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Abstract:  

The accumulation of many production units with small capacities and transforming them into a larger entity will make them 

visible in electricity market. Renewable based virtual power plant (VPP) in this paper is a wide energy management system that 

incorporates probabilistic wind and solar units, non-renewable Distributed Generation (DG) units, and dispatchable loads. In an 

electricity market, a VPP optimizes its operating schedules in order to increase its economic efficiency. However, market 

uncertainties may influence the VPP’s profit. In this paper, modelling the uncertainties is implemented by the proposed 

Information Gap Decision Theory (IGDT). The mentioned scheduling problem is formulated in three operation modes: risk-

neutral, risk-averse and risk-seeker. The risk-neutral mode focuses on optimizing the VPP in the day-ahead market. In the risk-

averse mode, the robustness function is used under low market prices. Moreover, in the risk seeker mode, an opportunity function 

is used under higher market prices towards higher profit results. The proposed model allows the VPP to decide on the scheduling 

of its components and the optimal bids to the day-ahead market. Another purpose is to investigate the role of the renewable-

based VPP in minimizing emission and maximizing profit in a two-objective way. The IEEE 18-bus test system is utilized to 

simulate the proposed problem and analyse the results. The performance of the proposed problem is approved using different 

scenarios. Simulation results justify the advantages and necessities of the proposed problem. 
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Nomenclature 

 Indices 

Index for time period ݐ 

Index for distributed generation unit ݀݃ 

Index for grid supply point ݃݌ݏ 

Index for buses ݉,݊ 

Index for wind unit scenarios ݏݓ 

Index for solar unit scenarios ݏݏ 

 Constants 

Day-ahead market forecasted price at period (ݐ)ݖ ݐ 

Day-ahead market price at the Grid Supply Points (GSPs) at period  ݌ݏ݃)ீݖ ݐ,  (ݐ

Susceptance of line ݉−  ௠௡ܤ ݊

Power demand at period  ݐ ஽ܲ௘௠௔௡ௗ(ݐ) 

Reserve of the system ܴܵ 

mailto:m.shafiekhani@pardisiau.ac.ircorresponding
mailto:catalao@fe.up.pt,


2 
 

Maximum units capacity limit ௠ܲ௔௫(݀݃) 

Minimum units capacity limit ܲ௠௜௡(݀݃) 

Probability of solar unit scenarios in scenario ݏݏ and at period ݐ ܵ௦(ݏݏ,  (ݐ

Emission constant coefficient of units ꭓ(݀݃) 

Generation cost of units ܥ(݀݃) 

Start-up cost of units ܷܵܥ(݀݃) 

Shutdown cost of units ܵܥܦ(݀݃) 

Probability of wind unit scenarios in scenario ݏݓ and at period ݐ ܹ௦(ݏݓ,  (ݐ

Ramp up limit for DG units ܴܷܲ(݀݃) 

Ramp down limit for DG units ܴܲܦ(݀݃) 

Number of wind unit scenarios ܹܵ 

Number of solar unit scenarios ܵܵ 

Cell temperature during state  ݕ [℃] ஼ܶ೤ 

Ambient temperature [℃] ஺ܶ 

Voltage temperature coefficient [ܸ ℃ൗ  ௩ܭ [

Current temperature coefficient [ܣ ℃ൗ  ௜ܭ [

Rated operating temperature [℃] ܰை் 

Fill factor ܨܨ 

 Variables 

Cleared power for VPP in day-ahead market at period  ݐ ܲ(݀݃,  (ݐ

Produced power by ܾth block of unit g in VPP at period  ݐ ܲீ ,݌ݏ݃)  (ݐ

Generated power of wind unit in scenario ݏݓ and at period ݐ ܲௐ(ݏݓ,  (ݐ

Generated power of solar unit in scenario ݏݏ and at period ݐ ܲௌ(ݏݏ,  (ݐ

Power of dispatchable loads at period  ݐ ஽ܲ௅(ݐ) 

Voltage angle of bus ݊ at period  ߜ ݐ(݊,  (ݐ

Revenue of VPP at period  (ݐ)݁ݑ݊݁ݒܴ݁ ݐ 

Cost of VPP at period  (ݐ)ݐݏ݋ܥ ݐ 

Profit of VPP ܲݐ݂݅݋ݎ 

On/off status of units ߪ(݀݃,  (ݐ

Binary decision variable of start-up status of units ߤ(݀݃,  (ݐ

Binary decision variable of shut-down status of units ߩ(݀݃,  (ݐ

Short circuit current ܫ௦௖ 

Open circuit voltage ௢ܸ௖ 

Current at maximum power point ܫெ௉௉ 

Voltage at maximum power point ெܸ௉௉ 

Average solar radiation of state ݏ  ݕ௔௬ 

Output power of solar unit during state ݕ ௦ܲ೤ 
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1. Introduction 

These days, the increase of energy consumption, prevalent use of conventional fossil fuels as exhausting resources, and 

environmental issues are among major concerns in the world [1]. In recent years, renewable energy resources such as 

wind and solar have been used to address this issue. However, these resources are able to make some problems for power 

systems because of their intermittent energy output that would be a significant challenge for power system operation and 

corresponding owners. In other words, there are valuable benefits and costs for the electricity market when intermittent 

DERs are integrated into the electricity systems. In addition, the effects of renewable energy technologies on future power 

systems are much more important. Also, when intermittent DER is introduced to the rough market environment, a serious 

challenge is proposed for their owners. The first reason which deserves to be mentioned here is that this DER’s forecasted 

power outputs consist of uncertainty. To illustrate clearly, under the natural influence of wind and solar irradiation and 

clouds, Wind Power Plants (WPPs) and Photovoltaic (PV) power plants’ output are not naturally permanent [2,3]. In this 

case, the possibility of an interruption in energy delivery is being concerned. In order to address the above concerns, VPPs 

are introduced. The concept of VPP as a multidimensional heterogeneous entity is based on the integration of several 

dispersed units and making use of their aggregated capacities [4]. According to the FENIX project, a VPP aggregates the 

capacities of several distribution energy resources (DERs), which can provide distinct performance characteristics 

associated with each DER [5]. The VPP can also make contracts in the wholesale market and provide services to the 

system operator. An important feature of the VPP is its ability to participate in the energy market. Thus VPP owners can 

move toward maximizing their profits by determining optimal bidding strategies. The VPP concept as a multi-technology 

and multi-location heterogeneous entity is based on the sum of DERs capacities (generation, storage, or demand) to create 

a single operating profile like a generator at the transmission level. Within the scope of the mentioned VPP, not only can 

