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  Abstract—This paper presents a new robust incentive-based 

integrated demand response (IDR) model for energy hub 

systems (EHSs). The considered incentive-based demand 

response (IBDR) schemes are interruptible/curtailable service 

(I/C) and capacity market program (CAP). The proposed IDR 

model integrates the arbitrage ability of EHS storages as well as 

energy conversion into the IDR model. The objective of the IDR 

optimization problem is to maximize/minimize the allocated 

incentives/penalties in targeted time periods by IBDR schemes, 

while supplying must-run processes with no interruption. 

Uncertainties of load and energy prices are considered through 

user-defined polyhedral uncertainty sets. A tri-level robust 

optimization (RO) is developed which includes a tri-level min-

max-min problem. To solve the tri-level adaptive robust model, 

column-and-constraint generation (C&C) technique is employed 

by means of a decomposition methodology recasting the tri-level 

model into a single-level min problem and a bi-level max-min 

problem. Unlike previous RO models which solve the inner max-

min problem by duality theory, a Block-coordinate-descent 

(BCD) methodology is used to solve the max-min problem by 

means of the first-order Taylor series in this study. The use of 

BCD technique instead of duality theory enables a recourse-

based characterization of integer variables, such as EHS storage 

status, which was not applicable in previous models (due to use 

of duality theory). Moreover, Lagrange multipliers are 

eliminated as no duality is conducted. A post-event analysis is 

conducted to justify the long-term performance of the robust 

solutions and determine the optimal settings of the BCD robust 

approach. Results indicate that the IDR model significantly 

reduces the EHS input electricity in targeted time periods (four 

hours per day) by IBDR schemes and covers the required 

electricity with must-run processes by combined heat and power 

(CHP) unit, using natural gas. This implies a 2.13% reduction in 

the operation cost as incentives are obtained through IBDR 

schemes.  

Index Terms—Demand response, Energy hub, Multi-energy 

system, Robust optimization.  

NOMENCLATURE 
A. Indices 

𝑓/𝑗 Index of EHS input/output energy carriers. 

𝑖 Index of energy converter units. 

𝑘 Index of energy storage systems.  

 
 

𝑐/𝑧 Index of outer/inner loop iterations. 

𝑡 Index of hour. 

B. Parameters 

𝐴𝑓𝑡 Allocated incentive to purchased energy reductions.  

𝐴𝑓𝑡
𝑒𝑥 Extra incentive to extra energy reductions. 

𝐶𝑓̅𝑡 Nominal estimated energy price 𝑓 in hour 𝑡.  

𝐶̂𝑓𝑡
𝑑𝑒𝑣+         Maximum positive deviation of energy price 𝑓 in hour 𝑡. 

𝐶̂𝑓𝑡
𝑑𝑒𝑣−         Maximum negative deviation of energy price 𝑓 in hour 𝑡. 

𝑑/𝑚 Number of EHS input/output energy carriers.  

𝐸𝑘𝑡
𝑢𝑝

/𝐸𝑘𝑡
𝑙𝑜 Maximum/minimum value of 𝐸𝑘𝑡.  

𝐸𝑘
𝑙  Energy loss for storage 𝑘.  

𝐶𝑙𝑓𝑡 Contract level for IBDR schemes. 

𝐿̅𝑗𝑡
  Nominal estimated value of load 𝑗 in hour 𝑡. 

𝐿̂𝑗𝑡
𝑑𝑒𝑣+ Maximum positive deviation of load 𝑗 in hour 𝑡. 

𝐿̂𝑗𝑡
𝑑𝑒𝑣− Maximum negative deviation of load 𝑗 in hour 𝑡. 

𝑛 Number of converter units.  

𝑁𝑋 Number of start-up variables in vector 𝑿. 

𝑁𝑈 Number of uncertain parameters in vector 𝑼̃. 

𝑁𝑌 Number of operation variables in vector 𝒀. 

𝑃𝑓𝑡
 ̅̅ ̅̅  Expected purchased energy in targeted periods. 

𝑃𝑓𝑡
𝑢𝑝

 Maximum value of 𝑃𝑓𝑡
 . 

𝑃𝑖𝑡
′𝑢𝑝

/𝑃𝑖𝑡
′𝑙𝑜 Maximum/minimum value of 𝑃𝑖𝑡

′ .  

𝑃𝑒𝑛𝑓𝑡 Allocated penalty for breaching IBDR contracts.  

𝑄𝑘𝑡
𝑐ℎ𝑔,𝑢𝑝

/𝑄𝑘𝑡
𝑐ℎ𝑔,𝑙𝑜

 Maximum/minimum value of 𝑄𝑘𝑡
𝑐ℎ𝑔

. 

𝑄𝑘𝑡
𝑑𝑖𝑠,𝑢𝑝

/𝑄𝑘𝑡
𝑑𝑖𝑠,𝑙𝑜

 Maximum/minimum value of 𝑄𝑘𝑡
𝑑𝑖𝑠. 

𝑆𝑗𝑘 Coupling factor between load 𝑗 and storage 𝑘. 

𝑆𝑈𝐶𝑖 Start-up cost of converter unit 𝑖.  
𝑇 Number of hours of the scheduling horizon.  

𝑈𝑖𝑡
𝑖𝑛𝑖  Initial status of converter 𝑖 in hour 𝑡 (1:on, 0:off). 

𝑣𝑓𝑖
  Binary parameter which is 1 if 𝑖𝑡ℎ converter unit is 

supplied by 𝑓𝑡ℎ input energy and 0 otherwise. 

𝜂𝑗𝑖
𝑐𝑜𝑛 Converter's efficiency between input 𝑖 and output 𝑗. 

𝜂𝑘
𝑐ℎ𝑔

/𝜂𝑘
𝑑𝑖𝑠 Charging/Discharging efficiency of storage 𝑘. 

Ψ Uncertainty budget. 

𝜀 Convergence tolerance. 

C. Sets 

Ξ𝐶  Set of converter units. 

Ξ𝐹 Set of EHS input energy carriers.  

Ξ𝐼/Ξ𝐼𝐼 Set of "here-and-now"/"wait-and-see" variables. 

Ξ𝐽/Ξ𝐾 Set of loads/storages. 

Ξ𝐶 /Ξ𝑧 Set of outer/inner loop iterations. 

Ξ𝑇 Set of hours of the scheduling horizon. 

Ξ𝑈𝐶 /Ξ𝑈𝐿  Set of uncertain prices/loads.  

Ξ𝑈𝑆/Ξ𝑆 Set of uncertainties/post-event scenarios. 

D. Master Problem variables 

𝐶𝑖𝑡
𝑆𝑈 Start-up cost of converter unit 𝑖, in hour 𝑡.  

𝑈𝑖𝑡 Status of converter unit 𝑖 in hour 𝑡 (1:on, 0:off). 

ΛI Value of master problem. 

E. Sub-problem variables 
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𝐶̃𝑓𝑡 Uncertain energy price 𝑓 in hour 𝑡. 

𝐶𝑓𝑡
𝑑𝑒𝑣+ Positive deviation energy price 𝑓 in hour 𝑡. 

𝐸𝑘𝑡 Energy level for storage 𝑘 in hour 𝑡. 
𝐿̃𝑗𝑡
  Uncertain load 𝑗 in hour 𝑡. 

𝐿𝑗𝑡
𝑑𝑒𝑣+ Positive deviation of load 𝑗 in hour 𝑡. 

𝑃𝑓𝑡/𝑃𝑓𝑡
 ̅̅ ̅̅  EHS purchased/forecast energy carrier 𝑓 in hour 𝑡.  

𝑃𝑓𝑡
−/𝑃𝑓𝑡

+  EHS purchased energy carrier 𝑓 in hour 𝑡, 
satisfying/breaching IBDR contracts. 

𝑃𝑖𝑡
′  Input energy to converter unit 𝑖 in hour 𝑡.  

𝑃𝐸 Value of post-event cost. 

𝑄𝑘𝑡
𝑑𝑖𝑠/𝑄𝑘𝑡

𝑐ℎ𝑔
 Discharging/Charging rate of storage 𝑘 in hour 𝑡. 

𝑥𝑘𝑡
𝑐ℎ𝑔

/𝑥𝑘𝑡
𝑑𝑖𝑠 Binary variable indicating charging/discharging status of 

storage 𝑘 in hour 𝑡.  

𝑓𝑡
− /𝑓𝑡

+
 Binary variable for satisfying/breaching contract level.  

ΛII/ΛIII Value of first/second-stage sub-problem. 

𝜆,¥ Auxiliary continuous variables. 

F. Vectors/Matrices 

𝑨, 𝑭 Coefficient matrices of objective function.  

𝑩, 𝑪, 𝑬, 𝑮,𝑯/𝑫 Coefficient/requirement vectors.  

𝑷/𝑳 Vector of EHS input/output energy carriers.  

𝑷′ Vector of EHS input energy to converter units. 

𝑸𝒄𝒉𝒈/𝑸𝒅𝒊𝒔 Vector of storage charging/discharging rates.  

𝑺 Storage coupling matrix. 

𝑼̅/𝑼𝒅𝒆𝒗+ Vector of estimated/deviated uncertain parameters.  

𝑼̃ Vector of uncertain parameters. 

𝑽/𝜼 EHS configuration/conversion matrix. 

𝑿/𝒀 Vector of start-up/operation variables.  

𝑿𝑐 Vector of obtained start-up variables in master 

problem to be send to sub-problem as fixed values. 

𝑼𝑐  Vector of obtained worst-case realization of uncertain 

parameters in master problem. 

𝑼𝑧 Vector of worst-case realization of uncertain 

parameters in second-stage sub-problem. 

I. INTRODUCTION 

A. Problem Description  

EMAND response (DR) is characterized through price-

based (PBDR) and incentive-based (IBDR) schemes [1]. 

PBDR schemes are strong demand response signals that are 

mostly considered in every sector of energy distribution/delivery, 

i.e., industrial, residential, etc. [2]. However, IBDR schemes are 

generally developed through incentive/penalty terms according to 

which the end users agree to shift/curtail their demand. These 

schemes generally involve a provisional process interruption for 

customers as they need to reduce their input electricity [3] to 

optimize energy costs, directly affecting production procedures. 

Moreover, customers with must-run processes, i.e., non-

curtailable loads, cannot participate in DR schemes properly as 

their input electricity is dependent on their process which cannot 

be interrupted [4]. In addition, the associated uncertainties with 

energy prices and demand poses a noticeable effect on optimal 

energy management of industrial customers especially during the 

targeted time periods by DR schemes. These uncertainties can 

change the operation of EHS such as the level of purchased 

energy from network and EHS facility operation. Hence, a proper 

integrated demand response modeling alongside a successful 

uncertainty characterization leads to higher benefits for multi-

energy industrial customers with must-run processes. 

B. Review on IDR and IBDR/PBDR applications  

With the development of the energy hub system (EHS) [5-6], 

employed as an interface between different energy infrastructures 

and network participants, a new vision of DR has been introduced 

which is termed as "Integrated Demand Response" (IDR) [7-8]. 

IDR can easily make it possible for customers to actively 

participate in DR programs, even with non-curtailable loads, 

using energy conversion and storage facilities within EHS [9]. 

With IDR, it is possible to switch the consumed energy to other 

forms of energy at the EHS input ports, using converter elements 

such as CHP or micro turbines, or consume the stored energy by 

storage systems. As a result, the consumed energy at EHS input 

ports is levelized from the upstream network perspective, while 

the actual energy demand by EHS output ports are met with no 

interruption. 

The arbitrage ability of EHS was employed in [10] to increase 

the benefits of a real world EHS through optimal interactions with 

upstream network and DR schemes. However, only PBDR 

schemes were considered in the model of [10]. Refs. [11] and [12] 

investigated the role of IDR in reducing the customers' payoffs, 

which is due to the ability of EHS in generating electricity from 

natural gas and battery systems in electricity peak periods where 

the electricity price reaches its maximum value. However, the 

models of [10-12] have only considered PBDR schemes in IDR. 

In fact, no IBDR schemes was included in the models in [10-12]. 

A similar PBDR approach was conducted in [13] to minimize the 

distributed smart energy hubs' payoffs considering only the 

electricity price. In [14], an optimization model was proposed to 

reduce energy costs of an EHS within IDR. However, the IDR 

model of [14] was also based on PBDR schemes and no IBDR 

scheme including incentive/penalty terms, was considered.  

