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Abstract 

The rapid proliferation of Electric Vehicles (EVs) creates an inherent link between the previously independent transport and power sectors. This 

is especially relevant in the smart cities paradigm, which focuses on optimizing resource management using modern software tools and 

communication infrastructures. The optimal management of energy resources is of key importance, and with mobile EVs playing a pivotal role 

in smart city power flows, the coordination of energy management systems (EMSs) at their parking locations can bear global benefits. In this 

study the coordination between home energy management systems (HEMSs) and EV parking lot management systems (PLEMS) is proposed, 

modeled, and simulated, as a new contribution to earlier studies. The EMSs coordinate through partially sharing individual EV schedules and 

without sharing private information. Missing information is completed through public cloud repositories and services. The HEMS and PLEMS 

are implemented using mixed-integer linear programming (MILP). The proposed coordination framework is computationally implemented and 

simulated based on a real-life case study. The results show that the proposed EMS coordination framework is both technically beneficial for 

power grids and economically beneficial for EV owners. 
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Nomenclature 

 
 
List of Acronyms and Abbreviations 
 
ANN Artificial Neural Network 
BTE Special Low Voltage (Baixa Tensão Normal) 
BTN Normal Low Voltage (Baixa Tensão Especial) 
DER Distributed Energy Resources 
DG Distributed Generation 
DI Discomfort Index 
DR Demand Response 
DSM Demand Side Management 

 
 

 

mailto:*catalao@fe.up.pt


 
 

2

DSO Distribution System Operator 
EMS Energy Management System 
ERSE Portuguese Energy Regulation Services Entity (Entidade Reguladora dos Serviços Energéticos) 
ESS Energy Storage System 
EV Electric Vehicle 
EVPL Electric Vehicle Parking Lot 
GEMS Grid Energy Management System 
HEMS Home Energy Management System 
IoT Internet of Things 
ISO Independent System Operator 
MILP Mixed Integer Linear Programming 
MIP Mixed Integer Programming 
MPC Model Predictive Control 
MPPT Maximum Power Point Tracking 
MV Medium Voltage 
PL Parking Lot 
PLEMS Parking Lot Energy Management System 
PV Photovoltaic 
RES Renewable Energy Resources 
SG Smart Grid 
TSO Transmission System Operator 
 
List of Variables and Indices used to model the PLEMS 
 

ઢࡸࡼࢀ Time increment (timeslot size) for the PLEMS [h]  
 [-] Number of timeslots in a 24-hour period for the PLEMS ࡿࡹࡱࡸࡼࢀࡺ
࢚ࡺ
 [-] Number of EVs stationed at the PL during timeslot t ࡸࡼ

࢚ࡺ
 [-] Number of EVs arriving at the PL at timeslot t ࢘࢘ࢇ

࢚ࡺ
 [-] Number of EVs departing from the PL at timeslot t ࢋࢊ

 [-] Total number of EVs using the PL ࡸࡼࢂࡱࡺ
 [-] Index for each individual EV using the PL ࡰࡵࢂࡱ
 ࢚

 [-] Binary variable indicating whether EVID is stationed in the PL at timeslot t ࡰࡵࢂࡱ
 [-] Arrival timeslot of EVID at the PL  ࡰࡵࢂࡱࡸࡼࡾࡾࢀ
 [-] Departure timeslot of EVID from the PL  ࡰࡵࢂࡱࡸࡼࡼࡱࡰࢀ

 Total aggregated energy stored by the PL at timeslot t [kWh] ࡸࡼ࢚ࡱ
ࡰࡵࢂࡱ࢚ࡱ  Energy stored (state-of-energy) for EVID at timeslot t [kWh] 
࢚ࡱ
 Maximum energy storage capacity of the PL at timeslot t [kWh] ࢇࢉ,ࡸࡼ

࢚ࡱ
 Maximum energy storage capacity (maximum state-of-energy) for EVID at timeslot t [kWh] ࢇࢉ,ࡰࡵࢂࡱ
 [-] State-of-Charge of EVID at timeslot t ࡰࡵࢂࡱ࢚ࡻࡿ
 [-] State-of-Charge of the PL at timeslot t ࡸࡼ࢚ࡻࡿ
 Total power injected from the grid to the PL at timeslot t [kW] ࡸࡼࡳ࢚ࡼ
࢚ࡼ
 Power injected from the grid to the PL for energy purchased at timeslot t [kW] ࢋ,ࡸࡼࡳ

࢚ࡼ
 Power injected from the grid to the PL for regulation-down offer at timeslot t [kW] ࢝ࢊ,ࢍࢋ࢘,ࡸࡼࡳ
ࡳࡸࡼ࢚ࡼ  Total power injected from the PL to the grid at timeslot t [kW] 
࢚ࡼ
 Power injected from the PL to the grid for energy sold at timeslot t [kW] ࢋ,ࡳࡸࡼ

࢚ࡼ
 Power injected from the PL to the grid for regulation-up offer at timeslot t [kW] ࢛,ࢍࢋ࢘,ࡳࡸࡼ
࢚ࡼ
 Power injected from the PL to the grid for reserve market offer at timeslot t [kW] ࢙ࢋ࢘,ࡳࡸࡼ
 [-] Binary variable indicating whether power is being injected from the PL to the grid at timeslot t ܜ۵ۺ۾۴
۴۵ܜۺ۾ Binary variable indicating whether power is being injected from the grid to the PL at timeslot t [-] 
 Power injected from the rooftop PV installations to the PL at timeslot t [kW] ࡸࡼࢂࡼ࢚ࡼ
 Maximum charging rate of the PL [kW] ࢎࢉ,ࡸࡼࢽ
࢙ࢊ,ࡸࡼࢽ  Maximum discharging rate of the PL [kW] 
 Aggregated energy of EVs arriving to the PL at timeslot t [kWh] ࢘࢘ࢇ࢚ࡱ
࢚ࡱ
 Aggregated energy of EVs departing from the PL at timeslot t [kWh] ࢋࢊ

࢚ࣁ
 [-] Charging efficiency of EVs parked in the PL at timeslot t ࢎࢉ,ࡸࡼ

࢚ࣁ
࢙ࢊ,ࡸࡼ  Discharging efficiency of EVs parked in the PL at timeslot t [-] 

࢚ࡻࡿ
࢛,ࡰࡵࢂࡱ  State-of-Charge increment of EVID at timeslot t [-] 
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࢚ࡻࡿ
 [-] State-of-Charge decrement of EVID at timeslot t ࢝ࢊ,ࡰࡵࢂࡱ

࢚ ࡻࡿ
 [-] Scheduled departure SoC of EVID at timeslot t ࢋࢊ,ࡰࡵࢂࡱ

࢚ࡻࡿ
 [-] State-of-Charge increment for the PL at timeslot t ࢛

 [-] State-of-Charge decrement for the PL at timeslot t ࢝ࢊ࢚ࡻࡿ
 [€] Total profit of the PL for the 24-ahead decision-making horizon ࡸࡼࢂࡱ࢚ࢌ࢘ࡼ

 
List of Variables and Indices used to model the HEMS  
 

ઢࡿࡹࡱࡴࢀ Time increment (timeslot size) for the HEMS [h]  
 [-] Number of timeslots in a 24-hour period for the HEMS ࡿࡹࡱࡴࢀࡺ
 Power injected from the grid to the home (for energy bought) at timeslot t [kW] ࡴࡳ࢚ࡼ
 Power injected from the home to the grid (for energy sold) at timeslot t [kW] ࡳࡴ࢚ࡼ
 [-] Number of shiftable loads (appliances) for the HEMS ࢚ࢌࢎ࢙ࡺ
 [-] Baseline (before HEMS implementation) lower bound (timeslot) of appliance i operating interval ࢈,ࡸ
 [-] Baseline (before HEMS implementation) upper bound (timeslot) of appliance i operating interval ࢈,ࢁ
 [-] Binary variable indicating whether appliance i is operating at timeslot t before HEMS implementation ࢚,
 [-] User-defined (after HEMS implementation) lower bound (timeslot) of appliance i operating interval ࢙,ࡸ
 [-] User-defined (after HEMS implementation) upper bound (timeslot) of appliance i operating interval ࢙,ࢁ
 [-] Binary variable indicating whether appliance i is operating at timeslot t after HEMS implementation ࢚,ࡿ

 Base (unshiftable) load for the home at timeslot t [kW] ࢋ࢙ࢇࡴ࢚ࡼ
 Total power demand for the home at timeslot t [kW] ࡰࡴ࢚ࡼ

࢚ࡼ
 Charging power of the home ESS at timeslot t [kW] ࢎࢉ,ࡿࡿࡱࡴ

࢚ࡼ
 Discharging power of the home ESS at timeslot t [kW] ࢙ࢊ,ࡿࡿࡱࡴ
࢚۱۶܁܁۳

 . binary variable indicating whether the home ESS is charging at timeslot t [-] 
 [-] binary variable indicating whether the home ESS is discharging at timeslot t . ࢚܁۲۷܁܁۳
 ࢽ
 maximum charging rate of the home ESS [kW] ࢎࢉ,ࡿࡿࡱࡴ

 ࢽ
 maximum discharging rate of the home ESS [kW] ࢙ࢊ,ࡿࡿࡱࡴ
 energy stored by the home ESS at timeslot t [kWh] ࡿࡿࡱࡴ࢚ࡱ

