4 at Node 3, (b) Power balance for Case-7 Scenario 4 at Node 4. 
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Fig. 8. Power balance for Case-7 Scenario 4 at Node 5. 

 

Table 6 encapsulates the Base Case together with six different case studies (which are mentioned before) assessed in this study 

by taking into account the effect of the flexible appliance on the economic operation of MG by incorporating 12 scenarios. It may 

be indicated that the planning of charging periods of EVs and operational periods of ACs have a significant impact on the losses of 

the smart MG concept in this scenario-based approach. Even if only residential and commercial EVs’ are controlled by the 

operator, nearly a 1.98% drop is achieved in the loss energy for Case 2. When the fast charging option is investigated, it is deduced 

from the table that this offers more flexibility and lower energy losses happened in Case 3 compared to Case 2, genuinely.  

For the sake of clarity, there are supposed to be seven residential end-users in this MG structure and they are equipped with ACs 

which are controlled by the operator in Case 4 and Case 5. Even though the number of DR resources is not so many, there is a 

quietly considerable reduction that has been provided with the developed algorithm.  

Furthermore, Cases 6 and 7 enable to reshape ACs and EVs demand curve while obtaining the lowest losses together with fast 

charging option. Although the number of controllable appliances is not so many, a 2.65% reduction is accomplished only by 

adjusting their periods. Hence, controllable loads play a critical role and present operational flexibility to the LSE via DR 

programs.  
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(a) 

 

 
(b) 

Fig. 9 (a) The drawn  power variations from the slack bus for 12 scenarios in Case, (b) The loss energy variations for 12 

scenarios in Case 7.  

Table 6: The Energy Loss in the Branches for Seven Case Studies in a Stochastic Model 

Case Study Losses [kWh] Loss Reduction [%] 
Base Case  3264.392 Base Case 
Case 2  3199.647 1.98 
Case 3  3198.508 2.02 
Case 4  3192.871 2.19 
Case 5  3191.729 2.22 
Case 6  3178.334 2.63 
Case 7  3177.877 2.65 
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3.3 Comparison with the Deterministic Approach 

In the literature, a considerable amount of successful studies have used deterministic modelling as a benchmark for a 

comparative performance evaluation of stochastic approaches from different points of view [10], [50]. Thus, in this subsection, a 

deterministic approach is utilized as a base methodology for the purpose of benchmarking the benefits of the stochastic formulation 

in the optimal operation of MG. A comparison is conducted to demonstrate the effectiveness of the proposed approach using the 

same test system and parameters. The test system will help readers understand the philosophy behind the algorithm by enabling 

them to investigate almost all components’ operational behaviours, clearly. Also, it is proved that the developed energy 

management strategy is working properly.  In order to better understand this analysis, the loss reduction value (objective function) 

is determined as an index in terms of showing which method is best for system planning. 

Fig. 10 (a) graphically presents the hourly total consumption consisting of residential premises (fixed and flexible loads), 

commercial premises (fixed and flexible loads) and industrial premise. Also, PV and wind data used in this deterministic approach 

are depicted with ESS discharging power as well as transferred power from upstream grid. To further compare the performances of 

MG energy management strategies, Fig. 10 (b) is depicted to show daily power losses for both stochastic and deterministic 

approaches. By comparing Figs. 10 (a) and 10 (b), it can be deduced that the power loss is quite high because of the high wind 

production and low load level, especially at 6 pm, 9 pm and 1 am under a deterministic model. From 1 pm to 4 pm, the larger 

power loss occurs in the stochastic model, because average (multiplied with equal probabilities of scenarios) wind and PV 

production is lower than the data used in the deterministic model.  

Table 7 presents the objective function values under a deterministic model and it is compared with Table 6 for indicating the 

benefits of using a scenario-based stochastic approach. It can be seen that the proposed scheme has much better performance in 

terms of achieving low power losses. Note that, obtaining approximately 2.65% loss reduction does not only show superiority of 

using one approach over the other, but also indicates that this value can be even increased considering a larger MG architecture. 

Besides, all 12 real-world scenarios are capable of capturing the uncertainties better than a deterministic framework, providing a 

more realistic system scheduling. Moreover, the decisions are more accurate and close to what can be expected in practical 

implementations. It is worth mentioning that uncertainties have great impacts on MG operation scheduling process. The 

underestimation or overestimation can cause infeasible, uneconomical and insufficient system planning that should be avoided. 