the producers make sure that their generators are properly and optimally operated, but also they can raise the value of the 

non-dispatched generation technologies by getting VPPs committed to a much more robust generation profile. In general, 

the VPP is classified into the Commercial and Technical type, CVPP and TVPP, respectively [6] in which the DER can 

be used as a part of both of them [7]. As it can be inferred from mentioned VPP types, the CVPP, which controls the DER 

portfolio(s) in order to make optimal decisions about involvement in the electricity market, plays the role of a competitive 

market actor. It deserves to be mentioned this delicate expression that the first objective of the VPP’s optimal operation 

can be different from each other. As an illustration, economic optimization can either aim to minimize the expenses of 

producing energy and transmitting it to the loads or maximize the profits of the VPP owner. In this paper, a comprehensive 

model for a renewable-based VPP based on the probabilistic behaviour of the renewable energies (according to Weibull 

and Beta distribution functions, for wind and solar units, respectively), non-renewable energies, normal load, and 

dispatchable loads (demand response) has been stochastically implemented and the VPP acts as a single entity in the 

electricity market, and its aim is making all components visible and achieving the most profit in the electricity market. 

Many parameters in VPPs and the electricity market have uncertainties and there are many methods for modelling them. 

Two major kinds of this method related to power system problems are IGDT [8,9] and Robust Optimization (RO) [10]. 

Also, considering the uncertainties and managing the risk of decision at the same time can be modelled by these mentioned 

methods. However, specific embodying level of profit compared with introducing the probable measure of risk is the 

much more prevalent advantage of this method. The IGDT mentioned in [11] provides a method for Generation 

Companies (GenCos), while [12] and [13] are proposed for self-scheduling of non-renewable units and demand-side 

schedule, respectively. In order to investigate the self-schedule of hydrothermal GenCo in smart grids and decrease the 

probability of price uncertainty, the proposed RO is discussed in [14] and [15] respectively. The self-scheduling problem 

which is formulated in three categories, risk-neutral, risk-averse, and risk-seeker GenCos, is pursued in [16] by 

introducing a non-probabilistic information-gap model for investigating uncertainties in the short-term schedule of the 
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GenCos. Another subtle technique based on IGDT for providing various strategies for vast consumers is proposed in [17] 

which categorizes the supply sources into a mutual contract, self-generating facility, and pool market. Furthermore, in 

[17], the pool price and IGDT model are unstable around their estimated values in which the information gap between 

predicted and the real market is gained by factors such as market uncertainty with conventional methods. By considering 

this matter, trading strategy and GenCo’s portfolio optimization method with using a non-probabilistic IGDT are proposed 

in Ref. [16], too. Large electric utilities, which consist of generation facilities with an associated demands’ retailer in the 

presence of demand response programs are introduced and formulated as a new strategy in [18]. In this case, a price-taker 

generation company is needed to take part in the day-ahead electricity energy market. So, in addition to finding a bidding 

strategy for producers, some factors such as specifications of generators and market uncertain price, ought to be 

considered because they directly influence over target profits [19]. Besides, for modelling the day-ahead market uncertain 

price, the mentioned non-probabilistic IGDT is implemented in [18], too.  

In recent years, reducing greenhouse gaseous emissions and increasing investors' profits have become more highlighted. 

Therefore, a solution that solely minimizes the total scheduling costs or maximizes the overall profit may not be 

appropriate for actual power systems. Accordingly, the bi-objective framework is used in many papers, such as [15] and 

[20] to minimize emissions and costs simultaneously. One of the essential challenges of the multi-objective meta-heuristic 

optimization methods is to find feasible and evenly distributed Pareto solutions throughout the decision space. Indeed, it 

is an important aspect of the optimization tool to ensure its ability to pass the local optimal points and move towards the 

global optimal point. Although a high number of researches have been studied to find an efficient approach to achieve 

this aim, none of the methods have been justified to have better performance compared to all other techniques in all the 

situations. Based on the existing knowledge in this field, the Epsilon Constraint (EP) has a good and acceptable 

performance in most of the situations to search all the decision space and find the solutions that yield toward the global 

optimum solution of the problem. Hence, the EP is developed in this paper in order to solve the proposed multi-objective 

problem by considering the emission criterion, as well as the profit function as the main objectives. 

In this paper, according to the IGDT model, the problem of uncertainty on the market price is modelled using the robust 

and opportunity functions. Besides the profit function of the renewable-based VPP, the emission problem has also been 

considered, and the model has been solved in two objectives by considering profit and emission using the Epsilon 

constraint method to investigate the effect of renewable-based VPPs in the emission and profit objective functions. A 

mixed-integer model is developed for the problem of the optimal bidding strategy of the VPP in the presence of different 

units, such as wind, solar and non-renewable DGs. 

Recently, many papers have been published regarding the scheduling of VPPs. In [21], risk-constrained day-ahead 

scheduling strategies for a VPP integrating a Concentrating Solar Power Plant (CSPP) with some responsive residential 

and industrial loads are proposed considering some uncertainties. IGDT is utilized to hedge against the risk caused by 

these uncertainties. One of the deficits of this paper is that it does not model the network of the VPP and the VPP is 

connected to the upstream network only via one point and exchanges power. On the other hand, it can be pointed out that 

in this paper, despite the existence of pollutant resources, the issue of emission has not been considered and only the 

economic issue has been stated. Ref [22] presents a new robust self-scheduling strategy for VPPs considering the 

uncertainty sources of electricity prices, wind generations, and loads. IGDT as a non-probabilistic uncertainty modelling 

framework is proposed here to specifically model the uncertainty sources considering their various uncertainty horizons. 

One of the deficits of this paper is that the VPP is not connected to the upstream network via several points at different 

prices. In addition, a simple model for the wind unit has been obtained by predicting the amount of the wind speed, while 

in the present paper; the wind unit is modelled with a Weibull distribution function that has high accuracy for the wind 

units. In addition, while many pollutant units have been used in the VPP, no attention has been paid to the emission 

problem along with the profit of the VPP. Ref [23] outlines a novel bi-level decision-making  framework for a price-maker 
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VPP to  participate in both day-ahead and balancing oligopoly markets  considering multiple forward contracts. In 

principle, VPP operator with having the possession of financial transmission rights can manage its financial risk through 

trading electricity among various markets. In this paper, the VPP with all its components is located on one bus and does 

not have a separate network. Whereas in real models, the VPP is part of the network structure. On the other hand, the 

problem has been solved as a single objective without considering the emission problem. In addition, a very simple model 

is considered for wind and solar units. In Ref [24], renewable power, market price, and load demand are classified as 

