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Abstract—This article presents a distributed resilient demand
response program integrated with electrical energy storage sys-
tems for residential consumers to maximize their comfort level.
A dynamic real-time pricing method is proposed to determine the
hourly electricity prices and schedule the electricity consumption of
smart home appliances and energy storage systems commitment.
The algorithm is employed in normal and emergency operating
conditions, taking into account the comfort level of consumers. In
emergency conditions, the power outage of consumers is modeled
for different hours and outage patterns. To evaluate the applica-
bility of the proposed model, real samples of Southern California
households are considered to model the smart homes and their
appliances. Further, a sensitivity analysis is performed to assess the
impacts of the number of households and number of persons per
household on the output results. The results showed that the pro-
posed model reduced the costs of utility in normal and emergency
conditions by about 33.77% and 30.92%, respectively. The values of
total payments of consumers in normal and emergency conditions
were decreased by about 34.26% and 31.31%, respectively. Further,
the consumers comfort level for normal and emergency conditions
increased by about 146.78% and 110.2%, respectively. Finally, the
social welfare for normal and emergency conditions increased by
about 46% and 49.06%, respectively.

Index Terms—Building automation, demand-side management,
optimization, smart grid, smart homes.

I. INTRODUCTION

SMART home is a new conceptual framework and tech-
nical tool to enhance the resiliency of electrical system

consumers. Most electric utilities have been designed in a way
to withstand stochastic outages of electrical equipment under
the N-1 security criteria [1]. However, natural disasters, human
errors, and terrorist attacks have posed unprecedented challenges
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to electrical supply systems and smart home planning and op-
erational methods are introduced to reduce the impacts of these
external shocks.

A resilient electrical system should withstand severe distur-
bances without experiencing any major electricity disruption,
enable quick recovery, and restore to the normal operating state
[2]. Smart home energy management systems (SHEMSs) can be
utilized to increase the resiliency of consumers and manage their
energy consumptions [3]. The SHEMS can reduce the impacts
of the external shocks and households’ dependency on the main
grid using energy storage systems (ESSs) and distributed energy
resources (DERs) [4].

Over the recent years, different aspects of resilient smart
homes are presented and the literature can be categorized into the
following three categories: electric vehicle commitment strate-
gies in emergency conditions; load commitment strategies in
emergency conditions; and combinations of the above strategies
with DERs and ESSs commitment in emergency conditions.

Based on the above categorization and for the first category of
papers, Abessi and Jadid [5] introduced the internal combustion
engine vehicle as an electrical energy source in external shock
conditions. The proposed method improved the resilience of the
system by supplying the smart homes with internal combustion
engine vehicles and injecting the extra electrical power of smart
homes into the distribution system. However, the model did not
consider the optimal load commitment of smart appliances in
normal conditions and the real-time pricing process. Rahimi and
Davoudi [6] proposed a process to supply residential consumers
with plug-in electric vehicles (PHEVs) during external shocks.
The model minimized the peak power of smart appliances that
were supplied by electric vehicles. Different electricity con-
sumption scenarios during seasons were simulated. The method
did not model the comfort level of consumers and dynamic real-
time pricing procedure. Razeghi et al. [7] assessed the impact
of PHEVs on the resiliency of the system during its outages.
The results showed that during normal operating conditions, the
increased values of the electrical demand of PHEVs reduced
the system resiliency by stressing system components. This
process accelerated aging, increased the probability of failure,
and reduced the reliability and resiliency of the system. However,
the proposed model only considered the supplying of critical
load during outages using PHEVs. Xu and Chung [8] evaluated
the impacts of the vehicle to home and vehicle to grid operating
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modes on the system reliability and results indicated that the
reliability of the system with the vehicle to grid contributions was
improved. The optimization process utilized a central charging
algorithm for PHEVs in emergency conditions. The proposed
framework did not supply the entire load. Further, the method
did not model the comfort level of consumers.