It is seen that, in many studies, IDR has been mostly modelled 

through PBDR schemes. This is because, PBDR schemes are 

strong and practical schemes that can motivate customers to 

participate in such a program and reduce their operation costs 

regarding upstream energy prices. However, IBDR schemes can 

also provide benefit recovery opportunities for energy system 

operators. In particular, IBDR schemes can direct EHS operators 

to switch the consumed electricity to other forms of energy to 

maximize their benefit and contribute in leveling the supply 

pattern from upstream network's perspective.  

In [15] an IDR model was proposed for the application of both 

PBDR and IBDR schemes. However, the study of [15] does not 

consider the complex interactions among different energy 

carriers in EHS as it only considers the conventional single-

energy demand response model of [15] for PBDR and IBDR 

schemes. In fact, the EHS responsiveness to IBDR and PBDR 

schemes are determined based on the DR model in [16], which 

was developed for single energy infrastructures. The obtained 

responsiveness patterns were then considered as operational 

constraints of the EHS. Therefore, the EHS responsiveness to DR 

schemes in [15] was not based on complex interactions among 

different energy carriers and/or the arbitrage ability of EHS 

through storage systems. The ability of EHS in supplying the 

required demand with multiple parallel paths allows the operator 

to participate in IBDR schemes flexibly, even with non-

curtailable loads. For example, in the case of a considerable 

incentive allocation, the EHS operator switches the main 

electricity source to natural gas to cover the required electricity, 

using CHP or micro turbine. It can also consume the stored 

energy at the storage systems when directed.  

 

 

D 
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TABLE I 

ADVANTAGES OF THE PROPOSED MODEL COMPARED TO THE LITERATURE 

Reference No. Uncertainty modelling 
approach 

Price-based 
IDR 

Incentive-based 
IDR 

Uncertainty 
consideration 

Scenario generation 
required 

Recourse-based IDR bids 
and storage operation 

[9] -   No -  

[10] -   No -  

[11] Stochastic programing   Yes Yes  

[13] -   No -  

[14] -   No   

[17] -   No -  

[18] Stochastic programing   Yes Yes  

[19] Stochastic programing   Yes Yes  

[20] Stochastic programing   Yes Yes  

[22] Dual-based RO   Yes No  

[23] Dual-based RO   Yes No  

[26] Dual-based RO   Yes No  

[28] -   No -  

[29] Stochastic programing   Yes Yes  

Proposed model BCD robust   Yes No  

 

Therefore, the responsive load demand is curtailed from the 

network's perspective, while the actual energy requirements 

remain unchanged.  

Considering the literature of IDR modeling, further studies are 

required to 1) characterize the incentive-based DR schemes within 

IDR concept, and 2) provide an integrated demand response model 

which employs EHS arbitrage abilities of EHS in performing IDR, 

resulting in a global optimum solution. Although, developing an 

incentive-based IDR model leads to lower/higher operational 

costs/benefits for EHSs, the uncertainties associated with EHS 

loads as well as energy price deviations at the upstream network 

can still pose significant effects on optimal operation of these 

systems [17].  

C. Review On Uncertainty Modelling in EHS Operation 

In the recent study of [18] an incentive-based IDR model was 

proposed, incorporating complex interactions among different 

energy carriers in EHS. Nevertheless, the employed IDR model 

was based on the conventional non-linear EHS model and no 

uncertainty characterization approach was conducted.  

To obtain immunized solutions against uncertainties, the 

uncertainty sources in EHS operation were modeled through 

stochastic programing (SP), characterizing RES generation in [19] 

and demand uncertainty in [20]. SP was also employed in the IDR 

model of [21] for characterizing wind speed uncertainty. However, 

SP methods in [19-20] did not consider any IDR in their models. 

Although IDR was considered in [21], the conducted SP approach 

faces two main challenges including the lack of tractable 

methodology and the need of full distributional knowledge of 

uncertain parameters, which may not be easily available in practice 

[22]. 

Hence, the robust optimization (RO) technique as a tractable 

approach, eliminating the need of having full distributional 

knowledge of uncertain parameters, has been recently developed 

and applied to EHS operation in [23, 24]. However, the model in 

[23] is a single-stage RO with no recourse decisions to be made 

after uncertainty realizations, which may result in non-exact and 

non-realistic operational solutions. Moreover, no IDR was 

considered in [23]. Although, the model in [24] is a two-stage RO 

with recourse decisions, it has an extensive mathematical burden 

which is due to the simultaneous employment of decomposition 

methodology, duality theory, and big-M transformation technique 

when solving the optimization problem. In addition, no IDR was 

modeled in [24]. 

The use of duality theory limits the application area of RO in 

terms of characterizing mixed-integer models for recourse 

decisioning. This is because the dual of a mixed-integer model is 

generally weak, non-tractable and complicated [25]. Therefore, no 

binary variable can be modelled for recourse decisioning in RO. 

This issue becomes more important when binary variables, such as 

the storage charging/discharging status, need to be obtained after 

uncertainty realizations as recourse decisions. However, in the 

study of [24], converter start-up decisions and storage 

charging/discharging status are obtained before the uncertainty 

realization to ease the implementation of duality theory in the 

second-stage problem. In [26], a simplified model was considered 

in which duality theory was used to solve the energy hub operation. 

Thus, a proper uncertainty characterization model is required to 

1) overcome the non-tractability issues associated with scenario-

based models such as SP, and 2) be able to characterize binary 

variables as recourse decisions after the uncertainty realization to 

achieve an optimal and realistic solution. 

A brief of the conducted literature review has been given by 

Table I in which each study has been compared to the proposed 

BCD robust incentive-based IDR model in this paper. 

Accordingly, it is seen that the proposed model considers both 

IBDR and PBDR programs while being subject to uncertainties. It 

also does not require distributional knowledge of the generated 

uncertainty scenarios, compared to scenario-based and SP models. 

Moreover, due to the use of BCD technique, it provides recourse-

based IDR bids and storage operation. In terms of mathematical 

burden of the proposed BCD robust model, following highlights 

are presented:  

No duality is conducted in the proposed BCD robust model, 

No linearization is required. 

Therefore, compared to previous dual-based RO models, the 

proposed model in this study is subject to a less extensive 

mathematical burden. 

In real-world cases, the arbitrage ability of storage operation 

provides the most important flexibility in the system when 

uncertainties arise. Therefore, determining storage operation after 

uncertainty realization in BCD robust model can reasonably 

improve the feasibility of the operation, compared to previous 

dual-based models.  
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As major advantages over previously reported methods, the 

proposed approach does not require duality-based cuts or 

linearization scheme. Moreover, some of the dual variables or 

Lagrange multipliers in dual-based RO models must be bounded 

through computationally expensive bounding parameter selection 

procedure which makes the model case-dependent. However, this 

issue is avoided in the proposed BCD robust model as no duality, 

and accordingly no dual variables or Lagrange multipliers are 

presented [30]. 

D. Motivations of this Study  

Compared to the state-of-the-art, the main motivations of this 

study can be summarized as follows: 

1) Current IDR studies have only modeled PBDR schemes, and 

no study has modeled the arbitrage ability of EHSs i.e., energy 

integration and storage, in performing IBDR schemes in the 

presence of uncertainties. Some studies have considered the 

uncertainty characterization approaches in their multi-energy 

management models, but no IBDR was modeled. Although PBDR 

schemes have a strong application in many energy systems today, 

it is time to go further and provide practical solutions for IBDR 

schemes in the IDR concept as incentive-based IDR has not been 

thoroughly investigated in this context.   

2) In terms of uncertainty modeling, scenario-based and SP 

models are subject to non-tractability and non-accurate solutions, 

which is due to requiring a full distributional knowledge of 

uncertain parameters and a large number of scenarios (not 

applicable in practice). Therefore, further uncertainty modelling 

approaches are required to bypass the need of scenario generation. 

3) Although RO has advantages compared to scenario-based and 

SP models, previous RO models in the literature fail to model 

binary variables such as EHS converters' on/off status and storage 

charging/discharging status as recourse decisions, which is due to 

the use of duality theory in solving the inner max-min problem. 

E. Contributions 

This paper is a continuation of an earlier work [26] in which 

duality theory was used to solve the energy hub operation. 

Accordingly, following innovative contributions are proposed to 

significantly extend the existing research and comprehensively 

meet all issues in previous studies: 

Contribution 1: An incentive-based IDR model is proposed to 

characterize the allocated incentive/penalty terms of IBDR 

schemes in operation of EHSs with non-curtailable loads. The 

proposed model is conducted from the EHS's perspective, as an 

energy customer facing upstream IBDR schemes. Two commonly 

implemented IBDR schemes in the industrial sector, including 

interruptible-curtailable service (I/C) and capacity market program 

(CAP), are considered. The incentive/penalty terms and contract 

levels of I/C and CAP schemes are characterized to model the exact 

interactions between EHS and upstream IBDR schemes. Unlike a 

previous model [15], the proposed incentive-based IDR model in 

this paper is integrated into the EHS power flow constraints. In 

particular, it employs the arbitrage ability of storage systems as 

well as energy conversion throughout the EHS to maximize the 

incentive recovery and minimize penalty allocation.  

Contribution 2: An adaptive robust optimization (ARO) 

approach is implemented to deal with the uncertainties of load and 

energy prices in operating EHSs. Uncertain parameters are 

characterized by bounded intervals in polyhedral uncertainty sets. 

The ARO model is a tri-level min-max-min problem which is not 

directly solvable. Therefore, a decomposition methodology is 

employed to recast the min-max-min ARO problem into two 

problems including a master problem and a sub-problem. A 

column-and-constraints (C&C) generation methodology is used to 

iteratively solve the decomposed problem through primal cutting 

planes. Several binary variables such as storage 

charging/discharging status as well as IC/CAP contract bids must 

be obtained after uncertainty realizations in the sub-problem to be 

able to compensate the effects of uncertain load/price as recourse 

decisions. Therefore, instead of using duality theory in solving the 

sub-problem, Block Coordinate Descent (BCD) method [27] is 

used in the proposed model (see the next contribution). 

Contribution 3: In terms of solution methodology, BCD method 

[27] is used in the robust approach to iteratively solve the inner bi-

level max-min sub-problem. This is implemented by means of 

Taylor series instead of transforming it into a single-level max 

problem by duality theory in conventional ARO models [28-29]. 

Therefore, the associated limitation in considering binary variables 

in the sub-problem is eliminated. In fact, mixed-integer models 

(even non-linear models) can be solved in the sub-problem through 

the proposed BCD robust model. As a result, uncertainty-

dependent binary variables such as IDR bids and storage 

charging/discharging status can be obtained after uncertainty 

realization in the sub-problem as recourse decisions, resulting in 

more system flexibility in compensating the uncertainty effects 

such as load and price deviations. Moreover, the linearization of 

the dualized inner problem is avoided as the Lagrange multipliers 

are eliminated in this methodology. Thus, the case-sensitivity of 

the proposed incentive-based IDR model reduces as it does not 

reflect dual variables.  

A post-event analysis has been presented against 25000 

uncertainty realizations to validate the effectiveness of the 

obtained robust solutions against the uncertainties, compared to 

deterministic model. 

II. ENERGY HUB MODEL 

Fig. 1 is a general representation of an EHS as per the notations 

in the nomenclature. An EHS is an interface between energy 

suppliers at its input ports and energy requirements at output ports. 

These systems typically consume grid-bound energy carriers such 

as natural gas, electricity, and heat [31]. Energy inputs are directly 

consumed, converted to other forms of energy (i.e., using converter 

elements), and/or stored inside the system to be consumed in other 

operation time steps [32]. Since the input energy to EHS is 

consumed by several converters (such as natural gas that can be 

used in CHP, micro turbine, furnace, etc.), other variables named 

"dispatch factors" have to be considered in the model [32-34]. The 

idea of dispatch factors was first introduced by [35]. In this paper, 

the recent developed EHS model in [36] is employed in which the 

coupling matrix is replaced by two new matrices 𝑽 and 𝜼 alongside 

a new independent continuous variable 𝑃𝑖𝑡
′  which presents the input 

energy to each converter element. The relation between EHS input 

energy and the input energy to each converter is presented as (1a). 