major factors of uncertainties. Based on the classification, the detailed mathematical descriptions are summarized. And 

then, optimization objectives and constraints, which are adopted to improve the running performance of the VPP with 

uncertainties, are summed up systematically. In this review paper, probability distribution functions are used to express 

uncertainty, which requires more information for modelling than IGDT. On the other hand, the reviewed papers are solved 

as a single objective problem and only on the basis of economic issues. In addition, the emission problem has not been 

considered, and finally, the VPPs have been modelled without a real network. Ref [25] combined interval and 

deterministic optimization together and adopted the combined approach to solving a VPP’s dispatch problem. The 

combined optimization not only maximized VPPs’ deterministic profits under forecasted scenarios to estimate the VPP’s 

most likely profits but also maximized VPPs’ profit intervals to manage uncertainties. One of the deficits of this paper is 

that it does not model the network of the VPP and the VPP is connected to the upstream network only via one point and 

exchanges power. On the other hand, it can be pointed out that, despite the existence of pollutant resources, the emission 

problem has not been considered and only the economic issue has been investigated. Finally, IGDT is not used in this 

paper to model uncertainty. Ref [26] introduces a framework that cooptimizes the VPP provision of multiple markets, 

system, and local network services with the aim of maximizing its revenue. To ensure problem tractability, while 

accommodating the uncertain nature of market prices, local demand, and renewable output and while operating within 

local network constraints, the framework is broken down into three sequentially coordinated optimization problems. Ref 

[27] proposed a comprehensive method for analysing the feasibility of using a VPP to benefit both the plant and demand 

sides. First, the energy-saving potential of a VPP  composed of a PV and energy storage system (ESS) was explored, based 

on historical monitoring  data in a Japanese smart community called Higashida District. Second, the  economic 

performance of the VPP was evaluated based on a payback period and total life cycle cost analysis. In Ref [28], a 

stochastic scheduling problem for a VPP is modelled to meet the thermal and electrical load considering the network 

security constraints and uncertainties of electrical and thermal loads, wind speed, solar radiation, and market price. The 

VPP consists of conventional generators, photovoltaic panels, wind turbines, photovoltaic-thermal panels, combined heat 

and power, energy storage systems, and boilers. To model all uncertain parameters, a scenario reduction approach is used 

to decrease the number of possible scenarios. In [26-28] references, a network is considered for a VPP, but this network 

is connected to the upstream network only via one point. On the other hand, it can be pointed out that in these papers, 

despite the existence of pollutant resources, the issue has been seen as a single objective and the issue of emission has not 

been considered. These papers use probability distribution functions to model uncertainty parameters, whereas IGDT 

does not require probability distribution functions to model uncertainty . 

In this paper, a comprehensive model for a renewable-based VPP based on the probabilistic behaviour of renewable 

energies (according to Weibull and Beta distribution functions, for wind and solar units, respectively), non-renewable 

energies, normal load, and dispatchable loads (demand response) stochastically has been implemented. The VPP is 

connected to the upstream network via three points. In this paper, according to the IGDT model, the problem of uncertainty 

on the market price is modelled using the robust and opportunity functions. Besides the profit function of the VPP, the 

emission problem has also been considered, and the model has been solved in two objectives by considering profit and 

emission using the epsilon constraint method. Such a comprehensive model for a VPP and attention to the emission and 

uncertainty has never been implemented before.  
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In order to demonstrate briefly the differences and advantages of the proposed method of this paper compared to the 

existing studies, a comparison table has been prepared as shown in Table I. 

Table I: Details of the proposed problem of this paper compared to other studies 

Features 
References 

This paper 
[21] [22] [23] [24] [25] [26] [27] [28] 

Independent Network for VPP          

Objective 
Function(s) 

Single          
Multi          

Objective 
Function Emission          

Renewable 
Energy 

Resources 

Wind          

Solar          

IGDT          
Grid 

Connection 
status 

1 GSP          

Multiple GSPs          

 
 The main contributions of this paper are summarized as follows: 

 Employing the IGDT method to propose the robustness and opportunistic bidding strategy of the renewable-
based VPP against the uncertainty of the forecasted parameter. 

 Evaluating the effect of the renewable-based virtual power plant considering wind and solar units and their 
uncertainties on the emission problem in the form of a two-objective model. In this case, one of the contributions 
of this paper is to investigate the role of the renewable-based virtual power plant in maximizing the profit of the 
VPP and minimizing its emission. 

 
The organization of the paper is as follows. The Information Gap Decision Theory is presented in Section 2. The problem 

formulation is stated in section 3. The case studies and simulation results are discussed in Section 4 and Section 5 provides 

the conclusion. 

 
2. Information Gap Decision Theory 
One of the best robust decision making methods for intense uncertain parameters is the Information Gap Decision Theory 

(IGDT). Unlike other uncertainty modelling methods, such as the point estimate method, Monte Carlo simulation (MCS), 

and other scenario based uncertainty modelling methods, this method does not need any probability distribution function 

of the uncertain parameters and this is one of the strengths of this method. Another strength is that this method does not 

need to determine the maximum radius of uncertain parameters, which takes the advantage of the bidding strategy of the 

VPP. In fact, the IGDT seeks to achieve the maximum uncertainty radius for uncertainty parameters in such a way that 

the objective function is assured in the pre-specified interval [29]. In IGDT, the uncertainty model, which maximizes the 

uncertainty bound when setting decision variables, is an interval around the predicted quantity. Also, the IGDT uses this 

confident uncertainty interval in order to provide optimistic and pessimistic solutions that guarantee a specific value of 

the goal. Furthermore, the maximum acceptable deviation from the estimated value will be introduced in the case of 

bidding strategy along with the day-ahead uncertainty price [12]. For dealing with each IGDT problem, they can be 

divided into three component-system models, uncertainty model, and performance requirement [31]. These mentioned 

components are described as follows: 
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2.1. System Model (Risk Constraint) 

This criterion includes the input/output structure of the system. For the present problem, the main model of the system, 

which is the VPP profit, is denoted by ܯ(ܽ,  is the price of the market and the uncertainty parameter, and ܽ is ݖ where ,(ݖ

the other decision variables of the VPP. 

2.2. Uncertainty Model  

The envelope bound model with ̃ݖ as a function is implemented in this paper and is defined as Eq. (1) [31]. 