For the second category of studies, Srikantha and Kundur
[9] introduced a distributed demand response program (DRP)
that curtailed loads and improved the resilience of the system.
The model minimized the compensation costs of the system that
were paid to consumers to reduce their energy consumptions.
The framework did not consider the detailed model of smart
appliances and the comfort level of consumers. Balasubrama-
niam et al. [10] assessed a resilient optimization model that
utilized the adjustable loads to supply the critical loads in ex-
ternal shock conditions and increase the system resiliency. The
process minimized the aggregated load shedding and maximized
the served noncritical loads. However, the process did not assess
the consumer comfort level. Nourollahi et al. [11] presented
a robust optimization process to enhance the resiliency of the
system using DRPs. The proposed model considered the uncer-
tainties of external shocks, intermittent power generations, and
load and price parameters. However, the method did not study
the commitment scenarios of smart appliances of consumers.
Liu et al. [12] assessed an optimization algorithm for utilizing
the load curtailment process to increase the resiliency of the sys-
tem in extreme conditions. The loss of load probability, expected
demand not supplied, and grid recovery indices were utilized to
optimize the recovery process of the system. The interactions of
transmission, distribution, and microgrid systems were modeled.
The curtailment process did not model the consumers comfort
level and real-time pricing. Aghaei et al. [13] evaluated an
emergency DRP process that was utilized to reduce the expected
load not served in contingent conditions. The proposed model
considered the dynamic elasticity of demand and minimized
the system operating costs, incentive costs that were paid to
consumers, and expected load not served costs. The optimization
procedure did not utilize the real-time pricing process. Sama-
rakoon et al. [14] proposed a load reduction algorithm based on
local frequency measurement. The load control method aggre-
gated typical domestic appliances, according to the maximum
admissible time for disconnecting the loads without harming
consumers’ comfort. The load control process was carried out
by smart meters to provide primary frequency response. The
process did not formulate the commitment of smart appliances
in normal conditions. Short et al. [15] developed a dynamic load
control method that turned OFF refrigerators based on frequency
and temperature without considering consumers comfort level.
The proposed method improved the stability of the power system
when facing a loss of generation, an increase in load, or high pen-
etration of variable generation resources. Yu et al. [16] proposed
a distributed energy management control process that utilized the
load control/curtailment process to minimize the loss of load and
reduce the peak-to-average demand ratio. The objective function
maximized the social welfare compromised demand surplus
minus utility costs. The energy management method did not
study the real-time pricing models. Lu and Zhang [17] examined
a central load control mechanism for thermostatically controlled

appliances to provide a continuous regulating reserve. The
model considered the heating, ventilating, and air-conditioning
loads and the results showed that the proposed method provided
24 h of intrahour continuous balancing services. However, the
control strategy did not commit the smart home appliances in
contingent conditions. Vivekananthan and Mishra [18] evaluated
a stochastic ranking method to provide regulation services by
retailers. The retailer participated in the day-ahead market and
responded to the control signals of the real-time market. The
stochastic behavior of temperature variation, status, and power
consumption of loads was modeled by the Markov property.
The procedure was centrally computed and the proposed model
improved the resiliency of the system. Nevertheless, the ranking
method was not able to model the consumers’ comfort levels.