Interested readers are referred to [36] for further information on the 

employed EHS model. 

[
 
 
 
 
𝑃1𝑡

⋮
𝑃𝑓𝑡
⋮

𝑃𝑑𝑡]
 
 
 
 

⏟
𝑷

=

[
 
 
 
 
𝑣11

 … 𝑣1𝑖
 … 𝑣1𝑛

 

⋮ ⋱  ⋮          ⋮  
𝑣𝑓1

 

⋮
𝑣𝑑1

 

…
 
…

𝑣𝑓𝑖

⋮
𝑣𝑑𝑖

 

…
⋱
…

𝑣𝑓𝑛
 

⋮
𝑣𝑑𝑛

 ]
 
 
 
 

⏟                
𝑽

×

[
 
 
 
 
𝑃1𝑡

′

⋮
𝑃𝑖𝑡

′

⋮
𝑃𝑛𝑡

′ ]
 
 
 
 

⏟
𝑷′

;  
(1a) 

where, 𝑣𝑓𝑖
 ∈ {0,1}, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑓 ≤ 𝑑, 1 ≤ 𝑡 ≤ 𝑇;  (1b) 

The relation between input energy to converters and EHs output 

loads is also provided by (1c). 
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Fig. 1. General schematic representation of an EHS. 

Each element of matrix 𝜼 (𝜂𝑗𝑖
𝑐𝑜𝑛) represents the efficiency of 

converter unit 𝑖 converting its input energy to 𝑗𝑡ℎ EHS load. 

[
 
 
 
 
𝐿1𝑡

⋮
𝐿𝑗𝑡
⋮

𝐿𝑚𝑡]
 
 
 
 

⏟  
𝑳

=

[
 
 
 
 
𝜂11
𝑐𝑜𝑛 … 𝜂1𝑖

𝑐𝑜𝑛 … 𝜂1𝑛
𝑐𝑜𝑛

⋮ ⋱  ⋮          ⋮  
𝜂𝑗1
𝑐𝑜𝑛

⋮
𝜂𝑚1
𝑐𝑜𝑛

…
 
…

𝜂𝑗𝑖
𝑐𝑜𝑛

⋮
𝜂𝑚𝑖
𝑐𝑜𝑛

…
⋱
…

𝜂𝑗𝑛
𝑐𝑜𝑛

⋮
𝜂𝑚𝑛
𝑐𝑜𝑛]

 
 
 
 

⏟                  
𝜼

×

[
 
 
 
 
𝑃1𝑡

′

⋮
𝑃𝑖𝑡

′

⋮
𝑃𝑛𝑡

′ ]
 
 
 
 

⏟
𝑷′

; 
(1c) 

where,0 ≤ 𝜂𝑗𝑖
𝑐𝑜𝑛 ≤ 1, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑡 ≤ 𝑇; (1d) 

Accordingly, (1e) represents the energy flow between each EHS 

input energy and the input energy to converters.  

𝑃𝑓𝑡
 =  𝑃𝑖𝑡

′ ∙ 𝑣𝑓𝑖
𝑖∈𝛯𝐼

;    ∀𝑓 ∈ 𝛯𝐹 ; ∀𝑡 ∈ 𝛯𝑇  (1e) 

Note that, storages can be placed in both inputs and outputs of 

the EHS. In fact, it is possible to transform storage power flows 

between inputs and outputs [40]. However, for modelling purposes 

in this paper (which is in line with previous studies such as [33], 

[35-36], and [40]), it is assumed that all the energy storages are at 

the output side. Accordingly, the linearized relationship between 

EHS inputs and outputs, considering converters and storage 

systems, would be as (1f) or its equivalent (1g). 

𝑳 = 𝜼 ∙ 𝑷′ − 𝑺 ∙ 𝑸𝒄𝒉𝒈 + 𝑺 ∙ 𝑸𝒅𝒊𝒔  (1f) 

𝑳 = 𝜼 ∙ 𝑽−𝟏 ∙ 𝑷 − 𝑺 ∙ 𝑸𝒄𝒉𝒈 + 𝑺 ∙ 𝑸𝒅𝒊𝒔 (1g) 

Matrix 𝑺 describes how changes of the storage energies affect 

the hub output flows. Each element of 𝑺 illustrates the existence of 

energy trade between storage 𝑘 and output load 𝑗 (𝑆𝑗𝑘 ∈ {0,1}). 

Therefore, in multi-period operation of the EHS, the following 

linear equation (1h) expresses the equality constraint between 

demand and supply which is the extended form of (1f).  

𝐿̅𝑗𝑡
 =  (𝜂𝑗𝑖

𝑐𝑜𝑛 ∙ 𝑃𝑖𝑡
′ )

𝑖∈Ξ𝐼
+  (𝑆𝑗𝑘 ∙ 𝑄𝑘𝑡

𝑑𝑖𝑠

𝑘∈Ξ𝐾
 

−𝑆𝑗𝑘∙ 𝑄𝑘𝑡
𝑐ℎ𝑔

);  ∀𝑗 ∈ Ξ𝐽; ∀𝑡 ∈ Ξ𝑇 

(1h) 

III. DETERMINISTIC INCENTIVE-BASED IDR MODEL 

This paper has focused on I/C and CAP schemes which both 

include incentive and penalty terms. In these schemes, incentives 

usually consist of up-front reservation payments, and customers 

face penalties for failure to curtail when called upon to do so. 

Participants of I/C and CAP schemes should reduce their demand 

to an acceptable level. This level is known as contract level (𝐶𝑙𝑓𝑡) 

which is obtained as a part of the actual forecasted energy (𝑃𝑓𝑡
 ̅̅ ̅̅ ) in 

targeted time periods [18]. The values of incentive and penalty are 

allocated based on long-term contracts between the EHS operator 

and upstream network operator. However, the activation of DR 

service is broadcasted to the customers in different time frames 

such as daily or hourly notice of events [16]. The duration of notice 

is different from one customer to another and is based on the 

energy consumption of the customer and its flexibility in load 

shifting/curtailing. 

Forecasted 

Energy 
𝑃𝑓𝑡

 ̅̅ ̅̅  

𝐶𝑙𝑓𝑡  

𝑃𝑓𝑡
+  

𝑃𝑓𝑡
−  

𝐶𝑙𝑓𝑡 < 𝑃𝑓𝑡
+ ≤ 𝑃𝑓𝑡̅̅ ̅̅ ;    

0 ≤ 𝑃𝑓𝑡
− ≤ 𝐶𝑙𝑓𝑡 ; 

Penalty allocation

Full + extra incentive

Contract 

Level

Full incentive 

Case 1

𝑃𝑓𝑡
−  

 
 
  

 
 
  

 
 
  

Case 2

Case 3

 
Fig. 2. Characteristics of IBDR contracts. 

Some small-scale customers may be flexible enough and can 

participate in DR schemes by hourly notice. Some other large-scale 

industrial customers, however, require more time to participate in 

DR schemes [37]. In this study, it is assumed that the EHs operator 

is notified about the IBDR activation on a day ahead basis. 

Fig. 2 represents IBDR contract's measures, as per the 

nomenclature of this paper. According to Fig. 2, participants can 

respond to the associated upstream IBDR schemes in three 

different ways [38], which are explained as follows: 

Case 1: Customer fails to respond to IBDR scheme and cannot 

fulfil the contract level i.e., the consumed energy is higher than the 

contract level. In this case, penalties are allocated to the uncurtailed 

energy. The consumed energy in this case is denoted as 𝑃𝑓𝑡
+ .  

Case 2: Customer fulfils the contract level in the IBDR scheme. 

The consumed energy is exactly equal to the contract level, and 

therefore, incentives are fully allocated to the curtailed energy. The 

consumed energy in this case is denoted by 𝑃𝑓𝑡
− .  

Case 3: Customer reduces its consumption more than the 

contract level in the IBDR scheme. In this situation, the curtailed 

energy is treated the same way as case 2, while the extra curtailed 

energy is rewarded with an additional rate of incentive. 

In this section, a mixed integer linear incentive-based IDR model 

is presented for an EHS with non-curtailable loads, regarding 

possible EHS interaction with IBDR schemes, i.e., Cases 1-3. The 

model aims to a) optimally manage EHS facilities, including 

converters and storage systems, and b) maximize EHS benefits 

through IBDR schemes while mitigating actual energy 

consumptions by must-run processes at the EHS output.  

The IDR model measures the EHS input electricity to gain 

maximum benefit and avoid any breach of contract in targeted time 

periods. Equation (2), represents the objective function and the 

associated constraints of the IDR model, considering the EHS 

operation and possible response to IBDR schemes by the EHS 

operator, i.e., Cases 1-3 presented by Fig. 2. The objective function 

(2a) encompasses five terms (𝕄1,… ,𝕄5). 

The start-up cost of EHS converter units (i.e., CHP, heat 

exchanger, etc.) has been characterized in 𝕄1, which is measured 

by the associated constraints of converter's on/off binary variables. 

The cost of EHS purchased energy carriers, regarding the hourly 

energy prices over the scheduling horizon, is presented through 

𝕄2. Binary variable 𝑓𝑡
+

 adds the third term (i.e., 𝕄3) to the 

objective function (2a) if the EHS fails to fulfil the contract (Case 

1 in Fig. 2). In fact, 𝕄3 represents the penalty allocations 

pertaining to any possible breach of contract during the targeted 

time periods of IBDR schemes. In contrary, if the EHS fulfils the 

contract (Case 2 in Fig. 2), incentives would be allocated. This is 

modeled by binary variables 𝑓𝑡
−

 in 𝕄4 which models the obtained 

incentives. The extra incentives due to higher values of purchased 

energy reductions (Case 3 in Fig. 2) are characterized by 𝕄5. The 

considered incentives/penalties in the IDR model (2), i.e., 𝑃𝑒𝑛𝑓𝑡 , 

𝐴𝑓𝑡, 𝐴𝑓𝑡
𝑒𝑥, are subject to change according to time and energy type. 

In fact, they are counted for all values of indices 𝑓 and 𝑡. Therefore, 
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they all can be fixed or time-varying in the operation of IDR 

(incentives and penalties for each energy type are vectors based on 

time). 

Converters' start-up constraints are presented by (2b)-(2c). Note 

that, 𝐶𝑖𝑡
𝑆𝑈 is a variables while 𝑆𝑈𝐶𝑖 is a parameter reflecting the 

start-up cost of converter 𝑖 (see nomenclature). 