,ߦ)ܰ (ݖ̃ = (ݐ)ݖ̃ :ݖ} − ߦ(ݐ)ߟ ≤ (ݐ)ݖ ≤ (ݐ)ݖ̃ + ,{ߦ(ݐ)ߟ ߦ ≥ 0, ݐ∀ ∈ ܶ (1) 

 may take different (ݐ)ߟ ,is a known function that specifies the shape of the envelope. Depending on the application (ݐ)ߟ

forms such as (ݐ)ߟ = 1 and (ݐ)ߟ =  is the area of uncertainty parameter and a slight increase in its value causes ߦ .(ݐ)ݖ̃

the area of uncertainty to be larger. 

2.3. Performance Requirement 

Based on the decision-maker strategy, two different performance functions can be defined for an IGDT model, risk-averse 

and risk-seeker [32, 33]. The robust function ߦመ(ܽ,  so that it satisfies the ,ߦ ௘) is defined as the maximum value ofܨ

minimum value of ܨ௘, ie: 

,ܽ)መߦ (௘ܨ = max
క

௘ܨ ݐ݊݁݉݁ݎ݅ݑݍ݁ݎ ݉ݑ݉݅݊݅݉ :ߦ}  (2) { ݂݀݁݅ݏ݅ݐܽݏ ݏݕܽݓ݈ܽ ݏ݅ 

 ௘ guarantees that VPP profits will never be less than the predetermined critical value. The opportunity function, denotedܨ

by ߬̂(ܽ,  :௬), is modeled as followsܨ

߬̂൫ܽ, ௬൯ܨ = min
క
൛ߦ ∶  ൟ (3) ݀݁ݒℎ݅݁ܿܽ ܾ݁ ݕܽ݉ ௬ܨ ݁ܿ݊ܽ݉ݎ݋݂ݎ݁݌ ݐ݁݃ݎܽݐ

VPP profit (ܨ௬) will be obtained if the uncertainty parameter deviates from the predicted value by at least ߬̂. In fact, 

߬̂(ܽ,  .௬ܨ ௬) is the minimum value of the uncertainty parameter change that guarantees a certain value ofܨ

 
3. Problem Formulation 
The objective function (maximizing profit) is as follows:  

ଵ݂ = ݐ݂݅݋ݎܲ = ෍(ܴ݁(ݐ)݁ݑ݊݁ݒ − ((ݐ)ݐݏ݋ܥ
்

௧ୀଵ

 (4) 

(ݐ)݁ݑ݊݁ݒܴ݁ = ( ෍ ܲ(݀݃, (ݐ
஽ீ

ௗ௚ୀଵ

+ ෍ ܹ௦(ݏݓ, ,ݏݓ)ௐܲ(ݐ (ݐ
ௐௌ

௪௦ୀଵ

+ ෍ ܵ௦(ݏݏ, ,ݏݏ)ௌܲ(ݐ (ݐ
ௌௌ

௦௦ୀଵ

(ݐ)ݖ(

+ ෍ ܲீ ,݌ݏ݃) (ݐ
ீௌ௉

௚௦௣ୀଵ

,݌ݏ݃)ீݖ  (ݐ

(5) 

(ݐ)ݐݏ݋ܥ = ෍ (ܲ(݀݃, (ݐ
஽ீ

ௗ௚ୀଵ

,݃݀)ߪ(݃݀)ܥ (ݐ + ,݃݀)ߤ(݃݀)ܥܷܵ (ݐ + ,݃݀)ߩ(݃݀)ܥܦܵ ((ݐ + (ݐ)஽௅ܥ ஽ܲ௅(ݐ) (6) 

Eq. (4) represents the profit of the VPP that is derived from income minus cost. Eq. (5) represents the revenue of the VPP. 

This equation is because of the sale of power to the VPP normal loads and also the sale of power to the upstream network. 

If the VPP purchases power from the upstream network, it enters the equation with a negative sign and indicates a cost. 

Eq. (6) also shows the cost of the VPP. This includes the cost of operation, start-up cost, shut-down cost of VPP units, 

and cost of dispatchable loads. 
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3.1. Probabilistic Wind Unit Modelling 

The Weibull probability distribution function is used to model wind speed [34,35]. Fig. 1 shows the Weibull distribution 

function for the wind unit in 24 hours. Each curve is for one hour, and in order to avoid crowded figure, the legend is only 

placed for a few hours. 

 
Fig. 1: Weibull probability density function 

 

3.2. Probabilistic Photovoltaic Unit Modelling 

For a specific hour of a sample day per year, the sunlight data usually have a beta probability distribution function  

(Fig. 2) that is calculated according to the following relationships. Each curve is for one hour, and in order to avoid 

crowded figure, the legend is only placed for a few hours. 

௕݂(ݏ) =
ߙ)߁ + (ߚ
(ߚ)߁(ߙ)߁ ݏ

(ఈିଵ)(1 − ,(ఉିଵ)(ݏ 0 ≤ ݏ ≤ 1, ߙ ≥ 0, ߚ ≥ 0 (7) 

It should be noted that ௕݂(ݏ) for other ݏ, ,ߙ ݂ ,is the solar radiation ݏ is zero. In which ߚ ௕(ݏ) is beta distribution function, 

as well as ߙ,  :are the parameters of the beta distribution function, as follows ߚ

ߚ = (1 − )(ߤ
1)ߤ + (ߤ

ଶߪ − 1) (8) 

ߙ =
ߚߤ

1 −  (9) ߤ

  
Fig. 2: Beta probability density function 
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The output power of the solar unit depends on the intensity of the sun radiation, the temperature of the environment, as 

well as its own technical characteristics. Therefore, when a beta probability distribution function is generated for a given 

period, the output power for different cases at that period is determined using the following equations: 

஼ܶ೤ = ஺ܶ + )௔௬ݏ
ܰை் − 20

0.8 ) (10) 

஺ܫ = ௦௖ܫ]௔௬ݏ + )௜ܭ ௖ܶ − 25)] (11) 

௬ܸ = ௢ܸ௖ ௩ܭ− ஼ܶ೤ (12) 

௦ܲ೤൫ݏ௔௬൯ = ܰ × ܨܨ × ௬ܸܫ௬ (13) 

ܨܨ = ெܸ௉௉ܫெ௉௉
௢ܸ௖ܫ௦௖

 (14) 

3.3. Constraints 

The problem constraints are represented as follows: 

a) The power range of DGs: 

௠ܲ௜௡(݀݃)ߪ(݀݃, (ݐ ≤ ܲ(݀݃, (ݐ ≤ ௠ܲ௔௫(݀݃)ߪ(݀݃, ݐ∀   ;(ݐ ∈ ܶ (15) 

b) The interconnection capacity is: 

,݌ݏ݃)ܲ (ݐ ≤ ௠ܲ௔௫(݃݌ݏ, ݐ∀    (ݐ ∈ ܶ (16) 

c) DC power flow equation: 