Therefore, a comprehensive stochastic optimization model can be helpful here to provide effective management strategies as well 

as economically and environmentally acceptable designs.  
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Table 7: The Energy Loss in the Branches for Seven Case Studies in a Deterministic Model 

Case Study Losses [kWh] Loss Reduction [%] 
Base Case  3444.717 Base Case 
Case 2  3373.463 2.06 
Case 3  3372.365 2.10 
Case 4  3366.786 2.26 
Case 5  3365.611 2.29 
Case 6  3353.126 2.65 
Case 7  3352.652 2.67 

 

 
(a) 

 

 
(b) 

Fig. 10 (a) Power dispatch for a 24 h period using wind, PV, ESS, upstream grid, and end-user premises in Case 7, (b) Hourly 

energy losses over one day under deterministic and stochastic approaches in Case 7. 
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4. Conclusion  

In this study, a scenario-based EMS framework was proposed by taking the stochastic nature of wind and PV systems into 

consideration for grid-connected MGs. In this structure, a DLC-based DR program was integrated into the EMS to schedule the 

operational period of ACs and charging/discharging periods of common ESS. Furthermore, EVs were considered with the G2V 

mode option. All the aforementioned units were formulated based on a MILP framework for minimizing branches’ total losses and 

different case studies were conducted by considering different scenarios in order to investigate the effectiveness of the proposed 

algorithm. The detailed MILP-based mathematical model makes it possible to ensure global optimality. Even though a minute-

scale time granularity is selected for making realistic assumptions, the energy management strategy performs effectively in terms 

of scheduling multi parties in an optimal fashion. It was observed that the operation of the system components should not be 

evaluated independently in MG operation. The obtained simulation results proved the efficacy of the centralized loss reduction 

maximization oriented energy management framework to yield benefits for the distribution system operators. Compared to the case 

studies without considering DR strategy for EV and AC in a 24-hour time horizon operation, the best optimization results were 

obtained with a higher DR participation level. Flexible load profiles were strongly related to DG power output and all controllable 

appliances were operated to utilize this power as much as possible when it reaches the maximum value, surely satisfying the 

operational and comfort constraints. Also, using fast charging option enables to adjust the charging power of the EV on large scale 

and as a result, this offers improved flexibility. Increased DG production, on the other hand, reduced the amount of energy drawn 

from the upstream grid and had a significant impact on the losses when energy is consumed where it is generated. However, it was 

obtained that the DG system capacity planning is a vital issue in the economic operation of MG and has a non-negligible effect on 

the system operation considering the objective function. Furthermore, the presence of the common ESS in the MG structure 

provided operational flexibility, and this dynamic component’s charging/discharging periods were determined by the proposed 

EMS structure according to the loss function. Even though the number of considered controllable appliances is not so many and the 

test system is relatively small-scale, approximately 2.65% loss reduction was obtained. Overall, it can be deduced that the 

stochastic approach outperformed the deterministic approach in terms of achieving loss reduction and capturing the uncertainties in 

MG operation. The presented methodology can be extended in various ways such as (i) applying the proposed method to a larger 

scale distribution system including shiftable appliances (washing machine, dishwasher, etc.), (ii) considering the power exchanges 

between a group of MGs, (iii) investigating the benefits of different DR strategies on the proposed system structure, and (iv) 

adopting a different objective function such as minimizing the total cost, minimizing comfort violation of end-users and 

maximizing the load-serving entity’s profit, for analyzing the performance of the proposed algorithm from different aspects. 
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Appendix 

The main nomenclature used throughout this study is stated in Table 1- 3. 

Table 1: Sets and Indices 

푏 ∈ 퐵 Set of branches. 
푐 ∈ 퐶 Set of wind turbines. 
푓 ∈ 퐹 Set of PV farms. 
ℎ ∈ 퐻  Set of residential end-users in each residential type. 
푖 ∈ 퐼 Set of nodes. 
푘 ∈ 퐾 Set of residential end-user types. 
푙 ∈ 퐿 Set of commercial end-user types. 
푡 ∈ 푇 Set of time periods. 
푣 ∈ 푉 Set of PV farms’ scenarios. 
푤 ∈ 푊 Set of wind turbines’ scenarios. 

훺 ,훺 ∈ 훺  Set of substation nodes. 

 
Table 2: Parameters & Constants 

푐  Thermal capacity of air [kJ/kg ∙ ℃]. 
퐶퐸  Charging efficiency of common ESS. 
퐶퐸 ,

,  EV charging efficiency of type 푘 residential end-user ℎ.  
퐶푂푃 ,  Coefficient-of-performance for type 푘 residential end-user ℎ. 
퐷퐸  Discharging efficiency of ESS. 
푓  Flow limit of branch 푏 [kW]. 
퐿  Residential length [m]. 
퐿  Residential premise width [m]. 
퐿  Residential premise height [m]. 
푙  Element thickness [m]. 
푀  Total mass of air for residential premises [kg]. 
푁 Sufficiently large positive constant. 
푃 , ,  Power generation for wind turbine in period 푡 [kW]. 
푃 , ,  Power generation for PV farm in period 푡 [kW]. 
푃 ,  Allowed maximum power limit for substation node [kW]. 
푃 , ,

,  Inflexible load of residential end-users [kW]. 
푃 ,

,  Air conditioner rated power for residential end-users [kW]. 
푃 ,

,  Inflexible load of commercial end-users [kW]. 
푃  Power consumption of industrial premise [kW]. 
푃 ,