 ࡱ
  maximum energy storage capacity of the home ESS [kWh] ࢇ,ࡿࡿࡱࡴ
 
 [-] charging efficiency of the home ESS ࢎࢉ,ࡿࡿࡱࡴ

 
 [-] discharging efficiency of the home ESS ࢙ࢊ,ࡿࡿࡱࡴ

  [-] State-of-Charge of the home ESS at timeslot t ࡿࡿࡱࡴ࢚ࡻࡿ
 [-] Minimum allowable SoC for the home ESS ,ࡿࡿࡱࡴࡻࡿ
 [-] Maximum allowable SoC for the home ESS ࢞ࢇ,ࡿࡿࡱࡴࡻࡿ

 Total power generated by the home PV panels at timeslot t [kW] ࢂࡼࡴ࢚ࡼ
 Power generated by the home PV panels and self-consumed at timeslot t [kW] ࡴࢂࡼࡴ࢚ࡼ
 Power generated by the home PV panels and sold to the grid at timeslot t [kW] ࡳࢂࡼࡴ࢚ࡼ

 
Variables and Indices used to model the coordination between the HEMS and the PLEMS  
 
 Time of arrival of EVID at the PL [h] ࡸࡼ,࢘࢘ࢇ,ࡰࡵࢂࡱ࢚
 Time of departure of EVID from home [h] ࡴ,ࢋࢊ,ࡰࡵࢂࡱ࢚
ࡴ,࢘࢘ࢇ,ࡰࡵࢂࡱ࢚  Time of arrival of EVID at home [h] 
 Time of departure of EVID from the PL [h] ࡸࡼ,ࢋࢊ,ࡰࡵࢂࡱ࢚

 Commuting time of EVID from home to the PL [h] ࡸࡼ,ࡰࡵࢂࡱࡹࡻࢀ
 Commuting time of EVID from the PL to home [h] ࡴ,ࡰࡵࢂࡱࡹࡻࢀ
 [-] State-of-Charge of EVID when arriving at the PL ࡸࡼ,࢘࢘ࢇ,ࡰࡵࢂࡱࡻࡿ
 [-] State-of-Charge of EVID when arriving at home ࡴ,࢘࢘ࢇ,ࡰࡵࢂࡱࡻࡿ
 [-] State-of-Charge of EVID when departing from home ࡴ,ࢋࢊ,ࡰࡵࢂࡱࡻࡿ
 [-] State-of-Charge of EVID when departing from the PL ࡸࡼ,ࢋࢊ,ࡰࡵࢂࡱࡻࡿ
ઢࡰࡵࢂࡱ۱۽܁,ࡸࡼ State-of-Charge lost by EVID during the commute to the PL [-] 
ઢࡰࡵࢂࡱ۱۽܁,ࡴ State-of-Charge lost by EVID during the commute to home [-] 
 Distance driven by EVID from home to the PL [km] ࡸࡼ,ࡰࡵࢂࡱࡹࡻࡰ
 Distance driven by EVID from the PL to home [km] ࡴ,ࡰࡵࢂࡱࡹࡻࡰ
ࢋ࢜࢘ࢊࣁ ࡰࡵࢂࡱ,  Driving efficiency of EVID [1/km] 
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1. Introduction 

1.1 Background and Motivation: The Smart Cities Paradigm 

Accelerated transition towards smart cities can clearly be observed globally. Severe environmental alerts combined with 

exponential growth of human populations (and urban population densities) makes it imperative to develop sustainable cities to 

manage resources as efficiently as possible [1].  

With modern day crises being mainly due to inefficient management of resources, smart cities are no longer seen as a luxury, but 

a necessity for the sustained wellbeing of humanity. The cornerstones of any smart city are 1) the employment of Internet-of-

Things (IoT)-enabling to collect data, 2) to use the collected data to optimize the resource management efficiency, and 3) iterate 

this process to improve the design of the processes by which resources are allocated and used [2].  

Indeed, the development of an IoT infrastructure has been a key enabler of the transition towards smart cities. The other key 

enabler is cloud computing, allowing data to be stored, accessed, and processed by different users simultaneously [3]. While the 

development of smart cities impacts all sectors, some are more affected than others. The electrical power and transport sectors are 

being heavily impacted by this transition. In fact, both sectors are becoming increasingly intertwined in this new paradigm [4].  

1.2 The Intertwining of Electric Power and Transport Sectors 

The electric power sector has seen many profound changes in the past few decades. Concerns over security of supply have led a 

wave of electricity market liberalization and the activation of demand-side management (DSM) policies. In this competitive 

electricity market, distributed energy resources (DERs) became valuable assets in the demand-side. Typically, local DERs are 

small-scale distributed generation (DG) and energy storage systems (ESSs) [5]. 

More recently, with the urgency of minimizing greenhouse gas emissions, renewable energy sources (RESs) have become the 

preferred means of generating electricity, both on the demand-side (e.g., DERs) and on the generation utilities side (e.g., wind and 

solar farms).  Meanwhile, the same government climate actions which mandated shifting to cleaner energy production have also 

affected another emission-heavy sector: the transport sector. Electrification of transport, particularly the proliferation of Electric 

Vehicles (EVs), has been at the forefront of this change [6].  

At the same time, transport electrification inherently creates an everlasting link between the electric power and transport sectors, 

with the latter now becoming a major component of the demand-side and DSM. In fact, EVs intersect multiple elements of smart 

cities: connection to the power grid as a DER, asset of final energy users as citizen-owned vehicles for personal transport, using 

road and transit infrastructure, and dependence on cloud services such as navigation services, traffic and weather data, electricity 

prices, etc. This is illustrated in Fig. 1. 
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The simultaneous proliferation of RESs and EVs has been proven (both in literature and in real-life) to successfully reduce 

emissions significantly [7]. On the one hand: EVs eliminate local emissions of their combustion engine counterparts, while on the 

other hand charging their batteries from electricity generated by low-emission sources due to high levels of RESs. 

However, having a high penetration of DERs and EVs causes multiple technical challenges in the operation of the electrical 

power grid. While modern smart grids (SG) are designed taking into account this fact, critical reliability issues are still encountered 

if the integration of both is performed in an uncontrolled manner. 

 

Fig. 1. Elements of a smart city interdependent through the presence of EVs. 

 

Energy Management Systems (EMS) have already been used ever since DSM measures, especially Demand Response (DR) and 

dynamic pricing policies, were introduced. Their main objective has been to schedule energy consumption in order to make the 

best of the off-peak low electricity prices. In modern SGs, EMSs are developed accounting for technical constraints of the power 

grid and therefore they are a great tool to mitigate the technical challenges of high RES and EV penetration, while maintaining the 

economic incentives to the demand-side. 

1.3 State-of-the-Art: Energy Management Systems with Electric Vehicles 

Home Energy Management Systems (HEMS) which include EVs have been extensively studied in scientific literature. With 

accurate modeling, the HEMS scheduling results in decreased electricity bills through optimized utilization of local DERs (PV 

panels and EVs) and maximizing self-consumption during peak hours, while increasing the grid-independence [8].  

A Mixed-Integer Linear Programming (MILP) model for a HEMS was introduced in [9]. The proposed model incorporated an 

ESS EV, PV, dynamic DR tariffs, and shiftable loads. By considering the homeowners’ preferences for the usage time of each 
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shiftable load, a discomfort index (DI) was calculated as a proportional value to the amount of load shifted. Multi-objective MILP 

optimization was then used to obtain the day-ahead schedule that provides the optimal tradeoff between minimizing the electricity 

bill and user discomfort. The results showed that the HEMS scheduling of the DERs and EV provided higher economic benefits 

for the homeowners through increased self-consumption while contributing to grid stability.  Another recent study [10] investigated 

different operating strategies for another HEMS model, which also considered PV installations, an EV, shiftable loads, an ESS, 

and dynamic DR tariffs, and reiterated the same findings and conclusions. 

A recent study [11] proposed a more complex HEMS model which addressed real-life uncertainties in user behavior and solar 

generation using a combination of algorithms: Model Predictive Control (MPC), Artificial Neural Networks (ANN), Markov chain, 

and conditional probability techniques. The analysis performed clearly showed the capability of the HEMS to significantly decrease 

the electricity bills compared to non-optimized rule-based methods (e.g., homeowners manual scheduling by simply following the 

dynamic DR tariffs). The paper also presented an important finding by simulating different time resolutions for the HEMS 

implementation. It was found that decreasing the time resolution from 1 hour to 15 minutes had little impact on the cost savings 

(<1%), while significantly increasing the computational effort (40x). This sets an important guideline on the choice of the time 

resolution. 

In [4], a novel analysis was presented in which the coordination between the HEMS and the Grid Energy Management System 

(GEMS) was studied. The two EMSs shared information such as day-ahead driving schedules of the EVs and forecasted power 

profiles. The paper demonstrated that by coordinating the operation between the HEMS and GEMS, the electricity bills of the 

homeowners can be further decreased in addition to reduced PV curtailment. 

All previous works ([4], [8]–[11]) demonstrated techno-economic benefits of employing HEMSs incorporating EVs and DERs. 