ܲீ ௘௡(݊, (ݐ − ஽ܲ௘௠(݊, (ݐ −෍ܤ௞௡൫ߜ(݇, (ݐ − ,݊)ߜ ൯(ݐ = ݐ∀     ;0 ∈ ܶ
௞

 (17) 

d) Power balance: 

஽ܲ௅(ݐ) + ෍ ܲ(݀݃, (ݐ −
஽ீ

ௗ௚ୀଵ

෍ ܲீ ,݌ݏ݃) (ݐ
ீௌ௉

௚௦௣ୀଵ

+ ෍ ܹ௦(ݏݓ, ,ݏݓ)ௐܲ(ݐ (ݐ
ௐௌ

௪௦ୀଵ

+ ෍ ܵ௦(ݏݏ, ,ݏݏ)ௌܲ(ݐ (ݐ
ௌௌ

௦௦ୀଵ

= ஽ܲ௘௠௔௡ௗ(ݐ);    ∀ݐ ∈ ܶ 

(18) 

e) Ramp rate of DGs: 

ܲ(݀݃, ݐ + 1) − ܲ(݀݃, (ݐ ≤ ܴܷܲ(݀݃); ݐ∀      ∈ ܶ (19) 

ܲ(݀݃, (ݐ − ܲ(݀݃, ݐ + 1) ≤ ;(݃݀)ܲܦܴ ݐ∀      ∈ ܶ (20) 

f) Minimum up and downtime constraints: 

[ ௢ܶ௡(݀݃, ݐ − 1) [(݃݀)ܷܶܯ− × ,݃݀)ߪ] ݐ − 1) − ,݃݀)ߪ [(ݐ ≥ ݐ∀    ;0 ∈ ܶ (21) 

ൣ ௢ܶ௙௙(݀݃, ݐ − 1) ൧(݃݀)ܶܦܯ− × ,݃݀)ߪ] ݐ − 1) − ,݃݀)ߪ [(ݐ ≥ ݐ∀    ;0 ∈ ܶ (22) 

g) Reserve: 

Amount of reserve is assumed as a percentage of the total generation of DG units and dispatchable loads (RS) (e.g. 2%). 

෍൫ ௠ܲ௔௫(݀݃) − ܲ(݀݃, ,݃݀)ߪ൯(ݐ (ݐ + ஽ܲ௅(ݐ) ≥ ܴܵ( ෍ ܲ(݀݃, ,݃݀)ߪ(ݐ (ݐ
஽ீ

ௗ௚ୀଵ

+ ஽ܲ௅(ݐ))
஽ீ

ௗ௚ୀଵ

 (23) 

3.4.  IGDT based model for VPP: 

3.4.1. Decision Variables 

The considered variables are amounts of produced power of DGs, exchanged power between GSPs, curtailing power via 

DLs, and angles of buses: 
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(ݐ)ܽ = ൫ܲ(݀݃, ,(ݐ ܲீ ,݌ݏ݃) ,(ݐ ஽ܲ௅(ݐ), ,݊)ߜ ;൯(ݐ ∀݀݃ ∈ ,ܩܦ ݌ݏ݃∀ ∈ ,ܲܵܩ ݐ∀ ∈ ܶ, ∀݊ ∈ ܰ (24) 

3.4.2. Robust Model: 

The risk-averse VPP by using the robust function plans to reach a certain amount of profit in the face of unfavourable 

market price deviations from the predicted values. Hence, the robust function is given as: 

(௘ܣ,ܲܲ)መߦ = ݔܽ݉ ൜ߦ: ( min
௭∈ே(క,௭̂)

,ܲܲ)ܣ (ݖ ≥ ௘ܣ = (1 −  ଴)ൠ (25)ܣ(ߙ

௘ܣ  is the critical profit for ܨ௘  in Eq. (2). ܣ଴ is the maximum expected profit based on forecast prices. ߙ is the profit 

deviation coefficient. For risk-averse VPPs, the goal is to maximize the uncertainty parameter ߦ, which is expressed 

according to Eq. (26). 

(௘ܣ,ܲܲ)መߦ = max(26) ߦ 

 :݋ݐ ݐ݆ܾܿ݁ݑݏ

minቐ( ෍ ܲ(݀݃, (ݐ
஽ீ

ௗ௚ୀଵ

+ ෍ ܹ௦(ݏݓ, ,ݏݓ)ௐܲ(ݐ (ݐ
ௐௌ

௪௦ୀଵ

+ ෍ ܵ௦(ݏݏ, ,ݏݏ)ௌܲ(ݐ (ݐ
ௌௌ

௦௦ୀଵ

(ݐ)ݖ(  

+ ෍ ܲீ ,݌ݏ݃) (ݐ
ீௌ௉

௚௦௣ୀଵ

,݌ݏ݃)ீݖ (ݐ − ෍ (ܲ(݀݃, (ݐ
஽ீ

ௗ௚ୀଵ

,݃݀)ߪ(݃݀)ܥ (ݐ + ,݃݀)ߤ(݃݀)ܥܷܵ (ݐ

+ ,݃݀)ߩ(݃݀)ܥܦܵ ((ݐ + (ݐ)஽௅ܥ ஽ܲ௅(ݐ)ቑ ≥  ௘ܣ

(27) 

(1 − (ݐ)ݖ̂(ߦ ≤ (ݐ)ݖ ≤ (1 +  (28) (ݐ)ݖ̂(ߦ

After applying the uncertainty parameter on the market price, the following equations will be obtained for VPP profit:  

(௘ܣ,ܲܲ)መߦ = max(29) ߦ 

 :݋ݐ ݐ݆ܾܿ݁ݑݏ

ቌ෍ ܲ(݀݃, (ݐ
஽ீ

ௗ௚ୀଵ

+ ෍ ܹ௦(ݏݓ, ,ݏݓ)ௐܲ(ݐ (ݐ
ௐௌ

௪௦ୀଵ

+ ෍ ܵ௦(ݏݏ, ,ݏݏ)ௌܲ(ݐ (ݐ
ௌௌ

௦௦ୀଵ

ቍ(1 − (ݐ)ݖ̂(ߦ

+ ෍ ܲீ ,݌ݏ݃) (ݐ
ீௌ௉

௚௦௣ୀଵ

(1 − ,݌ݏ݃)ீݖ̂(ߦ (ݐ − ෍ (ܲ(݀݃, (ݐ
஽ீ

ௗ௚ୀଵ

,݃݀)ߪ(݃݀)ܥ (ݐ + ,݃݀)ߤ(݃݀)ܥܷܵ (ݐ

+ ,݃݀)ߩ(݃݀)ܥܦܵ ((ݐ + (ݐ)஽௅ܥ ஽ܲ௅(ݐ) ≥  ௘ܣ

(30) 

The above optimization problem provides robust scheduling based on the defined value of ܣ௘. In other words, solving 

the above problem guarantees the minimum profit ܣ௘, and for this solution, the maximum amount of price deviation from 

the predicted price is obtained. 