𝑚𝑖𝑛
 

  𝐶𝑖𝑡
𝑆𝑈

𝑖∈𝛯𝐶𝑡∈𝛯𝑇

⏞            
𝕄1

+   (𝐶𝑓̅𝑡 . 𝑃𝑓𝑡)
𝑓∈𝛯𝐹𝑡∈𝛯𝑇

⏞                
𝕄2

 

+  (𝑃𝑓𝑡
+ − (𝐶𝑙𝑓𝑡 ∙ 𝑓𝑡

+ )) ∙ 𝑃𝑒𝑛𝑓𝑡
𝑓∈𝛯𝐹𝑡∈𝛯𝑇

⏞                          
𝕄3

 

−  ((𝑃𝑓𝑡
 ̅̅ ̅̅ − 𝐶𝑙𝑓𝑡) ∙ 𝑓𝑡

− ∙ 𝐴𝑓𝑡)
𝑓∈𝛯𝐹𝑡∈𝛯𝑇

⏞                          
𝕄4

 

−  ((𝐶𝑙𝑓𝑡 ∙ 𝑓𝑡
− − 𝑃𝑓𝑡

−) ∙ 𝐴𝑓𝑡
𝑒𝑥)

𝑓∈𝛯𝐹𝑡∈𝛯𝑇

⏞                          
𝕄5

; 

(2a) 

𝐶𝑖𝑡
𝑆𝑈 ≥ 𝑆𝑈𝐶𝑖 ∙ (𝑈𝑖,(𝑡=1) − 𝑈𝑖𝑡

𝑖𝑛𝑖);    𝑖 ∈ 𝛯𝐶 ; ∀𝑡 ∈ 𝛯𝑇  (2b) 

𝐶𝑖𝑡
𝑆𝑈 ≥ 𝑆𝑈𝐶𝑖 ∙ (𝑈𝑖𝑡 − 𝑈𝑖,(𝑡−1));    𝑖 ∈ 𝛯𝐶 ; 𝑡 ∈ 𝛯𝑇|𝑡 > 1 (2c) 

𝑓𝑡
+ + 𝑓𝑡

− ≤ 1;   ∀𝑓 ∈ 𝛯𝐹 ; ∀𝑡 ∈ 𝛯𝑇  (2d) 

𝑃𝑓𝑡
 =  𝑃𝑖𝑡

′ ∙ 𝑣𝑓𝑖
𝑖∈𝛯𝐼

;    ∀𝑓 ∈ 𝛯𝐹 ; ∀𝑡 ∈ 𝛯𝑇  (2e) 

𝑃𝑓𝑡
− + 𝑃𝑓𝑡

+ = 𝑃𝑓𝑡
 ;    ∀𝑓 ∈ Ξ𝐹 ; ∀𝑡 ∈ Ξ𝑇 (2f) 

𝐶𝑙𝑓𝑡 ∙ 𝑓𝑡
+ < 𝑃𝑓𝑡

+ ≤ 𝑃𝑓𝑡
𝑢𝑝

∙ 𝑓𝑡
+ ;    ∀𝑓 ∈ 𝛯𝐹; ∀𝑡 ∈ 𝛯𝑇 (2g) 

0 ≤ 𝑃𝑓𝑡
− ≤ 𝐶𝑙𝑓𝑡 ∙ 𝑓𝑡

− ;    ∀𝑓 ∈ 𝛯𝐹 ; ∀𝑡 ∈ 𝛯𝑇  (2h) 

𝐿̅𝑗𝑡
 =  (𝑆𝑗𝑘 ∙ 𝜂𝑘

𝑐ℎ ∙ 𝑄𝑘𝑡
𝑑𝑖𝑠 − 𝑆𝑗𝑘 ∙

1

𝜂𝑘
𝑑𝑖𝑠

∙ 𝑄𝑘𝑡
𝑐ℎ𝑔

)
𝑘∈𝛯𝐾

 

+ (𝜂𝑗𝑖
𝑐𝑜𝑛 ∙ 𝑃𝑖𝑡

′ )
𝑖∈𝛯𝐼

;    ∀𝑗 ∈ 𝛯𝐽; ∀𝑡 ∈ 𝛯𝑇 

(2i) 

𝑃𝑖𝑡
′𝑙𝑜 ∙ 𝑈𝑖𝑡 ≤ 𝑃𝑖𝑡

′ ≤ 𝑃𝑖𝑡
′𝑢𝑝

∙ 𝑈𝑖𝑡;   𝑖 ∈ 𝛯𝐶 ; ∀𝑡 ∈ 𝛯𝑇 (2j) 

𝐸𝑘𝑡 = 𝐸𝑘(𝑡−1) + 𝜂𝑘
𝑐ℎ𝑔

∙ 𝑄𝑘𝑡
𝑐ℎ𝑔

−
1

𝜂𝑘
𝑑𝑖𝑠

∙ 𝑄𝑘𝑡
𝑑𝑖𝑠 − 𝐸𝑘

𝑙 ; (2k) 

 (𝜂𝑘
𝑐ℎ ∙ 𝑄𝑘𝑡

𝐶ℎ𝑔
−

1

𝜂𝑘
𝑑𝑖𝑠

∙ 𝑄𝑘𝑡
𝑑𝑖𝑠)

𝑡∈𝛯𝑇
= 𝑇 ∙ 𝐸𝑘

𝑙 ;  ∀𝑘 ∈ 𝛯𝐾; (2l) 

𝐸𝑘𝑡
𝑙𝑜 ≤ 𝐸𝑘𝑡 ≤ 𝐸𝑘𝑡

𝑢𝑝
;    ∀𝑘 ∈ 𝛯𝐾; ∀𝑡 ∈ 𝛯𝑇  (2m) 

𝑄𝑘𝑡
𝑐ℎ𝑔,𝑙𝑜

∙ 𝑥𝑘𝑡
𝑐ℎ𝑔

≤ 𝑄𝑘𝑡
𝑐ℎ𝑔

≤ 𝑄𝑘𝑡
𝑐ℎ𝑔,𝑢𝑝

∙ 𝑥𝑘𝑡
𝑐ℎ𝑔

; ∀𝑘 ∈ 𝛯𝐾; ∀𝑡 ∈

𝛯𝑇   
(2n) 

𝑄𝑘𝑡
𝑑𝑖𝑠,𝑙𝑜 ∙ 𝑥𝑘𝑡

𝑑𝑖𝑠 ≤ 𝑄𝑘𝑡
𝑑𝑖𝑠 ≤ 𝑄𝑘𝑡

𝑑𝑖𝑠,𝑢𝑝
∙ 𝑥𝑘𝑡

𝑑𝑖𝑠;  ∀𝑘 ∈ 𝛯𝐾; ∀𝑡 ∈

𝛯𝑇   
(2o) 

𝑥𝑘𝑡
𝑐ℎ𝑔

+ 𝑥𝑘𝑡
𝑑𝑖𝑠 ≤ 1;   ∀𝑘 ∈ 𝛯𝐾; ∀𝑡 ∈ 𝛯𝑇  (2p) 

∀𝑥𝑘𝑡
𝑐ℎ , ∀𝑥𝑘𝑡

𝑑𝑖𝑠 , ∀𝑈𝑖𝑡 , ∀𝑓𝑡
− , ∀𝑓𝑡

+ ∈ {0,1} (2q) 

∀𝐶𝑖𝑡
𝑆𝑈∀𝑃𝑓𝑡

− , ∀𝑃𝑓𝑡
+ , ∀𝑃𝑓𝑡

 , ∀𝑃𝑖𝑡
′ , ∀𝑄𝑘𝑡

𝑑𝑖𝑠 , ∀𝑄𝑘𝑡
𝐶ℎ , ∀𝐸𝑘𝑡 ∈ ℝ; (2r) 

The limitation constraint for 𝑓𝑡
+

 and 𝑓𝑡
−

 is presented as (2d) 

which explains that the EHS input electricity can either fulfil the 

contract or breach it at a time. The relation between EHS input 

energy carriers and input energy to converter units inside the EHS 

is described through (2e) and (2f). Note that, equations (2e) and 

(2f) are obtained based on the linearized form of EHS in (1). 

Constraints (2g) and (2h) limit the EHS input energies to their 

allowable ranges which are added to the objective function by 

means of binary variables 𝑓𝑡
+

 and 𝑓𝑡
−

. If the EHS fails to fulfil the 

contract, its input energy is limited as (2g). Accordingly, 𝕄3 

would be included in the objective function while 𝕄4 and 𝕄5 are 

terminated with respect to (2d). Otherwise, (2h) is added as the 

EHS input energy limit, and 𝕄4 and 𝕄5 are added to (2a) instead 

of 𝕄3. EHS energy balance constraint is expressed through (2i). 

Constraint (2j) limits the converters' input energy to their allowable 

ranges. 

The energy balance of storage systems, considering charging, 

discharging, and standby modes is illustratively presented by 

Fig. 3. As it can be seen, the charging and discharging status, i.e., 

𝐸𝑐𝑙  and 𝐸𝑑𝑙 , respectively, are subject to loss of energy, which is 

due to the storage efficiency in charging/discharging mode. 

Moreover, each storage is subject to steady-state mode losses, i.e., 

𝐸𝑙. Accordingly, the dynamic energy balance for each storage 𝑘 is 

expressed by (2k). Each storage at the final operational time period 

must have the same energy level as the first time period, which is 

known as end-coupling constraint and is expressed by (2l). If this 

equation is not considered in the model, the optimization still 

provides the optimal solutions. In fact, considering the end-

coupling constraint can be similar to fixing the final value of 

storage level as its initial value. Ignoring this constraint does not 

affect the optimality of the solutions. The only difference is that 

the operation of the storage can be slightly different at the final 

period as it does not need to be charged again. The energy level, 

charging rate, and discharging rate for each storage are limited to 

their allowable ranges through (2m), (2n) and (2o), respectively. 

Constraint (2p) ensures that each storage operates in one mode only 

(charge, discharge, or out-of-use) at a time. Finally, the types of 

variables are specified in (2q) and (2r).  

IV. ROBUST APPROACH TO SOLVE THE INCENTIVE-BASED IDR 

MODEL 

A. Uncertainty Set Realization 

The uncertainties associated with load and energy prices are 

considered by bounded intervals through polyhedral uncertainty 

sets as (3).  The uncertain parameters 𝐿̃𝑗𝑡
  and 𝐶̃𝑓𝑡 in (3) are allowed 

to deviate from their nominal estimated values 𝐿̅𝑗𝑡
  and 𝐶𝑓̅𝑡 in 

positive and negative directions, which is shown by (3a) and (3b). 

The considered deviations are limited to their user-defined 

allowable ranges through constraints (3c) and (3d). The number of 

uncertain parameters pertaining to load and energy prices is 

determined by the uncertainty budget Ψ in (3e). If Ψ = 0, no 

uncertain parameter can deviate from its estimated value, resulting 

in a deterministic model.  

Ξ𝑈𝐿 =  𝐿̃𝑗𝑡
 = 𝐿̅𝑗𝑡

 + 𝐿𝑗𝑡
𝑑𝑒𝑣+ − 𝐿𝑗𝑡

𝑑𝑒𝑣−;    ∀𝑗 ∈ Ξ𝐽; ∀𝑡 ∈ Ξ𝑇} (3a) 

Ξ𝑈𝐶 =  𝐶̃𝑓𝑡 = 𝐶𝑓̅𝑡 + 𝐶𝑓𝑡
𝑑𝑒𝑣+ − 𝐶𝑓𝑡

𝑑𝑒𝑣−;    ∀𝑓 ∈ Ξ𝐹; ∀𝑡 ∈

Ξ𝑇}  
(3b) 

0 ≤ 𝐿𝑗𝑡
𝑑𝑒𝑣± ≤ 𝐿̂𝑗𝑡

𝑑𝑒𝑣±;   ∀𝑗 ∈ Ξ𝐽; ∀𝑡 ∈ Ξ𝑇 (3c) 

0 ≤ 𝐶𝑓𝑡
𝑑𝑒𝑣± ≤ 𝐶̂𝑓𝑡

𝑑𝑒𝑣±;   ∀𝑓 ∈ Ξ𝐹 ; ∀𝑡 ∈ Ξ𝑇 (3d) 

Ξ𝑈𝑆 = {Ξ𝑈𝐿 ∪ Ξ𝑈𝐶 ,  |
𝐿𝑗𝑡
𝑑𝑒𝑣+

 𝐿̂𝑗𝑡
𝑑𝑒𝑣+

+
𝐿𝑗𝑡
𝑑𝑒𝑣−

 𝐿̂𝑗𝑡
𝑑𝑒𝑣−

|
𝑗∈Ω𝐽𝑡∈𝛯𝑇

+ 

  |
𝐶𝑓𝑡

𝑑𝑒𝑣+

𝐶̂𝑓𝑡
𝑑𝑒𝑣+

+
𝐶𝑓𝑡

𝑑𝑒𝑣−

𝐶̂𝑓𝑡
𝑑𝑒𝑣−

|
𝑓∈Ω𝐹𝑡∈𝛯𝑇

≤ Ψ}; 

(3e) 

By increasing the uncertainty budget, a greater number of 

uncertain parameters are allowed to deviate. The highest value for 

Ψ is equal to the total number of uncertain parameters allowing all 

uncertain parameters to deviate from their nominal estimates. 

Since robust optimization determines the solution based on the 

worst-case realization of uncertain parameters, it selects the 

maximum allowable value of deviation for each uncertain 

parameter.  In fact, in the optimization 𝐿𝑗𝑡
𝑑𝑒𝑣± = 𝐿̂𝑗𝑡

𝑑𝑒𝑣± and 𝐶𝑓𝑡
𝑑𝑒𝑣± =

𝐶̂𝑓𝑡
𝑑𝑒𝑣±. 
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Fig. 3. Energy balance of storage systems. 