However, in smart cities with high EV presence, traditional parking lots (PLs) can be converted to grid-connected EVPLs. EVPLs 

provide parking and charging services to EV owners at an agreed-upon tariff. By aggregating a large number of EVs, they are also 

capable of making a significant profit by being an ancillary services provider to the grid at a medium-voltage (MV) level. Being 

commercial establishments, their EMSs have one objective: maximize profits. In addition, the EVPLs make use of installed local 

generation (rooftop PVs) to further increase their net profits. Accordingly, recent works have proposed models for EVPL EMSs 

(PLEMSs). Recent studies on PLEMSs are surveyed subsequently.  

A dynamic programming algorithm for a PLEMS was proposed in [12]. The intended application was the commercial areas 

where EVs are parked during power grid’s peak hours. By using the aggregated potential of stationed EVs, the PLEMS was capable 

of determining the optimal charging schedule for each EV, which maximized the owner’s profits by providing ancillary services 

to the grid while committing to the agreed upon charging rate for the total parked duration of each EV. 
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A PLEMS was implemented in [13] using fuzzy logic inference. In this study, the main focus was not to assess the PL’s 

profitability, but rather its capability to mitigate grid overloading (which would be the case in uncontrolled EV charging at the 

EVPL) without sacrificing the charging commitments made to the EV owners. The PLEMS was shown to be successful at 

achieving this goal. 

A combined EMS which aimed at maximizing the parking lot owner’s profit while minimizing the distribution system operator’s 

(DSO’s) costs was proposed in [14]. In this sense, the PL would be incorporated as a subproblem in the GEMS. A stochastic MILP 

optimization model was used to account for the uncertainty of grid-connected RESs using a weighted-scenario based approach. 

The results showed that the implemented EMS effectively reduced the DSO’s costs while maximizing the EVPL profits. In [15], 

an EVPL with rooftop PV installations was modeled and a real-time PLEMS was proposed, taking into account power grid 

constraints and dynamic electricity pricing. The PLEMS determined near-optimal charging/discharging of the parked EVs to 

increase the EVPL’s profit. Building on [14] and [15], a PV-equipped EV parking lot was modeled in [16]. The proposed MILP 

model for day-ahead operational planning showed that the designed PLEMS significantly increasing the EVPL’s profits, without 

sacrificing neither the EVs’ charging requirements, nor the grid constraints. On the contrary, a significant portion of the additional 

profit came from providing ancillary services to the grid, which enhanced grid reliability and reduced power losses. 

1.4 Novel Contributions and Paper Organization 

From the conducted literature survey, the following is noted: 

 HEMSs have been extensively studied in literature, demonstrating their capability to minimize electricity bills (with minimal 

sacrifice of comfort) by shifting loads and optimizing EV charging/discharging according to dynamic DR tariffs. 

 PLEMSs have been proposed in recent studies, mainly aiming at either maximizing the EVPL’s profit or that of the grid 

operator. The aggregated capacity of parked EVs allow the EVPL to do so by participating in the ancillary services market. 

 Only one study [4] considered the coordination between two EMSs (HEMS and the GEMS) in the presence of consumer EVs. 

No studies were found that studied the simultaneous operation of PLEMSs and HEMSs. 

This was identified as a critical gap in literature. Therefore, the novel contributions of this paper can be listed as follows: 

 Study the effects of coordinating different EMSs employed in a smart city. Particularly, consider a PLEMS with all 

participating EVs’ owners having a HEMS installed at home. Both the EVPL and the homes have local PV installations, and 

both are connected to a SG with dynamic DR tariffs. 

 Investigate the impacts of the EMSs coordinated operation by simulating a real-world case study, including traffic uncertainties 

affecting transit times, in addition to real PV generation, load profiles, and electricity market data. 
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 Model the grid using power flow simulations to obtain a complete techno-economic evaluation of different scenarios. 

 Investigate synergies that can be obtained through the coordinated operation of different smart city EMSs. 

The remainder of the paper is presented as follows. In Section 2, the methodology is presented, including the conceptual model, 

mathematical formulation and computational implementation. In Section 3, the real-world case study used for the simulations is 

defined. In Section 4, the results of the simulations are presented and discussed. Recommendations for future work are discussed 

in Section 5. The conclusions are summarized in Section 6. 

2. Methodology 

2.1 Conceptual Model 

The conceptual model devised for this study is shown in Fig. 2. In this model, residents of different neighborhoods commute 

daily to an EVPL. The latter has rooftop PV installations and a PLEMS. Individual houses have their own DERs (specifically, PV 

panels and ESSs) and a HEMS. The EVPL and all houses are connected to the same SG, with dynamic DR electricity prices, 

bidirectional power flows, and open access to participate in providing ancillary services.  

 

 

Fig. 2. Conceptual model for the interaction between various EMSs with EVs. 
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The following scenarios will be studied and compared in this paper: 

Scenario 1 – No EMSs: In this (base) scenario, the houses have neither DERs nor an EMS installed. In this case, the houses are 

“traditional” homes with unscheduled operation of the appliances and uncontrolled charging of the EVs (i.e., once they arrive, they 

are plugged in until fully charged). In this scenario, the parking lot is nothing more than a parking space for the EVs. 

Scenario 2 – HEMS only: In this scenario, the houses are smart homes, with DERs (PV panels and batteries) installed and a 

HEMS operating to schedule all electricity usage (including EV charging). Each home has its own HEMS. The parking lot still 

exists only as a parking space for the EVs. 

Scenario 3 – PLEMS only: In this scenario, the houses are traditional houses, as they were in Scenario 1. The EVPL is converted 

to a commercialized smart EVPL, which has its own DERs (rooftop PV panels) and an EMS. 

Scenario 4 – All EMSs: In this scenario, both the houses and the parking lot are converted to their smart versions, equipped with 

DERs and EMSs. In this scenario, the EMSs coordination is studied. The EV owners include their arrival and departure times in 

the HEMS preferences, which shares this information with the PLEMS. The latter in turn shares back the expected SoC of the EV 

upon departure from the PL. 

The techno-economic benefits of DERs, HEMSs, and PLEMSs, separately, have all been already established in previous studies 

and in the real world. Since the objective of this study is to investigate the synergies that can be obtained through the coordinated 

operation of these systems in the presence of EVs, the main comparison to be performed is between scenarios 1 and 4. Moreover, 

it is important to realize that in real life, the intermediate scenarios (2 and 3) are too idealistic to be true. With high EV penetration 

and the global progression towards smart cities with widespread DERs, it is almost impossible to imagine a real scenario where 

PLEMSs exist while HEMSs do not, or vice versa. With this being said, it is important to include scenarios 2 and 3 as control 

scenarios, to identify if any observation is due to the synergy of the EMSs or if it already results from one of the individual EMSs 

on its own. The mathematical formulation used to model these scenarios is presented subsequently. 

2.2 Parking Lot Energy Management System 

The EVPL and its grid interaction are modeled using a MILP formulation.  The optimal day-ahead charging and discharging 

schedule of parked EVs is determined to maximize the EVPL’s profit. The model considers the presence of rooftop PV panels and 

DR participation to sell energy to the grid or participate in the reserve and regulation markets in response to offers by the 

independent system operator (ISO). The day-ahead schedule is obtained by discretizing the 24 hours into ܰܶாெௌ time slots of 

size Δܶ hours, as shown in (1). 

 Δܶ =
24

ܰܶாெௌ
 (1) 
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During each timeslot ݐ = 1 …ܰܶாெௌ, there are ௧ܰ
 EVs parked in the PL, which changes every timeslot as shown in (2). 

  ௧ܰ
 = ௧ܰିଵ

 + ௧ܰ
 + ௧ܰ

ௗ    ∀ ݐ = 1 …ܰܶாெௌ (2) 

In every timeslot there is a number of ௧ܰ
  and ௧ܰ

ௗ newly arriving and departing EVs, respectively. The total number of EVs 

which use the PL is expressed as ܰா, and each individual EV is assigned an index ܦܫܸܧ = 1 …ܰா.  

A binary variable  Φ௧
ாூ indicates whether or not an EV EVID is inside the PL during timeslot t or not, as shown in (3). 

 
 Φ௧

ாூ = ൜
1, ≥ ாூܮܴܴܲܣܶ ݐ ≤  ாூܮܲܲܧܦܶ 

0, ݁ݏ݅ݓݎℎ݁ݐ  

ܦܫܸܧ ∀ = 1 …ܰா, ݐ = 1 …ܰܶாெௌ 

(3) 

Each EV’s arrival and departure time to/from the EVPL is expressed as ܶܮܴܴܲܣாூ  and ܶܮܲܲܧܦாூ , respectively. In (4) the 

total aggregated stored energy by the EVPL in timeslot t (ܧ௧) is calculated as the sum of energy stored of individual batteries of 

parked EVs (ܧ௧ாூ). Similarly, in (5) the maximum storage capacity of the EVPL (ܧ௧
,) is the sum of that of all parked EVs 

௧ܧ)
ாூ,). The corresponding SoC of individual EVs and the PL is defined in (6) and (7), respectively. 