3.4.3. Opportunity Model: 

The opportunity function is given by: 

߬̂൫ܲܲ, ௬൯ܣ = ݉݅݊ ൜ߦ: ( max
௭∈ே(క,௭̂)

,ܲܲ)ܣ (ݖ ≥ ௬ܣ = (1 +  ଴)ൠ (31)ܣ(ߚ

 is the profit deviation ߚ .௬ is the final and guaranteed profit that the VPP will receive at prices higher than expectedܣ

coefficient. ܣ௬ target profit is generally higher than ܣ௘. The formula for the opportunity function for a VPP is as follows: 

߬̂൫ܲܲ, ௬൯ܣ = min  (32) ߦ

 (33) :݋ݐ ݐ݆ܾܿ݁ݑݏ



11 
 

maxቐ( ෍ ܲ(݀݃, (ݐ
஽ீ

ௗ௚ୀଵ

+ ෍ ܹ௦(ݏݓ, ,ݏݓ)ௐܲ(ݐ (ݐ
ௐௌ

௪௦ୀଵ

+ ෍ ܵ௦(ݏݏ, ,ݏݏ)ௌܲ(ݐ (ݐ
ௌௌ

௦௦ୀଵ

(ݐ)ݖ(

+ ෍ ܲீ ,݌ݏ݃) (ݐ
ீௌ௉

௚௦௣ୀଵ

,݌ݏ݃)ீݖ (ݐ − ෍ (ܲ(݀݃, (ݐ
஽ீ

ௗ௚ୀଵ

,݃݀)ߪ(݃݀)ܥ (ݐ + ,݃݀)ߤ(݃݀)ܥܷܵ (ݐ

+ ,݃݀)ߩ(݃݀)ܥܦܵ ((ݐ + (ݐ)஽௅ܥ ஽ܲ௅(ݐ)ቑ ≥  ௬ܣ

(1 − (ݐ)ݖ̂(ߦ ≤ (ݐ)ݖ ≤ (1 +  (34) (ݐ)ݖ̂(ߦ

After applying the uncertainty parameter on the market price, the following equations will be obtained for VPP profit: 

߬̂൫ܲܲ, ௬൯ܣ = min  (35) ߦ

 :݋ݐ ݐ݆ܾܿ݁ݑݏ

( ෍ ܲ(݀݃, (ݐ
஽ீ

ௗ௚ୀଵ

+ ෍ ܹ௦(ݏݓ, ,ݏݓ)ௐܲ(ݐ (ݐ
ௐௌ

௪௦ୀଵ

+ ෍ ܵ௦(ݏݏ, ,ݏݏ)ௌܲ(ݐ (ݐ
ௌௌ

௦௦ୀଵ

)(1 + (ݐ)ݖ̂(ߦ

+ ෍ ܲீ ,݌ݏ݃) (ݐ
ீௌ௉

௚௦௣ୀଵ

(1 + ,݌ݏ݃)ீݖ̂(ߦ (ݐ

− ෍ 〖(ܲ(݀݃, ,݃݀)ߪ(݃݀)ܥ〖(ݐ (ݐ + ,݃݀)ߤ(݃݀)ܥܷܵ (ݐ + ,݃݀)ߩ(݃݀)ܥܦܵ ൯(ݐ
஽ீ

ௗ௚ୀଵ

+ (ݐ)஽௅ܥ ஽ܲ௅(ݐ) ≥  ௬ܣ

(36) 

Therefore, if prices are higher than expected in the future, more profit ܣ௬ will be obtained. Note that ߬̂ is the minimum 

price change that guarantees ܣ௬. 

The emission of the VPP units is modelled according to the linear Eq. (37). Nitrogen Oxide (NOx), Carbon Dioxide (CO2), 

and Sulfur Dioxide (SO2) are the most common emissions in thermal power plants. In this paper, NOx emission is 

considered. To obtain the total amount of emission, the production power of each unit of VPP is multiplied by the emission 

coefficient of the same unit. The emission coefficients of the units are shown in Table II [36]. 

 ݊݋݅ݏݏ݅݉݁ ݁ݖ݅݉݅݊݅ܯ

ଶ݂ = ෍ ෍ ꭓ(݀݃) × ܲ(݀݃, (ݐ
஽ீ

ௗ௚ୀଵ

்

௧ୀଵ

 
(37) 

3.5. Epsilon Constraint Method (Bi-Objective) 

The bi-objective optimization format of a problem with the epsilon constraint method is as follows [37]. 

 (ݔ)ଵ݂ ݊݅ܯ

(ݔ)ଶ݂ ݋ݐ ݐ݆ܾܿ݁ݑݏ ≤ ݁ଶ 
(38) 

For the two-objective problem of profit and emission of dispatchable units, ଵ݂(ݔ) serves as the main objective function 

and another goal (here ଶ݂(ݔ)) as a constraint in the problem. Furthermore, ݔ is an array of decision variables, which in 

this problem are the generation power of units. In this method, the first objective function is considered as the main 

objective function, and the second to ݊-th objectives are limited to a maximum of ݁௜. By changing the value, there are 

various answers that may not be efficient. In the epsilon constraint method, efficient solutions are produced, first, and 

then the best solution is chosen [15]. 
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3.6. Decision-Making Method 

After solving the problem and obtaining all the Pareto solutions, the decision maker should choose one of Pareto's answers 

as the final solution to the problem, taking into account the priorities and the different uses of Pareto's answers. For this 

purpose, the proposed method for choosing the best answer is to use a fuzzy approach with a linear membership function 

for the decision maker. The membership function of the proposed fuzzy method is defined as Eqs. (39) and (40), which 

are used respectively for maximization and minimization. The best and worst amounts of each objective function are 

arranged in the order of the ideal point ௡݂
௨  and nadir point ௡݂ௌே. In these equations, ௡݂௥  shows the value of the objective 

function ௡݂ in the ݎth Pareto solution number, and ߤ௡௥  is the membership function ௡݂ in the ݎth Pareto solution number. 