Thus, equation (3e) illustrates the number of uncertain 

parameters deviating from their nominal values which is 

mathematically lower than Ψ. However, the optimization selects 

the exact value of Ψ as the uncertainty budget which is due to the 

conservativeness of robust optimization. Due to this reason, robust 

optimization has been considered as a conservative approach in 

uncertainty modelling, but more immunized against uncertainties. 

However, it is the post-event analysis which determines the 

optimal robust setting of the model. In fact, the post-event analysis 

examines different values of  Ψ, 𝐿̂𝑗𝑡
𝑑𝑒𝑣±, and 𝐶̂𝑓𝑡

𝑑𝑒𝑣± against trial 

scenarios to determine the most suitable robust settings. A more 

detailed explanation for this procedure is given in Section VI.C, 

where the post-event analysis is presented. 

B. Proposed Adaptive Robust Model 

Two main decisions are made in RO, including "here-and-now" 

decisions, which are obtained before any uncertainty realizations, 

and "wait-and-see" decisions, which are obtained after the 

realization of uncertain parameters [39]. As a result, when the 

uncertainties are realized, these “wait-and-see” recourse decisions 

can be adaptively made in response to uncertainty variation. This 

adaptive decision making capability brings an adaptive character 

into our robust model and makes it superior than a single-stage 

robust approach which has no “wait-and-see” recourse adaptivity. 

Due to this adaptive character, the proposed model has been called 

adaptive robust optimization. 

In this study, the converters' start-up binary variables (i.e., 𝑈𝑖𝑡) 

are considered as "here-and-now" decisions, while other variables 

including EHS facilities' operation and input energy carriers are 

determined as "wait-and-see" decisions. The adaptive robust 

model is expressed through a tri-level min-max-min optimization 

problem as (4). 

min𝑿∈Ξ𝐼(𝑨′ ∙ 𝑿 + max𝑼̃∈Ξ𝑈𝑆 min𝑌∈Ξ𝐼𝐼𝑭′, 𝒀) (4a) 

s.t.  

Ξ𝐼 = {𝑿 ∈ {𝟎, 𝟏}𝑁𝑋   |  𝑪𝑿 ≥ 𝑫} (4b) 

Ξ𝐼𝐼 =  𝒀 ∈ ℝ𝑁𝑌   |  𝑬(𝑿, 𝒀, 𝑼̃) ≥ 0} (4c) 

Ξ𝑈𝑆 =  𝑼̃ ∈ ℝ𝑁𝑈̃   |  𝑼̃ = 𝑼̅ + 𝑼𝒅𝒆𝒗+} (4d) 

In (4a), the outer min problem minimizes the term 𝑨′ ∙ 𝑿 over 

"here-and-now" variables denoted by vector 𝑿. This term 

represents 𝕄1 in (2a) as the only dependent term on start-up 

variables to be obtained before any uncertainty realizations. The 

outer min problem is subject to constraint (4b) which represents 

the set of constraints (2b)-(2c) as the start-up characteristics. The 

inner min problem in (4a) minimizes the term 𝑭′, 𝒀 over "wait-and-

see" variables, while the inner max problem maximizes it over the 

uncertain parameters.  

The term 𝑭′, 𝒀 represents the set of the remaining terms in (2a) 

(i.e., 𝕄2-𝕄5) which are dependent on "wait-and-see" variables, 

including EHS operation and energy flow variables. Therefore, the 

inner min problem is subject to constraints (2d)-(2p), represented 

by (4c), while the inner max problem is subject to uncertainty set 

realizations as (4d) which is the compact form of (3a)-(3b). A 

decomposition methodology is employed to decompose the tri-

level min-max-min problem into a single-level min problem and a 

bi-level max-min problem by means of column-and-constraint 

generation technique [29]. The single-level min problem is called 

"master problem" and the bi-level max-min problem is called "sub-

problem", hereafter. The extended version of master and sub-

problem is given in the supplementary file.  

C. Solution Methodology for the Tri-level Robust Model 

The solution methodology includes two iterative loops namely 

the inner loop and the outer loop as depicted by Fig. 4. The 

compact mathematical formulations of master problem and sub-

problem are given in Fig. 4, as per the notations in nomenclature. 

The outer loop in Fig. 4 is shown by red arrows while the inner 

loop is shown by green arrows. Each loop is described as follows: 

1) Outer loop 

The outer loop is responsible for transporting the obtained "here-

and-now" variables in the master problem to the sub-problem 

(prior to uncertainty realizations), on one hand, and submitting 

primal cutting planes from sub-problem to master problem, on the 

other hand. The sub-problem is then solved given the obtained 

"here-and-now" variables to determine "wait-and-see" variables 

and the worst-case realization of uncertain parameters to be sent 

back to the master problem in the next iteration. Therefore, a 

complete set of primal cuts are added to the master problem in each 

iteration and "here-and-now" variables are updated to be sent to the 

sub-problem. This procedure iterates through the outer loop till the 

convergence criteria is met (values of master and sub-problem 

become sufficiently close) which terminates the outer loop and the 

robust solution is obtained. 

2) Inner loop 

Since the sub-problem is a bi-level max-min problem, it cannot 

be solved directly. In previous robust models such as [28-29], it 

was recast into a single-level max problem using duality theory 

which limits the application of RO. This is because no binary 

variables can be considered in the inner max-min problem as 

recourse decisions – dual of a mixed integer model is generally 

weak, non-tractable and complicated [25]. An example of these 

binary variables is the storage charging/discharging status that 

needs to be obtained after uncertainty realizations to compensate 

the shortage/surplus of energy due to uncertainties of load. Another 

example is the binary variables indicating the status of EHS in 

terms of responsiveness to the DR program which must be 

obtained after uncertainty realization to maximize the benefits of 

EHS. However, none of these are applicable through conventional 

dual-based robust models. This results in two unfavorable 

approaches (considering the literature), which are:  

1) Removing the binary variables which is not applicable in 

some studies, like in this study where binary variables are allocated 

for failing or fulfilling IBDR contracts, i.e., 𝑓𝑡
+

, 𝑓𝑡
−

, and must be 

considered.  

2) Characterizing binary recourse variables in the outer min 

problem (master problem) with no uncertainty characterization, 

while these variables are meant to be obtained after uncertainty 

realizations in the inner max-min sub-problem as recourse 

decisions. This results in non-optimal and non-realistic solutions. 

Therefore, in the proposed robust model in this paper, the BCD 

method is used to solve the sub-problem through an iterative 

methodology instead of transforming it to a single-level problem 

by duality theory. As a result, there is no limitation in considering 

binary variables in the inner max-min sub-problem. 
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Master problem

min𝑿∈Ξ𝐼   𝑨′ ∙ 𝑿 + ¥ (5a) 

s.t.  

Converters' start-up constraints:  

𝑪𝑿 ≥ 𝑫;    𝑿 ∈ {0, 1}𝑁𝑋  (5b) 

Primal cut constraints:  

¥ ≥ 𝑭′, 𝒀;    𝑮 ∙ 𝑿 + 𝑩 ∙ 𝒀 + 𝑯 ∙ 𝑼𝑐 ≥ 𝑲;  𝑐 ∈ Ξ𝐶 (5c) 
 

 

Sub-problem

First-stage sub-problem

Second-stage sub-problem

min𝑌∈Ξ𝐼𝐼   ΛII ≡ 𝑭′ , 𝒀 (6a) 

s.t.  

EHS operation and energy flow constraints:  

𝑮 ∙ 𝑿𝑐 + 𝑩 ∙ 𝒀 + 𝑯 ∙ 𝑼𝑐 ≥ 𝑲;    𝑐 ∈ Ξ𝐶  (6b) 

Auxiliary constraints:  

𝑼𝑐 = 𝑼𝑧    ∶     𝝁 ≥ 0;    𝑐 ∈ Ξ𝐶 ;    𝑧 ∈ Ξ𝑍   (6c) 

 

max𝑼̃∈Ξ𝑈𝑆 ΛIII
(𝑧)

≡ΛII
(𝑧)

+ 𝝁 ∙ (𝑼𝑧 − 𝑼𝑧−1) (7a) 

s.t.  

Uncertainty set constraints:  

𝑼𝑧 = 𝑼̅ + 𝑼𝒅𝒆𝒗+;   𝑼𝑧 ∈ ℝ𝑁𝑈  (7b) 

 

|𝚲𝐈𝐈𝐈 −𝚲𝐈𝐈| 
≤ 𝜺? 

 No.

Yes

|𝚲𝐈𝐈 −𝚲𝐈| 
≤ 𝜺? 

Yes

The robust incentive-based IDR solution is obtained.

No

Start

Stop
 

Fig. 4. Outline of the proposed two-stage BCD robust approach. 

Therefore, the storage charging/discharging status variables as 

well as binary variables for failing or fulfilling IBDR contracts can 

be obtained after uncertainty realizations. This results in realistic 

and optimal solutions compared to those of the conventional dual-

based robust models.  

BCD technique was originally devised to deal with single-level 

problems. By extending the application of the BCD technique to 

solve the two-level max-min sub-problem (resulted from the C&C 

generation technique), it is possible to avoid duality theory in 

solving the sub-problem. Using the BCD methodology, the sub-

problem is recast into a first-stage sub-problem (characterizing the 

inner min problem), and a second-stage sub-problem 

(characterizing the inner max problem). The second-stage sub-

problem is built upon the first order Taylor series approximation 

of uncertain parameters in the first-stage sub-problem. The first-

stage sub-problem determines the "wait-and-see" variables 

considering the worst-case realization of uncertain parameters 

obtained in the second-stage sub-problem, considering the 

obtained "here-and-now" variables from the master problem. The 

second-stage sub-problem is then solved to update the worst-case 

realization of uncertain parameters, considering the obtained 

"wait-and-see" variables in the first-stage sub-problem. This 

iterative procedure is executed through the inner loop. Therefore, 

in each iteration of the outer loop, the inner loop is executed till it 

converges (the value of first and second-stage sub-problems 

become sufficiently close).  

The extended form of the BCD robust model has been presented 

in the Appendix at the end of this paper.  

V. PERFORMANCE EVALUATION 

A. Data Set 

Fig. 5 shows the case study. The associated characteristics of the 

EHS are also presented in Fig. 5. These characteristics are taken 

from [40]. All inputs and outputs are in per unit (p.u.) with the base 

value of 100 kW. Table II lists the allocated incentives, penalties, 

and energy prices associated with upstream electricity market.  
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Fig. 5. Studied EHS and its characteristics. 

 
Fig. 6. Industrial electricity and heat energy consumptions 

TABLE II  

SCENARIOS AND THE ASSOCIATED CHARACTERISTICS [$/100KWH] 

Elec. price 
Incentive Extra incentive Penalty 

Valley Off-peak Peak 

5.30 7.90 13.20 12.00 2.45 5.45 

TABLE III 
INPUT PARAMETERS AND THEIR ALLOWABLE RANGES 

Parameter Allowable range [p.u.] 

EHS input Elec. / EHS input gas 0 ≤ 𝑃1𝑡
 ≤ 5 / 0 ≤ 𝑃2𝑡

 ≤ 5 

EHS input heat / Input gas to CHP 0 ≤ 𝑃3𝑡
 ≤ 3 / 0 ≤ 𝑃2𝑡

′ ≤ 3 

Input gas to furnace 0 ≤ 𝑃3𝑡
′ ≤ 3 

Elec./Heat storage charge/discharge rate 0.1 ≤ 𝑄𝑘𝑡
𝑐ℎ𝑔

/𝑄𝑘𝑡
𝑑𝑖𝑠 ≤ 3.5/2.5 

Elec. / Heat storage energy level 0.1 ≤ 𝐸1𝑡
 ≤ 4.0 / 0.5 ≤ 𝐸2𝑡

 ≤ 3.0 

Heat storage energy level 0.5 ≤ 𝐸2𝑡
 ≤ 3.0 

In TOU rate, hours 01-06, 07-14/21-24, and 15-20 pertain to 

valley, off-peak, and peak period, respectively. Note that, both the 

energy prices and the load demand at the EHS output are 

considered as uncertain parameters meaning they may deviate in 

hourly scale. This is due to the fact that, the operation simulations 

are conducted on an hourly basis. However, the scale of the 

simulation can be reduced to any other scale. This is in line with 

many previous studies such as [8], [14-16], [19-21], [23-24], [26], 

[28], [32], [35-36], and [40]. Input parameters and their allowable 

ranges are given by Table III. The value of incentives/penalties are 

taken from [38], while, TOU rates are taken from [41]. Targeted 

time periods for IBDR schemes are hours 17-20 with 2 p.u. 

contract level. Four cases are considered with different deviation 

range of uncertain parameters. These cases include Case 1, Case 2, 

Case 3, and Case 4 with 5%, 10%, 15%, and 20% deviation, 

respectively. Since, there are five uncertain parameters (i.e., three 

input energy prices and two load consumptions), there are 

5 × 24 = 120 uncertain parameters during a 24-h scheduling 

horizon (i.e., 0 ≤ Ψ ≤ 120). Fig. 6 shows the hourly 

electricity/heat consumption by EHS at output ports, which are 

uninterruptible. Load data has been taken from [42]. Therefore, the 

energy consumptions in Fig. 6 are not shiftable/curtailable but 

subject to uncertainty. 