௧ܧ  =  ( Φ௧
ாூ ⋅ (௧ாூܧ

ேಶೇುಽ

ாூୀଵ

 (4) 

௧ܧ 
, =  ൫ Φ௧

ாூ ⋅ ௧ܧ
ாூ,൯

ேಶೇುಽ

ாூୀଵ

 (5) 

 
௧ாூܥܱܵ =

௧ாூܧ

௧ܧ
ாூ, 

ܦܫܸܧ ∀ = 1 …ܰா ݐ ∀, = 1 …ܰܶாெௌ 

(6) 

 
௧ܥܱܵ =

௧ܧ

௧ܧ
 , 

ݐ  ∀ = 1 … ܰܶாெௌ 

(7) 

For each timeslot, the total power injected from the grid to the PL and the total power injected from the PL to the grid are 

expressed in (8) and (9), respectively.  

 ௧ܲ
ீଶ = ௧ܲ

ீଶ, + ௧ܲ
ீଶ ,,ௗ௪ (8) 

 ௧ܲ
ଶீ = ௧ܲ

ଶீ, + ௧ܲ
ଶீ,,௨ + ௧ܲ

ଶீ ,௦ (9) 

In (8), the total power injected to the PL ( ௧ܲ
ீଶ) is equal to that corresponding to the energy purchased from the grid ( ௧ܲ

ீଶ,) 

and that injected by the grid for the regulation-down offer. In (9), the total power injected from the PL to the grid ( ௧ܲ
ଶீ) is equal 

to the sum of that: 1) sold to the energy market ( ௧ܲ
ଶீ,), 2) injected for the regulation-up offer ( ௧ܲ

ଶீ,,௨), and 3) providing 

the reserve market offer ( ௧ܲ
ଶீ,௦).  
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In (10)-(12), a condition is set such that the PL can either be injecting energy to or absorbing energy from the grid during each 

timeslot. 

 
FPL2G୲ = ൜1, ௧ܲ

ଶீ > 0
0, ݁ݏ݅ݓݎℎ݁ݐ

 

ݐ ∀ = 1 …ܰܶாெௌ 
(10) 

 
FG2PL୲ = ൜1, ௧ܲ

ீଶ > 0
0, ݁ݏ݅ݓݎℎ݁ݐ

 

ݐ ∀ = 1 …ܰܶாெௌ 

(11) 

 0 ≤ ௧ܩ2ܮܲܨ  + ௧ܮ2ܲܩܨ ≤ ݐ ∀     1 = 1 …ܰܶாெௌ (12) 

The binary variables FPL2G୲ and FG2PL୲ correspond to whether power is being injected from or to the PL in timeslot t, 

respectively. Constraint (12) allows only one of the two to be true at the same time. With all previous definitions, the power balance 

constraints can be defined as shown in (13)-(15). 

 ௧ܲ
ீଶ + ௧ܲ

ଶ ≤ ߛ , ⋅ ௧ܰ
 ݐ ∀      = 1 … ܰܶாெௌ (13) 

  ௧ܲ
ଶீ ≤ ߛ ,ௗ௦ ⋅ ௧ܰ

      ∀ ݐ = 1 …ܰܶாெௌ (14) 

 

ܶ߂ ⋅ ௧ܲ
ଶ ≤ 

,௫ܥܱܵ)
 
 ⋅ ௧ିଵܧ

, − ௧ିଵܥܱܵ ⋅ ௧ିଵܧ ) − ௧ܧ + ௧ܧ
ௗ 

ݐ ∀     = 1 …ܰܶாெௌ 

(15) 

For each timeslot, the sum of the power injected from both the grid and the local PV installations to the PL ( ௧ܲ
ீଶ and ௧ܲ

ଶ, 

respectively) must be less than or equal to the number of EVs currently stationed multiplied by the charging rate (γPL,ch).This 

constraints the power injected to the PL to the maximum charging capability of EVs currently stationed. 

Similarly, ௧ܲ
ଶீmust not exceed the maximum discharge capability (ߛ,ௗ௦ ⋅ ௧ܰ

). The presence of local PV generation makes 

it necessary to add the third power balance constraint shown in (15). The energy charged by the PV panels is equal to the power 

injected ( ௧ܲ
ଶ) multiplied by the size of the time slot (ܶ߂). The energy charged by the PV panels during any time slot must 

not exceed the difference between the maximum allowable energy capacity and actual energy level of the previous timeslot 

⋅ ௨ܥܱܵ) ௧ିଵܧ
, − ௧ିଵܥܱܵ ⋅ ௧ିଵܧ ), minus the energy to be added by newly arriving EVs (ܧ௧), plus that removed by departing 

ones (ܧ௧
ௗ).  

The aggregated energy stored by the PL at each timeslot can be related to the previous timeslot using (16), where ߟ௧
, and 

௧ߟ
,ௗ௦ correspond to the overall charging and discharging efficiencies of the parked EVs, respectively. 

௧ܧ  = ௧ିଵܧ  (16) 



 
 

12

ܶ߂+ ⋅ ௧ߟ
 ,( ௧ܲ

ீଶ + ௧ܲ
ଶ) − ܶ߂ ⋅

1
௧ߟ
 ,ௗ௦ ⋅ ( ௧ܲ

ଶீ) 

ݐ ∀ = 1 …ܰܶாெௌ 

Finding the optimal charging and discharging schedule for parked EVs involved the amount to be charged or discharged from 

each EV, as shown in (17) and (18), respectively. For each stationed EV at timeslot t, the SoC increment or decrement (ܵ ௧ܥܱ
ாூ,௨ 

and ܱܵܥ௧
ாூ,ௗ௪, respectively) is defined such that the EV can only be either charging or discharging. In (19) and (20), the set 

of all EVs’ charging and discharging schedules are compiled, respectively. 

 
௧ܥܱܵ

ாூ,௨ = ൞
0,                             Φ௧

ாூ = 0                             
0, ܥܱܵ  ௧

ாூ,ௗ ≤ ௧ாூܥܱܵ −    ௧ିଵாூܥܱܵ
௧ ܥܱܵ

ாூ,ௗ − ௧ாூܥܱܵ − ௧ିଵாூܥܱܵ   ݁ݏ݅ݓݎℎ݁ݐ,
  

ܦܫܸܧ ∀ = 1 …ܰா,∀ݐ = 1 …ܰܶாெௌ 

(17) 

 
௧ܥܱܵ

ாூ,ௗ௪ = ൞
0,                              Φ௧

ாூ = 0                              
0, ௧ாூܥܱܵ − ௧ିଵாூܥܱܵ ≤ ௧ ܥܱܵ  

ாூ,ௗ   
௧ ܥܱܵ

ாூ ,ௗ − ௧ாூܥܱܵ − ,௧ିଵாூܥܱܵ   ݁ݏ݅ݓݎℎ݁ݐ
 

ܦܫܸܧ ∀ = 1 …ܰா ݐ ∀, = 1 …ܰܶாெௌ  

(18) 

௧ܥܱܵ 
௨ = ቄܱܵܥ௧

ଵ,௨, ௧ܥܱܵ
ଶ,௨ , … , ௧ܥܱܵ

ேಶೇುಽ,௨ቅ (19) 

௧ௗ௪ܥܱܵ   = ቄܱܵܥ௧
ଵ,ௗ௪, ௧ܥܱܵ

ଶ,ௗ௪ , … ௧ܥܱܵ,
ேಶೇುಽ,ௗ௪ቅ (20) 

The MILP model for the PLEMS is now fully constrained. Additional constraints such as the active and reactive power flows 

(power factor limits) and voltage limits are added according to the grid requirements [17]. 

To maximize the EVPL’s profit, incomes and costs must first be defined. Those are listed and described in detail in Table 1. 

Accordingly, the objective function (ܲݐ݂݅ݎா) is presented in (21), and the decision vector (ۺ۾܆) is defined in (22)-(23). 

max
ۺ۾܆

(ாݐ݂݅ݎܲ) =  max
ۺ۾܆

 (IN1୲ + IN2୲ + IN3୲ + IN4୲ + IN5୲ + IN6୲ − C1୲ − C2୲ − C3୲ − C4୲

ே்ುಽಶಾೄ

௧ୀଵ

− C5୲ − C6୲ − C7୲ − C8୲) 

(21) 

ۺ۾܆ = ൛ࡸࡼࢄ,ࡸࡼࢄ, …  ே்ುಽಶಾೄൟ (22)ࡸࡼࢄ,

࢚ࡸࡼࢄ = ௧ܥܱܵ}
௨,ܱܵܥ௧ௗ௪ , ௧ܲ

ଶ , 

௧ܲ
ீଶ , , ௧ܲ

ଶீ,, ௧ܲ
ீଶ ,,ௗ௪, ௧ܲ

ଶீ ,,௨, ௧ܲ
ଶீ,௦} 

(23) 
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Table 1.  Detailed description of the profit and cost terms used for the PLEMS. Unit prices are based on the electricity market 

being considered [17]. 