,  Total PV power generation in period 푡 [kW]. 
푃 ,

,  Total wind power generation in period 푡 [kW]. 
푅 ,  Charging rate of common ESS [kW]. 
푅 ,  Discharging rate of common ESS [kW]. 
푅 ,

,  EV charging rate for type 푘 residential end-user ℎ [kW]. 
푅 ,  Equivalent thermal resistance of type 푘 residential end-user ℎ [h∙ ℃/J]. 
푆푂퐸 ,  Initial SOE of common ESS [kWh]. 
푆푂퐸 ,  Maximum SOE of common ESS [kWh]. 
푆푂퐸 ,  Minimum SOE of common ESS [kWh]. 
푆푂퐸 ,

,  EV initial SOE of type 푘 residential end-user ℎ [kWh]. 
푆푂퐸 ,

,  EV maximum SOE of type 푘 residential end-user ℎ [kWh]. 
푆푂퐸 ,

,  EV minimum SOE of type 푘 residential end-user ℎ [kWh]. 
푆푃 , ,

,  Air conditioner temperature set-point for type 푘 residential end-user ℎ in period 푡 [℃].  
푡  Starting period of the contracted DR period for residential end-users. 
푡  Ending period of the contracted DR period for residential end-users. 
푇 , ,   EV arrival time of type 푘 residential end-user ℎ. 
푇 , ,  EV departure time of type 푘 residential end-user ℎ. 
푇 ,

,  Desired comfort temperature level of type 푘 residential end-user ℎ [℃]. 
푇 ,

,  Maximum allowed temperature set-point decrease from the desired comfort temperature level of type 푘 residential end-
user ℎ during DR event [℃]. 

푇 ,
,  Maximum allowed temperature set-point increase from the desired comfort temperature level of type 푘 residential end-

user ℎ during DR event [℃]. 
푇  Outdoor air temperature in period 푡 [℃]. 
푉  Volume of the residential premise [m ]. 
푌  Y- Coordinate of point 푝 that is used for approximation. 
푋  X- Coordinate of point 푝 that is used for approximation. 
휋  Probability of scenario 푤. 
휋  Probability of scenario 푣. 
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Table 3: Decision Variables 

퐹 , , ,  Approximate value of the square of the power flow through branch 푏 during period 푡 [kW ]. 
푓 , , ,  Active power flow of branch 푏 during period 푡 [kW]. 
푃 , , ,  Power losses of branch 푏 during period 푡 [kW]. 
푃 , , ,

,  Active power provided by substation node during period 푡 to cover the demand [kW]. 
푃 , , ,  Total active power provided by substation node during period 푡 [kW]. 
푃 , , , ,

,  EV charging power of type 푘 residential end-user ℎ in period 푡 [kW]. 
푃 , , , ,

,   Air conditioner power consumption of type 푘 residential end-user ℎ in period 푡 [kW]. 
푃 , , , ,  Consumed power of type 푘 residential end-user ℎ in period 푡 [kW]. 
푃 , , ,

,  EV charging power of type 푙 commercial end-user in period 푡 [kW]. 
푃 , , ,

,  Air conditioner power consumption of type 푙 commercial end-user in period 푡 [kW]. 
푃 , , ,  Power consumption of type 푙 commercial end-user in period 푡 [kW]. 
푃 , ,

,  Charging power of common ESS in period 푡 [kW].   
푃 , ,

, ,  Total ESS discharging power during period 푡 [kW].   
푃 , ,

,  Discharging power of common ESS during period 푡 [kW].    
푃 , ,

, ,   Total charging power of common ESS during period 푡 [kW].   
푃 , ,

,   Total power consumption of commercial end-users during period 푡 [kW].   
푃 , ,

,   Total power consumption of residential end-users during period 푡 [kW]. 
푃 , ,

,  Power injected to upstream grid during period 푡 [kW]. 
푆푂퐸 , , , ,  EV SOE of type 푘 residential end-user ℎ during period 푡 [kWh]. 
푆푂퐸 , ,  SOE of common ESS during period 푡 [kWh]. 
푆 , ,

,   Deviation of residential end-user indoor temperature from the ideal point to down side during period 푡  [℃]. 
푆 , ,

,  Deviation of residential end-user indoor temperature from the ideal point to upper side during period 푡 [℃]. 
푇 , , , ,

,  Room temperature of type 푘 residential end-user ℎ [℃]. 
푢 , , , ,

,  Binary variable. 1 if EV is charging in period 푡; else 0. 
푢 , , , ,

,  Binary variable. 1 if type 푘 residential end-user ℎ’s air conditioner is operating in period 푡; else 0. 
푢 , ,         Binary variable. 1 if ESS is charging in period 푡; else 0. 
푢 , ,  Binary variable. 1 if microgrid is drawing power from the upstream grid in period 푡; else 0. 
푧 , , , ,  SOS2 variables that are used to approximate the power losses. 

 
 
 
 