1 2 3 4 6 7 8 9 11 12 13 14 16 17 18 19 21 22 23 245 10 15 20

1

2

3

4

5

p
.u

.

Time [h]

 Elec. load

 Heat load
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Fig. 7. EHS daily operation cost with and without the IDR model. 

TABLE IV 

TOTAL OPERATION COST FOR EACH CASE WITH 20-STEP SIZE Ψ  

Ψ 
Total operation cost [$/day]  

Case 1 Case 2 Case 3 Case 4 

0 884.73 884.73 884.73 884.73 

20 945.75 978.85 1029.35 1078.53 

40 972.07 1028.23 1104.91 1176.16 

60 994.90 1053.60 1149.66 1243.71 

80 1013.41 1086.21 1183.77 1289.52 

100 1025.00 1108.01 1222.58 1345.72 

120 1026.77 1119.54 1248.38 1372.11 

Note that, any deviation in optimization parameters, such as 

input energy prices, does not affect the optimality of the solution. 

This is due to the fact that the optimization still reaches the global 

optima as the model is linear. Simulations have been conducted in 

GAMS software programing environment through GUROBI 

solver [43], on a computer with 8GB RAM and a Core-i7 CPU.  

B. Robust Solutions 

Table IV shows the EHS total operation cost for cases 1-4. It is 

observed that, Ψ = 0 stands as the deterministic representation of 

the proposed incentive-based IDR model, regardless of the 

deviation range of uncertain parameters. In fact, when Ψ = 0 no 

uncertain parameter can deviate from its estimate according to 

(3g).  

As the uncertainty budget Ψ increments in Table IV, the total 

operation cost increases for all cases. This is because, increasing Ψ 

enlarges the size of the uncertainty set, i.e., a higher number of 

uncertain parameters can deviate from their nominal values, 

resulting in more robust operation at a higher expense. For a given 

value of Ψ > 0, the deviation of uncertain parameters in Case 4 > 

Case 3 > Case 2 > Case 1, which makes the worst-case realization 

of uncertainties even worst. Therefore, the operation cost of Case 

4 > Case 3 > Case 2 > Case 1 for each value of Ψ. The 

computation time for all cases with different robust settings is 

between 3 and 4.5 seconds. 

C. Validation of the Obtained Results 

1) Comparison of the Solutions against PBDR scheme only 

To illustrate the effectiveness of the proposed model, the studied 

EHS is operated in two scenarios. In the first scenario, only TOU 

pricing (which is a PBDR scheme) is considered, while in the 

second scenario both TOU and incentive-based IDR are 

considered. Therefore, the first scenario, i.e., TOU only, the 

objective function includes 𝕄1, and 𝕄2, while, the second 

scenario includes all terms 𝕄1-𝕄5. The results of this operation 

are given by Fig. 7. As it is seen, the value of the objective function 

is lower in all cases 1-4 when considering incentive-based IDR in 

addition to TOU pricing. This is because the proposed model 

maximizes the obtained incentives while minimizing possible 

penalty allocations through IBDR schemes by optimally measuring 

input energies. 

2) Validation of the Robust Solutions by Post-event Analysis 

The obtained RO solutions become more immunized against 

uncertainties as the robustness level (value of Ψ, 𝐿̂𝑗𝑡
𝑑𝑒𝑣±, and 𝐶̂𝑓𝑡

𝑑𝑒𝑣±) 

increases. This feature is called "robustness worth" which is a 

result of high conservativeness, meaning that the prosumer will 

face minimum extra costs if uncertainties arise.  However, this 

immunization comes at a higher expense which is called 

"robustness cost". This is shown in Table IV in which the value of 

objective function increases as the value of Ψ, 𝐿̂𝑗𝑡
𝑑𝑒𝑣±, and 𝐶̂𝑓𝑡

𝑑𝑒𝑣± 

increase. Therefore, selecting a very high robustness level leads to 

over-conservative solutions, resulting in unnecessary robustness 

cost and impractical robustness worth, and vice versa. 

To provide an optimal balance between robustness worth and 

cost, and to avoid over/under conservative RO solutions, a post-

event analysis has been conducted in this study. According to this 

analysis, the obtained RO solutions for each robustness level (as 

indicated by Table IV) are examined against a sufficiently large 

number of uncertainty realizations, while the obtained operational 

solutions are fixed. The value of objective function is then 

normalized for all scenarios. The robust settings resulting in the 

lowest value of post-event value are considered as optimal robust 

settings of the model.  

The energy shortage in each scenario has been modeled by 

additional free variables in the post-event analysis, to guarantee the 

feasibility of the solutions. This means, if a power shortage occurs, 

the additional free variables models the load shed. Therefore, the 

mixed-integer linear model (2) becomes a simple linear model, 

only characterizing power shortage. The mathematical model of 

post-event analysis is given as (8). Note that, only constraints 

associated with power shortage are considered in post-event model 

and other constraints are eliminated as they are fixed on the 

obtained robust solutions (they are constants and have no effect on 

the post-event value). The subscript (s) in (8), indicates the 

associated variables in each trial scenario.  The post-event value is 

obtained by (8a) in which the summation of the absolute value of 

power shortage, i.e., 𝑌𝑗𝑡𝑠
𝑠ℎ, for each trial scenario is normalized over 

the total number of trial scenarios. The only constraint being 

affected with power shortage is the energy balance constraint (2i) 

which is modified and presented by (8b).  

𝑃𝐸 =    (
|𝑌𝑗𝑡𝑠

𝑠ℎ|

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠
)𝑡∈𝛯𝑇𝑗∈𝛯𝐽𝑠∈𝛯𝑆   (8a) 

where;  

𝐿̅𝑗𝑡
 =  (𝑆𝑗𝑘 ∙ 𝜂𝑘

𝑐ℎ ∙ 𝑄𝑘𝑡
𝑑𝑖𝑠 − 𝑆𝑗𝑘 ∙

1

𝜂𝑘
𝑑𝑖𝑠

∙ 𝑄𝑘𝑡
𝑐ℎ𝑔

)
𝑘∈𝛯𝐾

 

+ (𝜂𝑗𝑖
𝑐𝑜𝑛 ∙ 𝑃𝑖𝑡

′ )
𝑖∈𝛯𝐼

+ 𝑌𝑗𝑡
𝑠ℎ;    ∀𝑗 ∈ 𝛯𝐽; ∀𝑡 ∈ 𝛯𝑇; 

∀𝑠 ∈ Ξ𝑆; 

(8b) 

∀𝑌𝑗𝑡
𝑠ℎ ∈ ℝ (8c) 

The obtained results of the conducted post-event analysis are 

shown in Fig. 9. As can be seen, Ψ = 0 leads to a deterministic 

model resulting in higher post-event costs which illustrates that the 

deterministic solution is not immunized against load and energy 

price uncertainties. By increasing Ψ, the robustness of the 

proposed BCD robust model increases, which enlarges the size of 

polyhedral uncertainty set to cover more uncertainty realizations. 

The best performance of the ARO model is obtained as $1130.3 

with 15% deviation of uncertain parameters (Case 3) and Ψ =
120. 
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Fig. 8. Post-event cost of the EHS under different robust settings. 
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Fig. 10. Electric energy balance under the incentive-based IDR model. 

These robust settings, therefore, result in the most practical, 

feasible, and economical performance of the proposed BCD robust 

model (see Fig. 8). 

D. EHS Operational Solutions Based on the Obtained Optimal 

Robust Settings by Post-event Analysis 

The following operational results are obtained under the 

optimum robust settings by post-event analysis in previous sub-

section. Fig. 9 shows the EHS optimal purchased energies, 

including electricity, natural gas, and heat. It can be seen that, the 

EHS is more likely to consume input natural gas to generate 

electricity and heat (using CHP and furnace units) in most of the 

time. In targeted time periods by IBDR schemes i.e., hours 17 and 

19-20, it has optimally purchased 2 p.u of electric energy, 

considering the 2 p.u contract level by IBDR schemes. Therefore, 

incentives have been fully allocated in these hours, according to 

𝕄4 in (2a). However, the input electricity has not been reduced in 

hour 18, which means the third term in (2a) (i.e., 𝕄3) has been 

activated in this hour, allocating penalties to the unreduced 

purchased electricity.  

Fig. 10 illustrates the energy balance and charging/discharging 

status for both heat and electricity storage systems. These solutions 

are obtained as recourse decisions due to the employment of BCD 

method in solving the max-min sub-problem. As it can be seen, the 

electricity storage has been considerably discharged in hours 17 

and 19-20 to increase the EHS obtained incentives in targeted time 

periods by IBDR schemes. On the contrary, it has been reasonably 

charged in valley and off-peak hours such as hours 5-6 and 12-14 

to contribute in the EHS optimal operation. The heat storage has 

been rationally charged in the early hours of the operation horizon 

and discharged during hours 14-16 to minimize the energy costs of 

the EHS while supplying non-curtailable loads.  
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Fig. 11. Storage energy balance and charging/discharging status. 
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Fig. 12. Reduction of operation cost in targeted time periods by IBDR schemes. 
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Fig. 13. Electricity, gas, and heat input before and after the proposed IDR 

model. 

Note that, the required heat energy at the EHS output port in 

hours 15-24 (see Fig. 8), is covered by CHP as the input heat 

energy and the heat storage energy level is almost zero in these 

hours. The contribution of electricity storage system is shown in 

Fig. 11, indicating the variables associated with energy balance 

constraint (2i), including converters' output and 

charging/discharging of electricity storage. Note that, the EHS has 

supplied the consumed energy with no load shifting/curtailment at 

the demand side while participating in upstream IBDR schemes by 

optimal measuring of its input electricity. In fact, the actual energy 

consumption by non-curtailable loads at the EHS output port has 

remained unchanged while the input energy at the EHS input ports 

has been modified to satisfy upstream network IBDR schemes.  

The hourly total operation cost of EHS, before and after the 

implementation of the proposed BCD robust IBDR model, is 

shown in Fig. 12.  As it can be seen, the operation cost significantly 

reduces in hours 17 and 19-20, when using the proposed IDR 

model. This is because the EHS reasonably curtails the input 

electricity to obtain maximum benefits and avoid penalty 

allocations in these hours. It also consumes the stored electricity in 

the storage system to cover the required electricity in these hours 

(see Fig. 11). In hour 18, however, the operation cost under the 

proposed incentive-based IDR model increases as it purchases a 

higher value of input electricity, as shown in Fig. 9, resulting in a 

breach of contract and penalty allocations in this hour. 
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Fig. 14. Sensitivity analysis against different values of incentives/penalties 

However, the total operation cost, when using the proposed 

incentive-based IDR model, is significantly lower than the total 

operation cost for the base scenario. 

Modifications of input energy carriers by IDR are shown by Fig. 

13 in which changes of the EHS input energy, before and after 

implementing the proposed BCD robust IDR model, are given. As 

it is seen, the electricity purchasing pattern by EHS has been 

modified, especially, in hours 17-20 which are the targeted time 

periods by IBDR schemes (see Fig. 13A). Moreover, it is seen that 

the modifications of input electricity purchasing pattern also affect 

other input energy carriers (see Fig. 13B, and 13C). This is because 

all input energy carriers are integrated in the EHS to supply EHS 

output load together (this shows the cross effects between different 

energy carriers when integrated in the IDR model). 