For the third category of studies, Mehrjerdi [1] introduced an
optimization process for battery swapping and increasing the
resiliency of buildings that were equipped with photovoltaic ar-
rays, electric vehicles, and ESSs. The battery swapping process
made the electric vehicle available for its owner at all times. The
model minimized the operating cost of the integrated system
considering the uncertainties of photovoltaic system electricity
generation. The results presented that the reserve battery reduced
the costs of the system by about 8%. However, the proposed
method did not formulate the consumer comfort level in con-
tingent conditions. Dinh and Kim [2] assessed an optimization
framework for SHEMS that integrated ESS and DERs consider-
ing the comfort levels of consumers. The process minimized the
installation costs of ESSs and DERs based on normal, economic,
and smart modes of SHEMS operating scenarios. The results
showed that the smart scenario reduced the energy cost of the
system by about 46.4%. The introduced model did not examine
the real-time pricing process and model the cost function of
utility. Chatterji and Bazilian [3] presented a stochastic pro-
gramming model to increase the resiliency of the system and
minimize the cost of energy supply considering the photovoltaic
system and ESSs. The model utilized the Monte Carlo simulation
process to simulate the impacts of storm-related outages on
the system. The emergency DRP was carried out to reduce
the system cost and increase the resiliency of the system. The
optimal load commitment of smart homes in the contingent
scenario was not modeled. Mehrjerdi [4] assessed a model for re-
silient buildings that utilized electric vehicles and minimized the
photovoltaic energy integration. The photovoltaic energy was
used for daytime and the electric vehicle energy was available
for nighttime using the adaptable charging-discharging process.
The proposed method increased the resiliency of buildings and
restored by about 51.5% of critical loads in contingent condi-
tions. However, the algorithm did not encounter the real-time
pricing and consumer comfort level. Rosales-Asensio et al. [19]
evaluated the resiliency of the electrical system of large buildings
integrated with photovoltaic arrays and electrochemical ESSs.
The results showed that the resiliency of buildings was highly
improved using the photovoltaic and energy storage facilities.
Further, the designed system would be able to produce up to
49% of the total required energy. The model did not optimize the
commitment process of smart homes in contingent conditions.
Mehrjerdi and Hemmati [20] assessed an energy management
system to minimize the operating cost of building and maximize
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the resiliency of the system. The model considered energy
hubs, distributed generations, and utilized the load shedding
process in contingent conditions. The seasonal pattern for wind
energy, loads, and prices were considered and the uncertainties
of loads and wind energy generation were modeled. However,
the framework did not formulate the consumer comfort level
and real-time pricing process. Vahedipour-Dahraie et al. [21]
proposed a stochastic risk-constrained optimization framework
to maximize the expected profit of the system considering the
demand and supply uncertainties. The conditional value-at-risk
method was utilized to control nondesirable profits due to the
system’s uncertainties. The impacts of consumers’ participation
in DRPs on the values of lost load, conditional value-at-risk, and
expected energy not supplied were investigated. The optimiza-
tion model did not formulate the comfort level of consumers.
Vahedipour-Dahraie et al. [22] introduced a risk-constrained
stochastic framework for resilient operational scheduling of
a system considering DRP. The optimization process mini-
mized the system costs for normal and islanded operating
modes. The value-at-risk metric was utilized to control the risk
of profit variability. The framework did not utilize the real-
time pricing procedure. Further, the implementation of manda-
tory load shedding programs reduced the consumers’ comfort
levels.

Tian and Talebizadehsardari [23] assessed the resiliency of
buildings in extreme conditions considering the electric vehi-
cles commitment, load adjustment, and load curtailment. The
optimization algorithm minimized the building energy costs,
lad curtailment costs, and partial charge of electric vehicles.
The load curtailment program shed the buildings’ load up to
90% based on the fact that the process did not encounter the
comfort level of consumers. Mehrjerdi et al. [24] examined the
tradeoff between efficiency and resiliency of smart buildings.
The building was equipped with energy management systems,
ESS, photovoltaic arrays, and distributed generation. The pro-
posed method minimized the investment and operating costs
and maximized the resiliency of buildings. The model deter-
mined the minimum levels of nonrestored loads and utilized
the load-shedding process. However, the method did not formu-
late the real-time pricing model and consumer comfort level.
Gaikwad et al. [25] presented a predictive control process to
commit the critical loads and ESSs. The optimization algorithm
utilized mixed-integer linear programming to solve the formu-
lated problem. The system was equipped with a photovoltaic
array and ESS and the control method increased the resiliency
of the system. The case study was carried out for a family house
in Florida. However, the proposed model only supplied part of
the loads during emergency conditions and did not study the
comfort level of consumers. Gouveia et al. [26] assessed an
online control process for improving the resiliency of islanded
microgrids that utilized storage devices, PHEVs, and DRPs.
The method controlled the loads to provide primary response
frequency. The proposed methodology did not optimize the real-
time pricing process. The introduced method shed the load to
recover system frequency. Guo et al. [27] proposed a resilience-
oriented stochastic optimization framework considering DRPs.
The worst-case conditional value-at-risk theory was used to
minimize the worst-case cost caused by an external shock. A

stochastic chance-constrained programming model was devel-
oped for the worst-case cost scenario. The proposed model in-
creased the resiliency of the system by about 3.2%. The method
did not examine the real-time pricing process. Hafiz et al. [28]
introduced a distribution service restoration framework based
on a multitime-step dynamic optimization model to achieve grid
resiliency against natural disasters using DRPs. The proposed
model utilized a three-step optimization procedure. In the first
step, the method determined the aggregate controllable loads of
the system. Then, at the second step, the candidate buses were
selected. Finally, at the third step, the load control was performed
using an energy management system. However, the model did
not study the consumer comfort level and real-time pricing
process. Eseye et al. [29] presented a two-stage algorithm for
energy flexibility optimization of smart buildings for day-ahead
and real-time markets. The proposed method considered PHEV,
renewable energy electricity generation, ESS, and DRP. The
model carried out DRP to improve the resiliency of the building.
The process utilized load shedding/curtailment programs that
reduced the comfort level of consumers.