௡௥ߤ  actually represents the optimality of the objective function in the ݎth Pareto solution number. The general membership 

function of the ݎth Pareto solution is called ߤ௥, which is calculated according to Eq. (41), where ߱௡  is the importance 

factor of the ݊th objective functions. The values of the importance coefficients are determined by the decision maker. For 

example, if economic issues are the top priority for the decision maker, a higher value is assigned to ଵ݂  and if emission is 

more important, a lower value is assigned to ଵ݂  [38].  

3.6.1. Maximization: 

௡௥ߤ   =   

⎩
⎪
⎨

⎪
⎧ 0                                          ௡݂

௥ ≤ ௡݂
ௌே

௡݂
௥ − ௡݂

ௌே

௡݂
௨ − ௡݂

ௌே                    ௡݂
ௌே ≤ ௡݂

௥ ≤ ௡݂
௨

   1                                         ௡݂௥ ≥ ௡݂
௨      

 

݊ = 1 

(39) 

3.6.2. Minimization: 

௡௥ߤ =   

⎩
⎪
⎨

⎪
⎧ 1                                          ௡݂௥ ≤ ௡݂

௨

௡݂
ௌே − ௡݂

௥

௡݂
ௌே − ௡݂

௨                    ௡݂
௨ ≤ ௡݂

௥ ≤ ௡݂
ௌே

   0                                         ௡݂௥ ≥ ௡݂
ௌே      

 

݊ = 2 

(40) 

௥ߤ =
∑ ߱௡ߤ௡௥௉
௡ୀଵ
∑ ߱௡௉
௡ୀଵ

 
(41) 

4. Case study 
The renewable-based VPP in this paper includes non-renewable units, wind and solar units, and normal and dispatchable 

loads. The VPP is implemented on an 18-bus system extracted from the 30-bus IEEE standard system and is shown in 

Fig. 3. As it is clear from this figure, the VPP has 4 non-renewable units in buses 2, 7, 8, and 14, and the information of 

which are given in Table II. On the other hand, it has wind and solar units in buses 3 and 18, respectively. The VPP 

exchanges power through buses 1, 11, and 16 with the upstream network. 
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Fig. 3. Network of the VPP  

 

The structure of the VPP is shown in Fig. 4. As can be seen from this figure, the VPP plans according to the data it obtains 

from the market and consumers. Non-renewable units have a bidirectional connection to the VPP controller. Since these 

units are controllable, they adjust their production with the controller command. Dispatchable loads are also controllable, 

but renewable units are not. Arrows in GSPs are bidirectional, which means the VPP can exchange power with them . 

The VPP is connected to the upstream network through 1, 11, and 16 buses (Grid Supply Points) and exchanges power. 

The power exchange capacity with the upstream network in GSPs is assumed to be 12, 24, and 40 MW, respectively. The 

price of these GSPs is 95%, 105%, and 100% of the market price, respectively. The maximum amount of dispatchable 

loads is 5% of the normal load [36]. 

The original self-scheduling model is formulated and an IGDT-based operation model is proposed as a Mixed Integer 

Nonlinear Program (MINLP).  

Table II: Main characteristics of VPP 's DERs  

DER No. Pmax 
(MW) 

Pmin 
(MW) 

C 
($/MWh) 

RUP 
(MW/h) 

ꭓ(dg) 
(Kg/MWh) 

DG2 4 0 40 1 5.44 

DG7 5 0 38 1.25 4.08 

DG8 5.5 0 35 1.375 6.8 

DG14 7 0 45 1.75 3.18 
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Fig. 4: Structure of VPP 

4.1. Risk-Neutral Case 

For a typical day, forecasted price of day-ahead and the price for ߙ = 0.25 which causes ߦ = 0.142 are shown in Fig. 5. 

 
Fig. 5: Forecasted prices and the robustness region for ߙ = 0.25 for an arbitrary 24-h period 
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In the risk-neutral case, forecasted prices are used and the problem is solved with respect to Eqs. (4)-(6) and (15)-(23). 

Production power in DG2 and DG8 is shown in Figure 6. DG8 has produced the most power in almost all scheduling 

hours. DG2 has produced less power than that. The main reason is that DG8 is cheaper than DG2. Since the price in GSP1 

is lower than the market price (5%), the VPP tends to buy power through this bus. In GSP11 the situation is the opposite 

and the price in this GSP is 5% higher than the market price, so VPP tends to sell power through this point. In the early 

hours of scheduling, renewable units produce little power, so dispatchable loads curtailed a little of their own power. In 

this case, the final profit (ܣ଴) is equal to 13,385$. 

 
Fig. 6: Power generation in the risk-neutral case 

4.2. Robust Case 

After solving the problem in the risk-neutral case, with respect to Eqs. (30)-(32), the problem is solved for different values 

of ߙ and different ܣ௘ is obtained. As an example for ߙ = 0.4 guaranteed profit is ܣ௘ = 8030.96$ under the condition 

that ߦ  is not more than 22.4%. By solving the optimization problem Eqs. (30)-(31), for ߙ = 0.05 − 0.5  values of 

robustness function for ߦ are calculated and are shown in Fig. 7. 

 
Fig. 7: Optimum robustness function value ߦ versus profit deviation factor ߙ 
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parameter increases with increasing ߙ and it means that increasing forecasted error causes decreasing profit from what is 

expected. Scheduling of DG2, GSP1, GSP16, and ஽ܲ௅ are shown in Fig. 8. This program is shown for ߙ = 0.1  and ߙ =
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0.5 by robust model. This shows that with increasing ߙ, the output power of units, for example, DG2 decreases. In GSP1 

which prices are %95 of the market price, with increasing ߙ, purchased power decreases and in GSP16 which prices are 

equal to the market price, with increasing ߙ, the exchanged power decreases or doesn’t change. On the whole, with 

increasing ߙ, produced power of units has decreased or has not changed. According to Eq. (25), with increasing ߙ, 

guaranteed profit decreases, hence the power generation in the VPP also diminishes. 

 
Fig. 8: Robust schedule of some component of VPP for two different critical profits 

 

In GSPs according to their types, for those that their price is more than the market price, power does not change or 

increase, and for those that their price is lower than the market price, power decrease. In other words, as shown in Fig. 9, 

with increasingߦ, profit will decrease because with increasing ߦ, price error becomes more than its forecasted value. 

 
Fig. 9: Profit in Robust case versus ߦ 
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increase according to Eq. (31). As can see in GSP1, with the increasing beta, the amount of purchases from the upstream 

network (with 95% price) has increased. In GSP11 it is reversed. In this GSP, the price is 105% of the market price, so 

with the increasing beta, the amount of sales has increased . 

Fig. 12 shows different profits for different values of ߬. As an example, for having a minimum guaranteed a profit of 

18738.91 $, at least market price should be increased by 22.2% and vice versa. 