E. Sensitivity Analysis 

A sensitivity analysis has been conducted to investigate the 

sensitivity of the EHS total obtained benefits as well as the EHS 

cost of electricity (CoE) toward different incentives/penalties in 

IBDR contracts. Results are shown by Fig. 14. The EHS obtained 

incentives/penalties and CoE, during a 24-h operation, have been 

shown by Fig. 14A for different values of allocated incentive (from 

2 $/p.u. to 12 $/p.u.) and a fixed value of penalty (5.4 $/p.u.) in 

IBDR contracts. As expected, the EHS total obtained incentive has 

increased while the allocated penalty has not changed at all. 

Accordingly, CoE has reduced from $10.14 to $9.54, illustrating 

the sensitivity of the proposed incentive-based IDR model to 

allocated incentives by IBDR schemes. The obtained results for 

different values of allocated penalties (from 1 $/p.u. to 6 $/p.u.) 

and a fixed value of incentive (12 $/p.u.) in IBDR contracts have 

been shown by Fig. 14B. As it is seen, the EHS total obtained 

incentive has reduced from $59.7 to $56.4 while the allocated 

penalty has increased. Therefore, the CoE would become greater 

as the value of penalty increases. As it is seen, the EHS benefit is 

highly sensitive to the allocated incentives and less sensitive to the 

penalty values in IBDR contract. This is because, the proposed 

model reduces the input electricity in targeted time periods by 

IBDR schemes. Therefore, there would be more incentive 

allocation than penalty allocation, resulting in higher sensitivity of 

CoE to incentives. 

VI. CONCLUSION 

A BCD robust incentive-based IDR model for multi-energy hub 

systems with non-curtailable loads was presented in this paper. The 

aim of the proposed IDR model was to consider incentive/penalty 

terms in IBDR contracts and provide a reasonable energy 

purchasing pattern for EHS under short-term operation 

uncertainties. The uncertainties of EHS of loads and energy prices 

were integrated into the model through a tri-level min-max-min 

robust optimization approach. BCD method was employed to solve 

the inner max-min problem, enabling the proposed IDR model to 

characterize binary variables after uncertainty realizations, which 

was not applicable in previous RO applications. This was because 

of eliminating the need of duality theory in solving the inner max-

min problem. 

Results showed that the IDR model reasonably reduces the EHS 

input electricity in targeted time periods (four hours per day) by 

IBDR schemes and covered the required electricity by CHP unit, 

using natural gas. Accordingly, no load curtailment was conducted 

at the EHS outputs, while the input energy is reduced reasonably 

to participate in upstream DR schemes. This resulted in a 2.13% 

reduction in the operation cost as incentives are obtained through 

IBDR schemes. The effectiveness of the incentive-based IDR 

model was illustrated by comparing the optimal results against a 

case with no incentive/penalty terms. The robust solutions were 

also compared to deterministic solutions in the post-event analysis. 

The value of objective function was considerably increased in the 

RO model, compared to the deterministic model. However, the RO 

solutions were more immunized against uncertainties as indicated 

by the post-event analysis. Accordingly, the post-event cost for the 

deterministic solutions was $1856, while this value was $1130 for 

RO solutions. 

The proposed model can assist in the optimal operation of EHS 

facilities to efficiently participate in IBDR programs. The future 

work will focus on characterizing other types of IBDR schemes, 

such as emergency demand response. 

APPENDIX: EXTENDED FORM OF THE BCD ROBUST MODEL 

A. Master Problem  

Master problem is solved to determine "here-and-now" decision 

variables including inverters' start-up solutions while being subject 

to star-up constraints only. Therefore, the objective function (9a) 

includes the term 𝕄1 of the deterministic objective function (2a) 

and is subject to constraints (2b)-(2c) including start-up variables 

only, i.e., 𝑈𝑖𝑡 and 𝐶𝑖𝑡
𝑆𝑈. Other operational constraints, therefore, are 

added as primal cuts in each iteration of the outer loop. The 

epigraph form of the master problem including primal cutting 

planes given by sub-problem, can be written as (9). 

Min ΛI ≡
 

(  𝐶𝑖𝑡
𝑆𝑈

𝑖∈𝛯𝐶𝑡∈𝛯𝑇

⏞            
𝕄1

) + ¥; (9a) 

s.t.  

Converters' start-up constraints:  

𝐶𝑖𝑡
𝑆𝑈 ≥ 𝑆𝑈𝐶𝑖 ∙ (𝑈𝑖,(𝑡=1) − 𝑈𝑖𝑡

𝑖𝑛𝑖);    𝑖 ∈ 𝛯𝐶 ; ∀𝑡 ∈ 𝛯𝑇  (9b) 

𝐶𝑖𝑡
𝑆𝑈 ≥ 𝑆𝑈𝐶𝑖 ∙ (𝑈𝑖𝑡 − 𝑈𝑖,(𝑡−1));    𝑖 ∈ 𝛯𝐶 ; 𝑡 ∈ 𝛯𝑇|𝑡 > 1 (9c) 

Primal cuts submitted from the sub-problem:  

¥ ≥ (  (𝐶̃𝑓𝑡
𝑐 . 𝑃𝑓𝑡𝑐)

𝑓∈𝛯𝐹𝑡∈𝛯𝑇

⏞                
𝕄2

 

+  (𝑃𝑓𝑡𝑐
+ − (𝐶𝑙𝑓𝑡 ∙ 𝑓𝑡𝑐

+ )) ∙ 𝑃𝑒𝑛𝑓𝑡
𝑓∈𝛯𝐹𝑡∈𝛯𝑇

⏞                            
𝕄3

 

−  ((𝑃𝑓𝑡𝑐
 ̅̅ ̅̅ ̅ − 𝐶𝑙𝑓𝑡) ∙ 𝑓𝑡𝑐

− ∙ 𝐴𝑓𝑡)
𝑓∈𝛯𝐹𝑡∈𝛯𝑇

⏞                          
𝕄4

 

−  ((𝐶𝑙𝑓𝑡 ∙ 𝑓𝑡𝑐
− − 𝑃𝑓𝑡𝑐

− ) ∙ 𝐴𝑓𝑡
𝑒𝑥)

𝑓∈𝛯𝐹𝑡∈𝛯𝑇

⏞                          
𝕄5

) ;  ∀𝑐

∈ Ξ𝐶  

(9d) 

𝑓𝑡𝑐
+ + 𝑓𝑡𝑐

− ≤ 1;   ∀𝑓 ∈ 𝛯𝐹; ∀𝑡 ∈ 𝛯𝑇; ∀𝑐 ∈ Ξ𝐶 (9e) 
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𝑃𝑓𝑡𝑐
 =  𝑃𝑖𝑡𝑐

′ ∙ 𝑣𝑓𝑖
𝑖∈𝛯𝐼

;    ∀𝑓 ∈ 𝛯𝐹; ∀𝑡 ∈ 𝛯𝑇; ∀𝑐 ∈ Ξ𝐶  (9f) 

𝑃𝑓𝑡𝑐
− + 𝑃𝑓𝑡𝑐

+ = 𝑃𝑓𝑡𝑐
 ;    ∀𝑓 ∈ Ξ𝐹; ∀𝑡 ∈ Ξ𝑇; ∀𝑐 ∈ Ξ𝐶  (9g) 

𝐶𝑙𝑓𝑡 ∙ 𝑓𝑡𝑐
+ < 𝑃𝑓𝑡𝑐

+ ≤ 𝑃𝑓𝑡
𝑢𝑝

∙ 𝑓𝑡𝑐
+ ; ∀𝑓 ∈ 𝛯𝐹; ∀𝑡 ∈ 𝛯𝑇; ∀𝑐

∈ Ξ𝐶  
(9h) 

0 ≤ 𝑃𝑓𝑡𝑐
− ≤ 𝐶𝑙𝑓𝑡 ∙ 𝑓𝑡𝑐

− ;    ∀𝑓 ∈ 𝛯𝐹; ∀𝑡 ∈ 𝛯𝑇; ∀𝑐 ∈ Ξ𝐶 (9i) 

𝐿̃𝑗𝑡
𝑐 =  (𝑆𝑗𝑘 ∙ 𝜂𝑘

𝑐ℎ ∙ 𝑄𝑘𝑡𝑐
𝑑𝑖𝑠 − 𝑆𝑗𝑘 ∙

1

𝜂𝑘
𝑑𝑖𝑠

∙ 𝑄𝑘𝑡𝑐
𝑐ℎ𝑔

)
𝑘∈𝛯𝐾

 

+ (𝜂𝑗𝑖
𝑐𝑜𝑛 ∙ 𝑃𝑖𝑡𝑐

′ )
𝑖∈𝛯𝐼

;    ∀𝑗 ∈ 𝛯𝐽; ∀𝑡 ∈ 𝛯𝑇 ; ∀𝑐 ∈ Ξ𝐶 

(9j) 

𝑃𝑖𝑡
′𝑙𝑜 ∙ 𝑈𝑖𝑡𝑐 ≤ 𝑃𝑖𝑡𝑐

′ ≤ 𝑃𝑖𝑡
′𝑢𝑝

∙ 𝑈𝑖𝑡𝑐;   𝑖 ∈ 𝛯𝐶 ; ∀𝑡 ∈
𝛯𝑇; ∀𝑐 ∈ Ξ𝐶   

(9k) 

 (𝜂𝑘
𝑐ℎ ∙ 𝑄𝑘𝑡𝑐

𝐶ℎ𝑔
−

1

𝜂𝑘
𝑑𝑖𝑠

∙ 𝑄𝑘𝑡𝑐
𝑑𝑖𝑠)

𝑡∈𝛯𝑇
= 𝑇 ∙ 𝐸𝑘

𝑙 ; 

∀𝑘 ∈ 𝛯𝐾; ∀𝑐 ∈ Ξ𝐶  

(9l) 

𝐸𝑘𝑡𝑐 = 𝐸𝑘(𝑡−1)𝑐 + 𝜂𝑘
𝑐ℎ𝑔

∙ 𝑄𝑘𝑡𝑐
𝑐ℎ𝑔

−
1

𝜂𝑘
𝑑𝑖𝑠

∙ 𝑄𝑘𝑡𝑐
𝑑𝑖𝑠 − 𝐸𝑘

𝑙 ;    

∀𝑘 ∈ 𝛯𝐾; ∀𝑡 ∈ 𝛯𝑇; ∀𝑐 ∈ Ξ𝐶  

(9m) 

𝐸𝑘𝑡
𝑙𝑜 ≤ 𝐸𝑘𝑡𝑐 ≤ 𝐸𝑘𝑡

𝑢𝑝
;    ∀𝑘 ∈ 𝛯𝐾; ∀𝑡 ∈ 𝛯𝑇; ∀𝑐 ∈ Ξ𝐶  (9n) 

𝑄𝑘𝑡
𝑐ℎ𝑔,𝑙𝑜

∙ 𝑥𝑘𝑡𝑐
𝑐ℎ𝑔

≤ 𝑄𝑘𝑡𝑐
𝑐ℎ𝑔

≤ 𝑄𝑘𝑡
𝑐ℎ𝑔,𝑢𝑝

∙ 𝑥𝑘𝑡𝑐
𝑐ℎ𝑔

; 

∀𝑘 ∈ 𝛯𝐾; ∀𝑡 ∈ 𝛯𝑇; ∀𝑐 ∈ Ξ𝐶  
(9o) 

𝑄𝑘𝑡
𝑑𝑖𝑠,𝑙𝑜 ∙ 𝑥𝑘𝑡𝑐

𝑑𝑖𝑠 ≤ 𝑄𝑘𝑡𝑐
𝑑𝑖𝑠 ≤ 𝑄𝑘𝑡

𝑑𝑖𝑠,𝑢𝑝
∙ 𝑥𝑘𝑡𝑐

𝑑𝑖𝑠; 

∀𝑘 ∈ 𝛯𝐾; ∀𝑡 ∈ 𝛯𝑇; ∀𝑐 ∈ Ξ𝐶  
(9p) 

𝑥𝑘𝑡𝑐
𝑐ℎ𝑔

+ 𝑥𝑘𝑡𝑐
𝑑𝑖𝑠 ≤ 1;   ∀𝑘 ∈ 𝛯𝐾; ∀𝑡 ∈ 𝛯𝑇; ∀𝑐 ∈ Ξ𝐶 (9q) 

The objective function (9a) minimizes the converters' start-up 

costs by determining the start-up solutions as "here-and-now" 

decisions while being subject to start-up constraints (9b)-(9c). 