Term  Description  Unit Price 

Income: IN1t Energy sold to grid as active power injection from the PL ( ௧ܲ
ଶீ,). λ୲ୣ୬ €/kWh 

Income: IN2t Energy sold for the ISO-requested reserve ( ௧ܲ
ଶீ,௦). λ୲୰ୣୱ €/kWh 

Income: IN3t Tariff paid by EV owners for energy charged to their EVs ( ௧ܲ
ீଶ + ௧ܲ

ଶ). λ୲
,ୡ୦ €/kWh 

Income: IN4t Hourly tariff paid by EV owners for to park in the PL ( ௧ܲ
ீଶ + ௧ܲ

ଶ). λ୲
,୮ୟ୰୩ €/h 

Income: IN5t Energy exchanged for the ISO-requested regulation-up ( ௧ܲ
ଶீ,,௨). λ୲

୰ୣ,୳୮ €/kWh 

Income: IN6t Energy exchanged for the ISO-requested regulation-down ( ௧ܲ
ଶீ,,ௗ௪). λ୲

୰ୣ,ୢ୭୵୬ €/kWh 

Cost: C1 t Energy purchased from the grid as active power injection to the PL ( ௧ܲ
ீଶ,). λ୲ୣ୬ €/kWh 

Cost: C2 t Tariff paid to EV owners for energy discharged from their EVs. λ୲
ா ,ௗ௦ €/kWh 

Cost: C3 t Compensation paid to EV owners for battery degradation by V2G in energy market. Cd  €/kWh 

Cost: C4 t Compensation paid to EV owners for battery degradation by V2G in reserve market. Cd  €/kWh 

Cost: C5 t Compensation paid to EV owners for battery degradation by V2G in regulation market. Cd  €/kWh 

Cost: C6 t Penalty paid for failing to provide the ISO-requested reserve ( ௧ܲ
ଶீ,௦). 0.02 ⋅ λ୲୰ୣୱ €/kWh 

Cost: C7 t Penalty paid for failing to deliver the ISO-requested regulation-up ( ௧ܲ
ଶீ,,௨). 0.02 ⋅ λ୲

୰ୣ,୳୮ €/kWh 

Cost: C8 t Penalty paid for failing to deliver the ISO-requested regulation-down ( ௧ܲ
ଶீ,,ௗ௪). 0.02 ⋅ λ୲

୰ୣ,ୢ୭୵୬ €/kWh 

 
 

2.3 Home Energy Management System 

In this study, the HEMS models a smart home incorporating an EV, local PV generation, dynamic DR tariffs, and shiftable loads. 

By considering the homeowner’s preferences for the usage time of each shiftable load, MILP optimization is used to obtain the 

day-ahead schedule that minimizes the electricity bill. The mathematical formulation of the model is presented in this section.  

With residential DR participation, the final electricity bill is the difference between energy bought from the grid and energy sold 

back. The objective function (Z), to be minimized, is defined in (24): The total power injected from the grid to the home (bought) 

for each timeslot t is represented as ௧ܲ
ீଶு at a unit price of ߣ௧

௨௬. In this model, the energy stored by the ESS is used directly for 

self-consumption never injected into the grid. Therefore, ௧ܲ
ுଶீ (total power sold to the grid at a unit price ߣ௧௦) is equal to excess 

PV generation. Similar to the PLEMS, the HEMS day-ahead time discretization is shown in (25), Such that scheduling is performed 

for each timeslot ݐ = 1 …ܰܶுாெௌ, and the duration of each timeslot is Δܶுாெௌ. 

 min
 
ܼ  = min

 
 ுாெௌ൫ܶ߂ ௧ܲ

ீଶுߣ௧
௨௬ − ௧ܲ

ுଶீߣ௧௦൯
ே்ಹಶಾೄ

௧ୀଵ

 (24) 

 
 

Δܶுாெௌ =
24

ܰܶுாெௌ
 (25) 
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Two stages are defined: 1) before HEMS implementation, which are the baseline operation intervals based on the end-user 

preferences; and 2) after HEMS implementation, where the flexible loads are optimally scheduled based on the DR tariffs. 

 

The initial stage (before HEMS implementation) is first modeled by defining the operating intervals of each load i from a total 

number of ܰ௦௧  shiftable loads. This is defined as the baseline interval for each load i as shown in (25), with ܤܮ, and ܷܤ, 

being the baseline lower and upper bounds, respectively. The binary variable ܤ,௧ is set to 1 during the timeslots t when the load i 

is operating and 0 for all timeslots outside its operating interval. 

 
,௧ܤ = ቐ

ݐ                            0 < ,ܤܮ
,ܤܮ            1 ≤ ݐ ≤ ,ܤܷ
ݐ                           0 > ,ܤܷ

 

ݐ ∀ = 1 …ܰܶுாெௌ 

(26) 

In the second stage (HEMS implementation), flexible loads are shifted from the baseline intervals to reduce costs according to 

dynamic DR tariffs (i.e., shifting from peak to off-peak periods). However, not all loads are indefinitely shiftable and so users set 

allowable lower and upper intervals for each load to operate, represented as ܤܮ,௨ and ܷܤ,௨, respectively. The output of the HEMS 

would include the new scheduled slots for each load as shown in (27). The binary variable ܵ,௧ corresponds to the timeslots that the 

load i is scheduled to operate by the HEMS, in the interval between ܤܮ,௦ and ܷܤ,௦ . The scheduled operating interval must lie 

within the limits set by the user, as set by constraints (28) and (29). 

 
ܵ,௧ =  ቐ

ݐ                            0 < ,௦ܤܮ
,௦ܤܮ            1 ≤ ݐ ≤ ܤܷ ,௦
ݐ                           0 > ,௦ܤܷ

 

ݐ ∀ = 1 …ܰܶுாெௌ 

(27) 

,௦ܤܮ  ≥ ,௨ܤܮ  , ∀݅ = 1, … ,ܰ௦௧ (28) 

ܤܷ  ,௦ ≤ ܤܷ ,௨ , ∀݅ = 1, … ,ܰ௦௧ (29) 

Moreover, (30) indicates that while the scheduled of each shiftable load is shifted, the operating duration is unchanged. 

  ܵ,௧

ே்ಹಶಾೄ

௧ୀଵ

=  ,௧ܤ

ே்ಹಶಾೄ

௧ୀଵ

, ∀݅ = 1, … ,ܰ௦௧ (30) 

The total day-ahead energy demand of the house (ܧு) is shown in (31) and is the sum of two terms: the energy demand of 

scheduled loads and the base load ( ௧ܲ
ு௦). Due to the constraint by (30), the total energy demand before and after scheduling is 

unchanged. The power demand for each timeslot ( ௧ܲ
ு) is expressed in (32). 

ுܧ  =   
ேೞ

ୀଵ

 (
ே்ಹಶಾೄ

௧ୀଵ

ܵ,௧  . ܲ  

ுாெௌܶ߂
) +  ௧ܲ

ு௦

ுாெௌܶ߂

ே்

௧

 (31) 
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௧ܲ
ு =  ൫ܵ,௧  . ܲ  ൯ 

ேೞ

ୀଵ

+  ௧ܲ
ு௦ (32) 

The model considers the presence of an ESS and local PV generation. For the ESS, constraints (33)-(38) are applied. Binary 

variables ESSCH୲ and ESSDIS୲௧
 . indicate whether the ESS is charging or discharging during timeslot t, respectively.  

The ESS can only be either charging or discharging in a given timeslot as indicated by (33).  

In (34) and (35), the charging and discharging power ( ௧ܲ
ுாௌௌ, and ܲ ௧

ுாௌௌ,ௗ௦, respectively) of the ESS are limited by maximum 

charging and discharging rate (ߛ 
ுாௌௌ, and ߛ 

ுாௌௌ,ௗ௦), respectively. In (36), the energy stored by the ESS is updated for timeslot 

t, considering that of the previous timeslot and charged/discharged energy. The SoC, shown in (37) as the ratio of current energy 

stored to the rated capacity (ܧ௧ுாௌௌ,), is constrained by the minimum and maximum allowable limits in (38). While the EV 

charging is considered a shiftable load to be scheduled by the HEMS, the technical constraints (33)-(38) apply to the EV battery 

when it is parked at home.  

  0 ≤ ESSCH௧
 . + ESSDIS௧ ≤ 1, ݐ∀ = 1 …ܰܶுாெௌ (33) 

  ௧ܲ
ுாௌௌ, ≤  ESSCH௧

 . ⋅  ߛ
ுாௌௌ,, ݐ∀ = 1 …ܰܶுாெௌ (34) 

  ௧ܲ
ுாௌௌ,ௗ௦ ≤  ESSDIS௧ . ⋅  ߛ

ுாௌௌ ,ௗ௦, ݐ∀ = 1 … ܰܶுாெௌ (35) 

  

௧ுாௌௌܧ =  ௧ିଵுாௌௌܧ

+  
ுாௌௌ, ⋅ ுாெௌܶ߂ ⋅ ௧ܲ

ுாௌௌ, −
1

 
ுாௌௌ ,ௗ௦  . ுாெௌܶ߂ ⋅ ௧ܲ

ுாௌௌ,ௗ௦ 

ݐ∀   = 1 …ܰܶுாெௌ 

(36) 

௧ுாௌௌܥܱܵ   =
௧ுாௌௌܧ

 ܧ
ுாௌௌ, , ݐ∀ = 1 …ܰܶுாெௌ (37) 

ுாௌௌ,ܥܱܵ  ≤ ௧ுாௌௌܥܱܵ ≤ ுாௌௌ,௫ܥܱܵ , ݐ∀ = 1 …ܰܶுாெௌ (38) 

The net power generated by the home PV panels ( ௧ܲ
ு) in a given timeslot must either be self-consumed ( ௧ܲ

ுଶு) or sold to 

the grid ( ௧ܲ
ுଶீ) as indicated by (39). 