 
Fig. 10: Profit in opportunity case versus ߚ 

 

 
Fig. 11: Opportunity schedule of some component of VPP for two different critical profits 
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Fig. 12: Profit in Opportunity case versus ߬ 

4.4. Bi-Objective Case 

In this case, in order to investigate the effect of renewable-based VPPs on emission and profit, the problem is solved by 

a two-objective method. For this purpose, two-objective functions are required. The first objective function is considered 

as the main objective function ( ଵ݂) and the gaseous emission is considered as a constraint or the second objective function 

( ଶ݂). Using Eqs. (4)-(6), (15)-(23), and (37)-(41), and with respect to the main objective function, the problem is solved 

in the two-objective method. The cumulative profit and emission of the VPP are shown in Figure 13. As can be seen from 

this figure, the amount of profit is higher in the presence of renewable resources. In the case of emission, it is the opposite, 

as it is clear from this figure, while the renewable resources are in the VPP, the amount of emission is less. The main 

reason is that part of the production contribution is provided by pollutant sources through renewable sources. 

 
Figure 13: Cumulative profit and emission of the VPP with and without renewable resources 

As shown in Fig. 14, the amount of emission is also increased by increasing the amount of profit, which is one of the most 

important reasons of that is the increase in the production of VPP units. To solve the problem using the epsilon constraint 

method, the problem is first solved with a single-objective approach with consideration of profit. In this case, the amounts 

of VPP profit and emission are 13,385$ and 1565.08Kg, respectively. Then, the problem is solved in a single-objective 

manner and only with respect to the emission objective function. In this case, there is a significant decrease in the amount 

of emission, reaching 972.92Kg. However, the profit is also decreased to 8888.8$. Finally, the problem was solved by 

using the two-objective epsilon constraint method, which resulted in a number of 10 Pareto solutions. 

The fuzzy decision-making method, as described above, is used to select the best solution from the Pareto solutions. The 

choice of the best solution depends on the importance of the objective functions to each other. For this purpose, three 

different statuses are considered as below: 

Status I: The importance of the profit objective function is considered to be triple of the emission one. 

0.05 0.10 0.15 0.20 0.25
14k

15k

16k

17k

18k

19k

20k

Pr
of

it 
($

)

τ

0 2 4 6 8 10 12 14 16 18 20 22 24
0

2k

4k

6k

8k

10k

12k

14k
 Profit with Renewables
 Profit without Renewables
 Emission with Renewables
 Emission without Renewables

Time (h)

C
um

ul
at

iv
e 

Pr
of

it 
($

)

0

2k

4k

6k

8k

10k

12k

C
um

ul
at

iv
e 

E
m

is
si

on
 (K

g)



19 
 

Status II: The importance of the emission objective function is considered to be triple of the profit one. 

Status III: The importance of the profit objective function is considered to be equal with the emission one. 

According to the expressed statuses and Eqs. (39)-(41), the best Pareto solution is obtained in each status. In the status I, 

the eighth Pareto solution is selected as the best solution. In statuses II and III, the second Pareto solution is selected as 

the best solution. Fig. 14 shows the profit and emission of these Pareto solutions and Fig. 15 shows the membership values 

of them. 

 
Fig. 14: Pareto optimal solutions, the profit versus emission 

 

 
Fig. 15: Variation of the total membership, profit and emission functions versus Pareto optimal solutions 

 

Table III provides the size of the optimization model. All models have been solved using Generalized Algebraic 

Modelling Systems (GAMS) software with DICOPT solver [39]. The system used to solve the problem is a Laptop with 

an Intel Core i-7 CPU with 2.5 GHz speed and 6 GB RAM on Win. 10 systems. In the risk-neutral (single-objective) case, 

we seek to maximize profit and there is no limit on the amount of emission objective function. In other words, in the 

single objective case, the value of the emission objective function is just calculated with no limitations. But in the case of 

two objectives, the emission objective function is limited to a certain interval. In other words, the problem-solving space 

is limited to find the maximum profit for the VPP. For this reason, the problem is solved in a lower number of iterations. 

 
Table III: Execution time and size of the model 

Cases Execution Time (s) Iterations Single Equations Single Variables Discrete Variables 

Risk Neutral 60.2 722 25795 9252 300 

Bi-Objective (Status I) 68.9 660 25796 9252 300 

Opportunity Case 136.6 744 25796 9253 300 

Robust Case 103.3 728 25796 9253 300 
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Table IV shows the production power of renewable units, non-renewable units, dispatchable loads, and profit in risk-

neutral and bi-objective cases. The production power of DGs in the bi-objective case differs greatly from the risk-neutral 

case. This limitation of production in these units is related to the emission problem. Among these, DG14 is the most 

expensive unit, but since it has less emission than the others, its production has increased compared to the risk-neutral 

case. The DG7 has similar conditions to the DG8. The total power required in the network in 24 hours is approximately 

300 MW. 

Table IV: Total generation and exchange power in the VPP 

Cases 
Generation Power (MW) Exchanged Power (MW) Curtailed 

Power (MW) Profit ($) 
DG2 DG7 DG8 DG14 Wind Solar GSP1 GSP11 GSP16 PDL 

Risk Neutral 58.9 90.74 123.75 1.75 17.528 29.134 -565.6 350.7 239.1 1.76 13384.93 
Bi-Objective 

(Pareto No. 7) 89.99 112.5 46.80 25.32 17.528 29.134 -586.4 390.1 221 2.79 13036.69 

 

5. Conclusion 
This paper provided a method for the optimal bidding strategy of a renewable-based VPP, including conventional units, 

wind unit, solar unit, and dispatchable loads. The IGDT-based formulations for the VPP are proposed with an eye to the 

unspecified future electricity market prices. In the case of the risk-averse VPP, the proposed robust formulation could 

guarantee the minimum critical profit if the future prices fall into the maximized robustness region; while, for a risk-

seeker VPP, the proposed opportunistic formulation enables the VPP to benefit from unpredicted spikes and reach to the 

desired profit. The proposed formulation has been applied to the 18-bus test system. By taking into account that the IGDT-

based model does not require both probability distribution functions of the uncertain parameters and the capability of the 

method for modelling VPPs with different risk criteria, the IGDT-based model can attract much interest from the actual 

business. Another contribution of this paper was solving the problem in a two-objective approach using the epsilon 

constraint method, which aims to investigate the effect of renewable-based VPPs in maximizing the profit of the VPPs 

and minimizing their emission. Depending on the degree of importance of the profit and emission functions relative to 

each other, different final solutions will be obtained from Pareto solutions. 
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