Vahedipour-Dahraie et al. [30] introduced a risk-constrained
stochastic optimization process to maximize the expected profit
of a microgrid considering the uncertainties of price, load, and
intermittent electricity generation. The tradeoffs between the
risk of low profits in worst-case scenarios and system owner
profits were modeled. The results presented that the participation
of responsive loads increased the uncertainties of the system and
more reserves were allocated for higher values of risk-aversion
parameters. The procedure did not examine the real-time pricing
model. Gholami et al. [31] assessed a stochastic programming
model to schedule the energy resources of a resilient microgrid.
The uncertainties of external shocks, market prices, electric
vehicle commitments, and wind turbine electricity generations
were modeled. The output results revealed that the proposed
model increased the value of operating costs and decreased the
expected load shedding costs. However, the model did not study
the real-time pricing and load commitment process.

A framework that solves the optimal resilient DRP integrated
with energy storage considering the consumers comfort levels
in emergency conditions is less frequent in the literature. In
this article, a distributed resilient DRP is proposed to improve
the resiliency of smart homes in emergency conditions and
maximize their comfort levels. The proposed DRP schedules
the power consumptions of smart appliances and the charg-
ing/discharging power of electrical energy storage and utilizes
a dynamic real-time pricing method.

The contributions of this article are as follows.
1) A dynamic real-time pricing method is proposed to de-

termine the optimal values of hourly electricity prices
and schedule the electricity consumption of smart home
appliances and energy storage systems commitment.

2) The algorithm considers the interaction between
SHEMSs, smart appliances, and the upward distribution
system in normal and emergency operating conditions,
taking into account the comfort level of consumers.

3) The proposed model immediately supplies the consumers’
appliances after a power outage in the system without
requiring external resources.
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4) The optimization process determines the worst-case
scenarios of operating conditions and in the case of
emergency conditions; there is not any load shedding or
curtailment program.

5) Real samples of Southern California households are used
to model smart appliances and ESSs. The results indicate
that the proposed distributed DRP method successfully
reduced the distribution system and consumers costs and
enhanced the resiliency of smart homes in both emergency
and normal conditions.

The rest of this article is organized as follows. The proposed
framework is formulated in Section II. In Section III, the solution
algorithm is introduced. The simulation data is presented in
Section IV and the simulation results of real samples are assessed
in Section V. Finally, conclusion is presented in Section VI.

II. PROBLEM MODELING AND FORMULATION

It is assumed that a utility company supplies J residential
consumers in the smart grid infrastructure. The simulation in-
terval consists of 24 equal periods that t represent each of the
simulation periods t ∈ T = {1, 2, . . . , 24}. The model of the
utility company, residential consumers, SHEM, and ESS are
presented in the following sections.

A. Model of Utility

The utility company minimizes the costs of energy purchased
from the wholesale market. It is assumed that the utility com-
pany’s cost function Cost(p(t)) is a convex function of p for
time t, in which p is the active power that the utility purchases
from the wholesale market. The utility company determines
the optimal real-time energy prices (Pr(t), t ∈ T ) by running
a dynamic real-time pricing program at the beginning of each
day in cooperation with the SHEMSs of households.

B. Model of Residential Consumers

Each consumer i ∈ J has a set of smart home devices D,
and d ∈ D identifies each device. The power and energy con-
sumption of device d that is owned by the consumer i at time
t equal to pi,d(t) and Ei,d, respectively. The Weli,d(pi,d(t))is
the welfare of the consumer i that he/she derives from using
appliance d at time t. In other words, Weli,d(pi,d(t)) equals
cost of electricity consumption that the consumer i pays to the
utility for using the device d at time t. Thus, the higher value
of Weli,d(pi,d(t))corresponds to the higher value of the comfort
level of the consumer i. Hence,CLi can be defined as the comfort
level of consumer i that equals the net welfare of the consumer.
The net welfare of the consumer equals the gross welfare of
the consumer minus his/her energy costs. The comfort level is
formulated in detail in Section II-G. The consumers determine
the comfort levels using their SHEMSs.