 ௧ܲ
ு = ௧ܲ

ுଶு + ௧ܲ
ுଶீ , ݐ∀ = 1 …ܰܶுாெௌ (39) 

The final constraint for the HEMS is the power balance constraint, which is shown in (40) for each timeslot t. 

 
௧ܲ
ுଶு + ௧ܲ

ீଶு = ௧ܲ
ு + ௧ܲ

ுாௌௌ, − ௧ܲ
ுாௌௌ,ௗ௦ + ௧ܲ

ுଶீ  

ݐ∀ = 1 …ܰܶுாெௌ 
(40) 
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2.4 Coordinating the Energy Management Systems 

The primary link between the individual EMSs are the EVs. In (41) and (42), the arrival/departure times to/from the home and 

PL are related using TCOM (commuting time) for each EV. Given the arrival and departure time from only one of the two locations, 

accurate commuting times can be obtained by means of online cloud applications such as map and navigation services, which 

account for real traffic data. Thus, the EV owner can only provide the departure time from home and departure time from the PL, 

and the other times can be automatically computed. Similarly, the SoC of the EV battery at the destination is equal to that upon 

departure from the source minus the SoC lost during the commute, as in (43) and (44). 

ாூ,,ݐ  = ாூݐ ,ௗ,ு + ாூ,ଶܯܱܥܶ  (41) ܦܫܸܧ∀,

ாூ,,ுݐ   = ாூ,ௗ,ݐ + ாூܯܱܥܶ ,ଶு,∀(42) ܦܫܸܧ 

ாூ,,ܥܱܵ   = ாூ,ௗ,ுܥܱܵ − ΔSOCாூ ,ଶ  (43) ܦܫܸܧ∀,

ாூ,,ுܥܱܵ   = ாூ,ௗ,ܥܱܵ − ΔSOCாூ,ଶு  (44) ܦܫܸܧ∀,

The SoC lost during the commute (ΔSOC  ) can be calculated based on the commute distance (DCOM) and average driving 

efficiency of the EV model (ߟௗ௩ , %/km), as in (45) and (46).  

 ΔSOCாூ ,ଶ = ாூ,ଶܯܱܥܦ ⋅ ௗ௩ߟ ,ாூ,  (45) ܦܫܸܧ∀

 ΔSOCாூ ,ଶு = ாூ,ଶுܯܱܥܦ ⋅  (46) ܦܫܸܧ∀,ௗ௩,ாூߟ

Using (41)-(46), it is possible to coordinate the operation of the PLEMS and individual HEMSs without needing to share private 

information by either side. The HEMS only needs to share the EV arrival time at PL, EV departure time from PL, and arrival SoC. 

Meanwhile, the PLEMS shares each EV’s departure SoC with its HEMS. Any extra information needed by the EMSs (e.g., PV 

forecasts, electricity market data, traffic data, etc.) is obtained through public cloud/web applications and repositories. The 

interaction and information flow between the EMSs and different elements is illustrated in Fig. 3. 

The developed and presented EMSs, along with the proposed coordination framework, are robust and adaptable to any decision-

making timeframe or time resolution. However, the only requirement with regards to when the information should be shared is 

posed by the nature of day-ahead electricity markets. This of course does not preclude from the fact that updating the schedules 

via frequent information exchange can take place especially when high levels of uncertainty are foreseen.  

Nonetheless, in real-life applications, an exchange of information must always take place at the closure of the day-ahead market 

(i.e., 12 AM in most cases) regardless of the decision-making horizon and/or time resolutions used by the individual EMSs.  
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Fig. 3. An illustration of the interactions and information flow between the PLEMS, HEMSs, cloud/web public services and 

repositories, and the power grid in the considered scheme. 

3. Case Study 

To simulate the proposed scheme, a case study based on real-world conditions was designed. By computationally simulating the 

four scenarios described in Section II.A, possible synergies (or drawbacks) resulting from the interaction between the EMSs can 

be observed and evaluated. 

The modeled EVPL was based on one of the parking spaces of the Faculty of Engineering of University of Porto (FEUP). This 

EVPL, along with variations of it, has been previously used in [16] to test the PLEMS system. It is assumed that a total of 108 EVs 

are enlisted in this EVPL (students and staff members). The EVPL has PV panels installed with a rated output power of 100 kW 

[18]. As a common EV model in Portugal, the Nissan Leaf, with a 30kWh battery was used to model all EVs. The full specifications 

of the Nissan Leaf can be found in [7]. 

The smart homes corresponding to each of the 108 EVs have local PV installations with a 3kW rated output power and the LG 

RESU 6.5kWh lithium-ion ESS. The complete specifications of the home PV panels and ESS can be found in [19] and [9], 

respectively. The homes are in one of two neighborhoods located in different places of the metropolitan area of Porto. In this way, 

the effect of different commuting times can be compared. Neighborhoods 1 and 2 have 72 and 36 homes, respectively (total of all 

108 homes).  
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The average SoC lost when commuting between the EVPL and each of the neighborhoods is shown in Table 2. In this table, the 

variation of the SoC lost (accounting for traffic conditions) is represented as a standard deviation from the mean value. Given the 

nature of study and work times at the faculty, some EV owners have a morning schedule, while others have an afternoon schedule.  

On average, the ones with morning schedules arrive at the EVPL at 9:00 and leave by 18:00, while the ones with an afternoon 

schedule arrive at 14:00 and leave by 21:00. Variations in the individual arrival and departure times of individual EV owners were 

considered, with the arrival and departure times varying from the average ones as show in Table 3. The “Max” value represents 

the latest possible arrival time (11:30 for the morning and 16:30 for the afternoon).  

By accounting for the uncertainties in both the commuting times and commuting time and the arrival/departure times, real-life 

conditions are captured. A code script was made to generate individual arrival/departure times and transit times for each EV, for 

each day simulated. An example schedule for a given day using the is shown in Fig. 4. By generating the arrival/departure schedules 

to/from the homes and the EVPL, the proposed coordination framework between the EMSs can be tested and validated.  

Table 2.  Average SoC lost in commute, assumed variations due to traffic uncertainties (based on a normal distribution), and the 

breakdown of morning and afternoon EVs in each neighborhood. 

Location Mean SoC Lost in 
Commute to/from EVPL 

Variation with Traffic 
(as std. deviation) 

Total Number of 
Homes (and EVs) 

Number of Morning 
Schedule EVs 

Number of Afternoon 
Schedule EVs 

Neighborhood 1 0.2 0.02 72 48 24 

Neighborhood 2 0.3 0.03 36 24 12 

Table 3.  Morning and afternoon schedules and uncertain variations in the arrival and departure times, based on a normal 

distribution. 

Work Schedule Mean Std. Deviation Max 

Morning 
Arrival Time 9:00 

50 min 
11:30 

Departure Time 18:00 - 

Afternoon 
Arrival Time 14:00 

50 min 
16:30 

Departure Time 21:00 - 
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Fig. 4. An example schedule of all EVs for a given day using the scheduling script showing (a) the arrival and departure times 

from home and (b) the corresponding number of EVs stationed at the EVPL at each hour. For every new day being simulated, a 

new schedule is generated considering uncertainties of arrival/departure and commuting times based on Table 2 and Table 3.  

Finally, the power grid is simulated using the IEEE 33-bus test system, a standard radial test system operating at 12.66 kV line 

voltage [20]. The locations of the EVPL and the neighborhoods both on the map and on the power grid are illustrated in Fig. 5. 

The generator costs and bus loads are modified according to the real electricity market data to be considered in each case study. 
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Fig. 5. The map location of the EVPL and two neighborhoods used in the case study, and the corresponding buses on the IEEE 
33-bus standard test system [20]. 

Neighborhoods 1 and 2 are connected to buses 22 and 25, respectively, and the EVPL to bus 33. Typical low voltage commercial 

and residential load profiles publicly available by the Portuguese Energy Regulation Services Entity (ERSE) [21], BTN and BTE 

(1 and 2), respectively, were used for the other buses as shown in Table 4. In this manner the hourly loads at the buses in the test 

system would reflect the electricity market data. As such, the generator costs are set to the real day-ahead market prices of the day 

under study (in this paper the Iberian market, and only energy and regulation markets were considered). The bus loads are set 

according to the ERSE typical load profiles of the same day. The power exchange at buses 22, 25, and 33 is according to the EMSs 

output. For each case study considered in the next section the considered days and corresponding market and load conditions are 

specified. All other parameters assumed for the PLEMS and HEMS are according to those in [18], [19]. Accordingly, one day of 

operation is simulated using the following steps: 

Step 1: Generate individual schedules - arrival/departure times and transit times for each EV. 

Step 2: Run PLEMS code to determine departure SoC of each EV, and power exchange with the grid at bus 33. 

Step 3: Run HEMS code for each individual home to determine power exchange with the grid at buses 22 and 25. 

Step 4: At each timestep, run AC optimal power simulation for the power grid. 
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Table 4.  Loads connected to the simulated power grid. BTN, BTE1, and BTE2 daily typical load profiles are publicly available 

online by ERSE [21]. 