Constraints (9d)-(9q) represent the primal cuts submitted from the 

sub-problem. The subscript (c) and the superscript (c) in (9), 

indicate the associated "wait-and-see" variables and the fixed 

values of the uncertain parameters at iteration c of the column-and-

constraint generation algorithm, respectively. Constraints (9e)-( 

9q) are equivalent to constraints (2d)-(2p). However, the forecast 

values of uncertain parameters in (2), i.e., 𝐶𝑓̅𝑡 and 𝐿̅𝑗𝑡
 , are replaced 

with the obtained worst-case realizations from the subproblem at 

iteration c, i.e., 𝐶̃𝑓𝑡
𝑐  and 𝐿̃𝑗𝑡

𝑐 . The obtained start-up variables in 

master problem, i.e., 𝑈𝑖𝑡 and 𝐶𝑖𝑡
𝑆𝑈, are then sent to the sub-problem 

as fixed values to determine both "wait-and-see" decision 

variables, i.e., EHS operation and energy flow variables, and the 

new worst-case realization of uncertain parameters. 

B. Sub-problem  

Sub-problem is solved to determine 1) optimal EHS operation 

and energy flow variables as "wait-and-see" decisions, and 2) the 

worst-case realization of uncertain parameters, given the fixed 

values of start-up variables obtained in master problem. In the 

conducted BCD methodology, the first-stage sub-problem is 

responsible for determining "wait-and-see" decision variables, 

while, the second-stage sub-problem determines the worst-case 

realization of uncertain parameters. In the following, both first and 

second-stage sub-problems are presented and discussed. 

1) First-stage Sub-problem: 

Since, the start-up variables are fixed on their obtained values by 

master problem, the term of the deterministic objective function 

(2a), as well as the start-up constraints (2b)-(2c) are not included 

in the first-stage sub-problem. Instead, it includes the term 𝕄2-𝕄5 

in (2a) and the associated EHS operation and energy flow 

constraints (2d)-(2p). The first-stage sub-problem is given by (10). 

Min ΛII ≡
 

  (𝐶̃𝑓𝑡
 . 𝑃𝑓𝑡)

𝑓∈𝛯𝐹𝑡∈𝛯𝑇

⏞                
𝕄2

+   (𝑃𝑓𝑡
+ − (𝐶𝑙𝑓𝑡 ∙ 𝑓𝑡

+ )) ∙ 𝑃𝑒𝑛𝑓𝑡
𝑓∈𝛯𝐹𝑡∈𝛯𝑇

⏞                          
𝕄3

−   ((𝑃𝑓𝑡
 ̅̅ ̅̅ − 𝐶𝑙𝑓𝑡) ∙ 𝑓𝑡

− ∙ 𝐴𝑓𝑡)
𝑓∈𝛯𝐹𝑡∈𝛯𝑇

⏞                          
𝕄4

−   ((𝐶𝑙𝑓𝑡 ∙ 𝑓𝑡
− − 𝑃𝑓𝑡

−) ∙ 𝐴𝑓𝑡
𝑒𝑥)

𝑓∈𝛯𝐹𝑡∈𝛯𝑇

⏞                          
𝕄5

; 

(10a) 

s.t.  

𝑓𝑡
+ + 𝑓𝑡

− ≤ 1;   ∀𝑓 ∈ 𝛯𝐹 ; ∀𝑡 ∈ 𝛯𝑇  (10b) 

𝑃𝑓𝑡
 =  𝑃𝑖𝑡

′ ∙ 𝑣𝑓𝑖
𝑖∈𝛯𝐼

;    ∀𝑓 ∈ 𝛯𝐹 ; ∀𝑡 ∈ 𝛯𝑇  (10c) 

𝑃𝑓𝑡
− + 𝑃𝑓𝑡

+ = 𝑃𝑓𝑡
 ;    ∀𝑓 ∈ Ξ𝐹 ; ∀𝑡 ∈ Ξ𝑇  (10d) 

𝐶𝑙𝑓𝑡 ∙ 𝑓𝑡
+ < 𝑃𝑓𝑡

+ ≤ 𝑃𝑓𝑡
𝑢𝑝

∙ 𝑓𝑡
+ ;    ∀𝑓 ∈ 𝛯𝐹; ∀𝑡 ∈ 𝛯𝑇  (10e) 

0 ≤ 𝑃𝑓𝑡
− ≤ 𝐶𝑙𝑓𝑡 ∙ 𝑓𝑡

− ;    ∀𝑓 ∈ 𝛯𝐹 ; ∀𝑡 ∈ 𝛯𝑇   (10f) 

𝐿̃𝑗𝑡
 =  (𝑆𝑗𝑘 ∙ 𝜂𝑘

𝑐ℎ ∙ 𝑄𝑘𝑡
𝑑𝑖𝑠 − 𝑆𝑗𝑘 ∙

1

𝜂𝑘
𝑑𝑖𝑠

∙ 𝑄𝑘𝑡
𝑐ℎ𝑔

)
𝑘∈𝛯𝐾

 

+ (𝜂𝑗𝑖
𝑐𝑜𝑛 ∙ 𝑃𝑖𝑡

′ )
𝑖∈𝛯𝐼

;    ∀𝑗 ∈ 𝛯𝐽; ∀𝑡 ∈ 𝛯𝑇 

(10g) 

𝑃𝑖𝑡
′𝑙𝑜 ∙ 𝑈𝑖𝑡

𝑐 ≤ 𝑃𝑖𝑡
′ ≤ 𝑃𝑖𝑡

′𝑢𝑝
∙ 𝑈𝑖𝑡

𝑐 ;   𝑖 ∈ 𝛯𝐶 ; ∀𝑡 ∈ 𝛯𝑇 (10h) 

 (𝜂𝑘
𝑐ℎ ∙ 𝑄𝑘𝑡

𝐶ℎ𝑔
−

1

𝜂𝑘
𝑑𝑖𝑠

∙ 𝑄𝑘𝑡
𝑑𝑖𝑠)

𝑡∈𝛯𝑇
= 𝑇 ∙ 𝐸𝑘

𝑙 ;  ∀𝑘 ∈ 𝛯𝐾  (10i) 

𝐸𝑘𝑡 = 𝐸𝑘(𝑡−1) + 𝜂𝑘
𝑐ℎ𝑔

∙ 𝑄𝑘𝑡
𝑐ℎ𝑔

−
1

𝜂𝑘
𝑑𝑖𝑠

∙ 𝑄𝑘𝑡
𝑑𝑖𝑠 − 𝐸𝑘

𝑙 ;    

∀𝑘 ∈ 𝛯𝐾; ∀𝑡 ∈ 𝛯𝑇  

(10j) 

𝐸𝑘𝑡
𝑙𝑜 ≤ 𝐸𝑘𝑡 ≤ 𝐸𝑘𝑡

𝑢𝑝
;    ∀𝑘 ∈ 𝛯𝐾; ∀𝑡 ∈ 𝛯𝑇  (10k) 

𝑄𝑘𝑡
𝑐ℎ𝑔,𝑙𝑜

∙ 𝑥𝑘𝑡
𝑐ℎ𝑔

≤ 𝑄𝑘𝑡
𝑐ℎ𝑔

≤ 𝑄𝑘𝑡
𝑐ℎ𝑔,𝑢𝑝

∙ 𝑥𝑘𝑡
𝑐ℎ𝑔

; ∀𝑘 ∈ 𝛯𝐾; ∀𝑡 ∈

𝛯𝑇   
(10l) 

𝑄𝑘𝑡
𝑑𝑖𝑠,𝑙𝑜 ∙ 𝑥𝑘𝑡

𝑑𝑖𝑠 ≤ 𝑄𝑘𝑡
𝑑𝑖𝑠 ≤ 𝑄𝑘𝑡

𝑑𝑖𝑠,𝑢𝑝
∙ 𝑥𝑘𝑡

𝑑𝑖𝑠;  ∀𝑘 ∈ 𝛯𝐾; ∀𝑡

∈ 𝛯𝑇  
(10m) 

𝑥𝑘𝑡
𝑐ℎ𝑔

+ 𝑥𝑘𝑡
𝑑𝑖𝑠 ≤ 1;   ∀𝑘 ∈ 𝛯𝐾; ∀𝑡 ∈ 𝛯𝑇  (10n) 

𝐿̃𝑗𝑡
 = 𝐿̃𝑗𝑡

(𝑧)
∶  𝒻𝑗𝑡

 ;  ∀𝑗 ∈ Ξ𝐽;  ∀𝑡 ∈ Ξ𝑇 (10o) 

𝐶̃𝑓𝑡
 = 𝐶̃𝑓𝑡

(𝑧) 
∶  𝓀𝑓𝑡

 ;  ∀𝑓 ∈ Ξ𝐹 ;  ∀𝑡 ∈ Ξ𝑇  (10p) 

The objective function (10a) minimizes the energy costs while 

maximizing the EHS benefits through incentive/penalties as "wait-

and-see" decisions to be obtained after uncertainty realizations. 

Constraints (10b)-( 10p) are similar to those of the deterministic 

model but different in two ways, including 1) start-up variables, 

i.e., 𝑈𝑖𝑡, are fixed on the obtained "here-and-now" values in master 

problem at iteration c of the column-and-constraint generation 

methodology, i.e., 𝑈𝑖𝑡
𝑐 , and 2) the forecast values of uncertain 

parameters, i.e., 𝐶𝑓̅𝑡 and 𝐿̅𝑗𝑡
 , are fixed on the worst-case realization 

of uncertain parameters obtained by the second-stage sub-problem 

at iteration z of the BCD method, i.e., 𝐶̃𝑓𝑡
(𝑧)

 and 𝐿̃𝑗𝑡
(𝑧)

, by constraints 

(10o)-(10p). 

Variables 𝒻𝑗𝑡
  and 𝓀𝑓𝑡

  in (10o)-( 10p) represent the sensitivity of 

the objective function (10a) toward uncertain parameters, 

including EHS demands and EHS input energy prices at each 

iteration z of the BCD method. These dual variables, indicated by 

vector 𝝁 in (6c) in Fig. 5, are further employed to develop the 

second-stage sub-problem. As seen in (10), binary variables 
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including,  𝑓𝑡
+

, 𝑓𝑡
−

, 𝑥𝑘𝑡
𝑐ℎ𝑔

, and 𝑥𝑘𝑡
𝑑𝑖𝑠, are characterized in the second-

stage sub-problem to be obtained as "wait-and-see" variables 

indicating recourse decisions. This is due to the employment of 

BCD method which iteratively solves the bi-level max-min sub-

problem through the inner loop (see Fig. 5) instead of transforming 

it to a single max problem by duality theory. Therefore, it is 

possible to determine the EHS status in fulfilling/failing IBDR 

contract as well as storage charging/discharging status after 

realizing the uncertainties in the sub-problem as "wait-and-see" 

decisions. 

2) Second-stage Sub-problem: 

The second-stage sub-problem is built upon the first order Taylor 

series approximation of the first-stage sub-problem over the 

uncertain parameters in the previous iteration of BCD method, i.e., 

𝑧 − 1. Therefore, at iteration z of the BCD method, the second-

stage sub-problem is cast as (11). 

MaxΛIII
(𝑧) ≡ΛII

(𝑧) +   𝒻𝑗𝑡
 (𝐿̃𝑗𝑡

(𝑧) − 𝐿̃𝑗𝑡
(𝑧−1))

𝑡∈𝛯𝑇𝑗∈𝛯𝐽
 

+  𝓀𝑓𝑡
 (𝐶̃𝑓𝑡

(𝑧) 
− 𝐶̃𝑓𝑡

(𝑧−1) 
)

𝑡∈𝛯𝑇𝑓∈𝛯𝐹
 

(11a) 

s.t.  

(3a)-(3g) (11b) 

The second-stage sub-problem determines the worst-case 

realization of uncertain parameters at each iteration z of the BCD 

method, by which the approximated objective function (11a) is 

maximized subject to the uncertainty sets presented by (11b). 
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