Bus Load Bus Load Bus Load 

1 Slack Bus 12 Commercial - BTN 23 Residential – BTE1 

2 Commercial - BTN 13 Commercial - BTN 24 Residential – BTE1 

3 Commercial - BTN 14 Commercial - BTN 25 *Neighborhood 2* 

4 Commercial - BTN 15 Commercial - BTN 26 Residential – BTE2 

5 Commercial - BTN 16 Commercial - BTN 27 Residential – BTE2 

6 Commercial - BTN 17 Commercial - BTN 28 Residential – BTE2 

7 Commercial - BTN 18 Commercial - BTN 29 Residential – BTE2 

8 Commercial - BTN 19 Residential – BTE1 30 Residential – BTE2 

9 Commercial - BTN 20 Residential – BTE1 31 Residential – BTE2 

10 Commercial - BTN 21 Residential – BTE1 32 Residential – BTE2 

11 Commercial - BTN 22 *Neighborhood 1* 33 *EVPL* 

 

4. Simulations and Results 

In this section, the results of the simulations are shown and discussed. Two separate studies were performed. The first is done 

from the technical perspective, where the objective is to analyze the effect of the EMSs coordination on the power flow in the grid. 

The second analysis is performed from an economic perspective, illustrating the point of view of the EV owners to analyze the 

cost-efficiency of the proposed EMS coordination scheme. All simulations were run on a standard laptop computer with an Intel 

Corei7-8550U CPU @ 1.80 GHz, 16.0 GB RAM, and a Windows 10 64 bit operating system. The General Algebraic Modelling 

System (GAMS) environment was used to implement the PLEMS and HEMS, applying the Mixed Integer Programming (MIP) 

solver. MATPOWER 7.1 on MATLAB 2019b was used for the power flow simulations. 

4.1 Technical Viability: Power Flow Analysis 

To incorporate effects of seasonal variations, two working days were analyzed: a winter day (21-Jan-2019) and a summer day 

(01-Jul-2019), both a Monday for consistency. As mentioned, the 33-bus test system is modified by applying the ERSE load 

profiles to the bus loads. By doing so, the system peak load is 3.05 MW and 2.94 MW for the winter and summer days, respectively. 

For the homeowners, the summer and winter residential tariffs are shown in Fig. 5, according to commercial tri-hourly electricity 

tariffs in Portugal, which can be seen found in [22]. For the EVPL, the energy and regulation market prices are according to the 

Iberian market, which are available online by the Portuguese TSO (REN) [23]. The energy price in the Iberian market is also 

plotted in Fig. 6. It is assumed that both the PL and homes use maximum power point tracking (MPPT) PV installations, and it is 

also assumed the normalized (unit) MPPT generation is the same for both. All generator costs are set in accordance with the energy 

price for the given hour/day. In this manner, for a given day being simulated, all real market conditions are used. 
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Accordingly, real PV generation data was obtained from a smart home [18] in Porto for the given days and the normalized 

MPPT generation is shown in Fig. 7.  After generating the daily arrival/departure and commuting schedules for all 108 EVs, the 

aggregated load profiles of Neighborhood 1 and 2 are shown in Fig. 8. The HEMS settings and preferences are provided in 

Appendix 1 and the HEMS operation for a single home is demonstrated in Appendix 2. It is noteworthy that no two homes have 

the same profile, due to the variations of the individual schedule for each home. The energy exchanged between the grid and each 

of the EMSs installed is shown for the neighborhoods and the PL in Fig. 9 and 10, respectively. 

In Fig. 11, active power losses are plotted for all four scenarios. As mentioned in Section 2.1, evaluating these intermediate 

scenarios can provide some insight of the contribution of each EMS to the final result. In Figs. 12 and 13, scenarios 1 (base) and 4 

(final) are compared for all variables of interest (voltages at buses 22, 25, and 33, total power supplied by grid, and total power 

losses) between the summer and winter cases. 

In Fig. 11 it is observed that applying only the HEMSs has a slight but consistently favorable effect on grid losses. This is 

expected, since the HEMS favors self-consumption and only injects to the grid in times of excess PV generation, which is also a 

time of high load demand.  

By looking at Fig. 12(c)-(d) and 13(c)-(d), it can be seen that very minimal (barely observable) change occurs in the voltage 

profiles at the neighborhoods buses. With or without EMSs, the p.u. voltage at the neighborhood buses is very close to 1 for both 

the winter and summer days. Meanwhile, the PLEMS can be seen to have a more significant impact on the power flow results. The 

average and peak deviations between S4 and S1 were extracted and detailed in Table 6. 
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Fig. 6. Residential tariffs and Iberian market prices for summer and winter days. 

 

 

Fig. 7. Normalized MPPT PV output for the summer and winter days. 

 

 

Fig. 8. Active power load profile with no EMSs (scenario 1) in the summer day for a) Neighborhood 1 and b) Neighborhood 2. 
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Fig. 9. Active power exchanged with grid with coordinated EMSs (scenario 4) in the summer day for (a) Neighborhood 1 and (b) 

Neighborhood 2. 

 

Fig. 10. Active power exchanged with grid with coordinated EMSs (scenario 4) in the summer day for the EVPL, due to 

participation in the energy and regulation markets. 
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Fig. 11. Comparison of active power losses for all scenarios (summer). 

 

Fig. 12. Power flow results for the summer day: (a) grid active power losses, (b) active power supplied by the grid, (c) voltage at 

Neighborhood 1, bus 22 (d) voltage at Neighborhood 2, bus 25, and (e) voltage at EVPL, bus 33. Black line represents base 

scenario (no EMSs) red line represents final scenario (all EMSs). 

 

 

Fig. 13. Power flow results for the winter day: (a) grid active power losses, (b) active power supplied by the grid, (c) voltage at 

Neighborhood 1, bus 22 (d) voltage at Neighborhood 2, bus 25, and (e) voltage at EVPL, bus 33. Black line represents base 

scenario (no EMSs) red line represents final scenario (all EMSs). 
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From Fig. 11 it can be seen that the intermediate scenario 3 (with the PLEMS and without the HEMSs) is very similar to the 

final scenario 4 (with all EMSs). In scenario 3, during the summer day the power losses are dramatically decreased in the morning 

(at 09:00). In this time the majority of EVs are arriving to the PL and are available to operate in V2G modes, and PV generation 

starts. With both factors combined, the EVPL starts to inject power to the grid and this is met with the observed drop both in power 

losses and power supplied by the grid.  

In Fig. 12(d) it can be seen that this corresponds to an observable over-voltage due to the injected power to the grid. In the 

winter, the exact opposite occurs at this time, since the morning surge of EVs occurs when PV generation is not enough and an 

undervoltage occurs since power has to be consumed from the grid. 

Around 12:00, the opposite occurs. The PL is full at this time and requires energy from the grid to charge the parked EVs (as 

seen in Fig. 10). However, due to PV generation and self-consumption, this is still met with a decrease in system losses and power 

supplied by the grid; and an undervoltage can be observed. Since this is around the peak PV generation time, the same effect is 

observed in the winter albeit with less magnitude.  

The total power loss and power supplied by the grid for both days are reported in Table 6, This effect results in the observed 

shift of the peak power losses time of the day. From this study, the following inferences can be drawn: 

 A synergistic effect is observed in which an added benefit is obtained by applying all the EMSs compared to each one 

separately. 

 Overall, all observed power flow variables show added benefits for the summer day compared to the winter one. 

 The employed HEMSs have a slight but consistently favorable effect on the power grid. 

 The employed PLEMS has a more significant effect on the power grid. During the summer the morning surge results in a drop 

in grid power losses and an overvoltage at the PL bus. During the winter, the morning surge causes a significant undervoltage 

due to insufficient PV generation. 

 The employed PLEMS has a more significant effect on the power grid. During the summer the morning surge results in a drop 

in grid power losses and an overvoltage at the PL bus. During the winter, the morning surge causes a significant undervoltage 

due to insufficient PV generation. 

 All voltages in the network, for all cases, are well within the allowed safety range (0.9-1.1). 
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Table 5.  Results from the power flow analysis: comparison of average and peak deviations (winter and summer) between the 

optimized S4 scenario vs. the baseline S1 scenario, for active power losses, active power provided by the grid, and voltages. 

 Avg. Deviation 
(S4 vs. S1) 

Peak Deviation (+ve) 
(S4 vs. S1) 

Peak Deviation (-ve) 
(S4 vs. S1) 

Summer Winter Summer Winter Summer Winter 

Grid Total Active Power Losses - 0.33 % + 1.44 % + 23.49 % 
at 11:00 

+35.85 % 
at 10:00 

- 31.16 % 
at 9:00 

-23.62 % 
at 5:00 

Active Power Injection by Grid - 2.49 % - 0.66 % + 18.40 % 
at 21:00 

+ 19.16 % 
at 21:00 

- 21.45 % 
at 8:00 

-14.81 % 
at 5:00 

Voltage @ Neighborhood 1, Bus 22 + 0.001 pu < 0.001 pu + 0.004 pu 
at 16:00 

+ 0.004 pu 
at 16:00 

- 0.004 pu 
at 21:00 

- 0.004 pu 
at 20:00 

Voltage @ Neighborhood 2, Bus 25  < 0.001 pu < 0.001 pu + 0.003 pu 
at 8:00 

+ 0.002 pu 
at 16:00 

- 0.002 pu 
at 21:00 

- 0.002 pu 
at 21:00 

Voltage @ EVPL, Bus 33 < 0.001 pu < 0.001 pu + 0.016 pu 
at 9:00 

+0.011 
at 5:00 

- 0.010 pu 
at 11:00 

- 0.014 pu 
at 10:00 

 

Table 6.  Results from the power flow analysis: total energy supplied and total energy losses comparison between S1 and S4, for 

the winter and summer. 

Season Winter Summer 

Scenario No EMSs 
(S1) 

All EMSs 
(S4) 

No EMSs 
(S1) 

All EMSs 
(S4) 

Total Energy Supplied (MWh) 59.8 58.6 59.8 57.2 

Total Energy Losses (MWh) 1.8 1.8 1.8 1.7 

 

4.2 Economic Viability: Cost Analysis for EV Owners 

With the technical viability of the proposed scheme confirmed, a second study was performed to analyze the economic aspect 

from the EV owners’ point of view. As it is advised to investigate the worst-case scenario for economic purposes, the winter case 

was used. The simulations were extended for the entire week, rather than one day, for the working week corresponding to 21/25-

Jan-2019. A single EV was extracted and analyzed to obtain the total electricity costs for the full working week. The results of this 

study are shown in Fig. 12 (a)-(d), and Tables 5 and 6. By tracking the full SoC variation during the working week, the total 

electricity bill for the EV owner can be calculated based on the: i) cost of purchasing electricity at home, ii) profit from selling 

energy to grid at home, iii) tariffs paid to the PL for parking and charging, iv) income from the parking lot for V2G compensation.  

The breakdown of the week electricity bill for the EV under study is shown in Table 7. 
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Fig. 13. SoC variation during the full winter working week for the EV under study in the case of (a) S1 - no EMSs, (b) S2 - 

only HEMSs, (c) S3 - PLEMS only, (d) S4 - all EMSs. Blue, orange, and gray segments correspond to when the EV is at home, 

in transit, or at the EVPL, respectively. 

Table 6. Total electricity bill of the EV owner for each of the considered scenarios and the percentage gain or loss compared to 

the baseline scenario (S1). 

Scenario 
Day Total Electricity Bill 

for the Working Week 
Reduction (-ve) or Increase 

(+ve) Compared to (S1) 1 2 3 4 5 

S1 (No EMS - Baseline) € 1.37 € 1.08 € 1.03 € 1.11 € 1.21 € 5.79 -  

S2 (HEMS only) € 1.25 € 0.93 € 0.81 € 0.96 € 1.05 € 4.99 - 14 % 

S3 (PLEMS only) € 1.61 € 1.48 € 0.87 € 0.94 € 1.21 € 6.11 + 6 % 

S4 (Coordinated HEMS and PLEMS) € 1.46 € 1.32 € 0.64 € 0.82 € 1.05 € 5.30 - 9 % 
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From the obtained results the following observations can be made: 

 Employing the HEMS in S2 introduces a significant reduction in the weekly electricity bill compared to the base case (-14%). 

 Employing the PLEMS alone in S3 has a negative effect on the EV owner: an increase of 6% in the total bill. This is expected 

since the PLEMS’s objective function is to maximize the EVPL’s profit. 

 Employing the HEMS along with PLEMS in S4 overcomes the adverse effect of the previous scenario and results in a net 

reduction in the bill compared to the base scenario (-9%).  

5. Recommendations for Future Work 

Overall, the employment of the presented EMSs and the proposed coordination framework has been shown to have potential 

benefits, being both technically viable for the power grid and economically beneficial for the EV owners. With a certain progression 

towards EV-centered smart city power grids and increased employment of EMSs both for residential and commercial users, further 

investigation of such coordination frameworks is necessary and can yield significant techno-economic benefits to all stakeholders.  

There are multiple directions which can be pursued for research following up on this work, which are discussed in this section. 

The objective of this paper to present the EMSs and the coordination framework between them from the point of power systems 

research. While the requirements for the information exchange have been presented, it is crucial to proceed towards implementing 

the information sharing platform. Ideally, this platform should be developed with a bottom-up approach, specifically designed to 

be employed for this purpose (such as the EMSs developed and presented in this paper). The topic of information sharing was 

briefly discussed in Section 2, specifically with regards to the limitation posed by the nature of day-ahead markets. This does not 

preclude from the fact that updating the schedules via frequent information exchange can (and indeed should) take place especially 

when high levels of uncertainty are foreseen. This should definitely be investigated in future work, and if possible, simultaneously 

implement a communication platform to leverage the benefits obtained from the coordinated operation of EVs. 

Another prospect for future work is to conduct a global study with different electricity markets and work-culture differences. 

The conducted study was performed from a European perspective, however there is indeed a lot to be gained by analyzing the 

effect of such coordinated EMS employment under different conditions. An important factor that will be impacted by cultural and 

demographic differences will be the driving patters of EV owners. In this case, more complex probabilistic modeling of the EV 

commuting patterns such as the one presented in [24] should be employed to accurately capture the global differences and impacts 

on the employment of the proposed coordination framework.   

Finally, different power grids can also be investigated, especially multi-microgrid networks and grids with decentralized 

operation. A more complex coordination mechanism between residential/commercial EMSs on one hand, and decentralized grid 

operation (specifically agent-based systems) is highly recommended for future work following-up on this study.  



 
 

30

6. Conclusions 

In this paper, an innovative coordination framework was proposed and implemented for different EMSs in a smart city with 

EVs. The model was conceptualized based on the coordination between individual HEMSs belonging to the EV owners and a 

PLEMS at their workplace. The HEMS only needed to share the EV arrival time at the PL, EV departure time from the PL, and 

arrival SoC. Meanwhile, the PLEMS shared each EV’s departure SoC with its HEMS. Any extra information needed by the EMSs 

(e.g., PV forecasts, electricity market data, traffic data) was obtained through public cloud/web applications and repositories. The 

individual EMSs along with the proposed coordination framework was implemented and tested based on a real-life case study and 

by simulating a day-ahead operation. Two studies were performed. In the first, a power flow analysis was made to analyze the 

technical viability of the proposed approach. In the second, an economic analysis was made by calculating the electricity bill of an 

EV owner for a full working week under different scenarios of EMS operation. The results of both studies showed that the proposed 

EMS coordination framework was both technically beneficial for power grids and economically beneficial for the EV owners.  
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Appendix 1: HEMS User Preferences 

The HEMS settings and user-defined preferences in Table A1 and A2 are the ones corresponding to the EV under study in Section 
4.2. Since uncertainties are being considered by the proposed model, the EV preferences vary every for each day and EV being 
considered, according to the actual arrival time and arrival SoC of the day. The study performed in Section 4.1 used the same 
values in Table A1. The same EV has the same values as in Tables A2 and A3, however these values varied with each one of the 
108 EVs under study according to the uncertainties modeled. 

Table A1.  Settings and user-defined preferences for the HEMS. The EV preferences are set according to the commuting 

schedule generated and is provided in Table A2 and Table A3. 

Appliance Pi Ti LBb UBb LBS UBs 

Dishwasher (1) 1.8 01:30 02:30 04:00 02:30 05:00 

Washing Machine (2) 0.5 01:00 03:00 04:00 03:00 05:00 

Clothes Dryer (3) 3.0 00:30 05:30 06:00 05:30 07:30 

Living Room AC (4) 1.5 01:00 14:30 15:30 14:00 15:30 

Microwave (5) 1.2 00:30 14:30 15:00 14:30 15:00 

Laptop (6) 0.1 02:00 15:30 17:30 15:30 19:00 

Cooker Hob (7) 1.5 00:30 14:30 15:00 14:30 15:00 

Vacuum Cleaner (8) 1.4 01:00 04:30 05:30 05:30 06:00 

Room AC (9) 1.0 00:30 16:30 17:00 17:30 18:00 

Electric Vehicle (10) According to Generated Schedule as shown in Table I (Morning) or Table II (Afternoon) 

 

Table A2. Resulting EV preferences for the HEMS with the morning schedule. 

 Pi Ti LBb UBb LBS UBs 

Day 1 2.3 8:30 19:30 04:00 19:30 07:30 

Day 2 2.3 7:00 20:30 03:30 20:30 08:30 

Day 3 2.3 7:30 18:30 02:00 18:30 07:30 

Day 4 2.3 8:00 19:30 03:30 19:30 06:30 

Day 5 2.3 8:00 19:30 03:30 19:30 08:30 

 

Table A3. EV preferences for the HEMS with the afternoon schedule.  

 Pi Ti LBb UBb LBS UBs 

Day 1 2.3 6:00 19:30 01:30 19:30 07:30 

Day 2 2.3 5:00 20:30 01:30 20:30 08:30 

Day 3 2.3 5:30 18:30 00:00 18:30 07:30 

Day 4 2.3 5:30 19:30 01:00 19:30 06:30 

Day 5 2.3 5:30 19:30 01:00 19:30 08:30 
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Appendix 2: HEMS Operation for a Single Home (Morning Schedule) 
 

 
Fig. A1: Total demand for a single house (morning schedule) before HEMS implementation. 

 

 
Fig. A2: Total demand for a single house (morning schedule) before HEMS implementation.  

 

 
Fig. A3: Power injected from the grid to the home for a single house (morning schedule) after HEMS implementation. 

 

 
Fig. A4: Power injected from the home to the grid for a single house (morning schedule) after HEMS implementation.  

 

 
Fig. A5: Energy stored in the ESS for a single house (morning schedule) after HEMS implementation.  
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