C. Model of SHEMSs

At the beginning of each day, each SHEMS participates in the
utility company’s pricing program to determine the optimal real-
time electricity prices. Then, the SHEMS executes distributed

resilient DRP process considering the optimal real-time electric-
ity prices and the system determines the initial schedule of power
consumptions of home appliances and charging/discharging
power of ESS.

D. Model of Smart Home Appliances

It is assumed that each consumer uses five smart appliances
consist of: d ∈ D = {AC,PHEV,W,L,Ent}.

The smart appliances are air conditioning (AC) system,
PHEV, washing-drying machine (W), lighting system (L), and
entertainment system. The models of appliances are presented
as the following formulations.

1) Air Conditioning System: The AC system controls the
inside temperature of the consumer’s house. Tempini (t) and
Tempouti (t) are the inside and outside temperatures of the
consumer house. The inside temperature of the consumer house
i at time t is determined by

Tempini (t) = Tempini (t− 1) + α(Tempouti (t)

−Tempini (t− 1)) + βpi,AC(t) (1)

where α is the heat transfer between the indoor and out-
door environments of the house, and β is the thermal effi-
ciency of the air conditioner. The negative value of β denotes
that the air conditioner is a cooling system. Ti,AC is a set
of times that consumer i cares about the inside temperature
of the home. There is a desired temperature range for each
consumer[Tempcomf,min

i ,Tempcomf,max
i ] and the indoor tem-

perature should be within the following range:

Tempcomf,min
i ≤ Tempini (t) ≤ Tempcomf,max

i ∀i ∈ J. (2)

Further, the preferred temperature for each consumer is de-
fined by Tempcomf

i , which is determined by each consumer.
Further, the air conditioning system can consume the maximum
values of power pmax

i,AC. Thus

0 ≤ pi,AC(t) ≤ pmax
i,AC ∀t ∈ T ∀i ∈ J. (3)

For intervals that the consumers do not care about the tem-
perature inside their home T\Ti,AC

pi,AC(t) = 0 ∀t ∈ T\Ti,AC∀i ∈ J. (4)

The welfare that consumer i derives from using of the AC
system can be written as a differentiable and concave function
of Tempini (t)

Weli,AC = ai,AC − bi,AC(Tempini (t)− Tempcomf
i )2 ∀i ∈ J

(5)

where ai,AC and bi,AC are positive constants that are selected
by consumers based on their preferences. When the difference
between the indoor temperature and the desired temperature
increases, the consumer welfare, and consequently, consumer
comfort decreases.

2) PHEV: The consumers only care about their PHEVs to be
charged to a certain level within a specified time (Ti,PHEV).

There is a maximum charge power pmax
i,PHEV for each PHEV

0 ≤ pi,PHEV(t) ≤ pmax
i,PHEV ∀t ∈ Ti,PHEV ∀i ∈ J. (6)

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on February 17,2022 at 11:33:20 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TEHRANI et al.: DRP INTEGRATED WITH ELECTRICAL ENERGY STORAGE SYSTEMS FOR RESIDENTIAL CONSUMERS 5

At times when electric cars are not at home T\Ti,PHEV

pi,PHEV(t) = 0 ∀t ∈ T\Ti,PHEV ∀i ∈ J. (7)

Emin
i,PHEV and Emax

i,PHEV denote the minimum and maximum
values of total energy for charging of PHEV, respectively,

Emin
i,PHEV ≤

∑
t∈Ti,PHEV

(Effi,PHEVpi,PHEV(t))

≤ Emax
i,PHEV ∀i ∈ J (8)

where Effi,PHEV determines the battery efficiency of each
PHEV according to the energy losses and current leakage of the
charging process. The total welfare that consumer i drives from
charging the PHEV depends on the total stored energy of the
vehicle and is defined as a differentiable and concave function
of Ei,PHEV as follows:

Weli,PHEV(Ei,PHEV) = ai,PHEVEi,PHEV + bi,PHEV (9)

where ai,PHEV and bi,PHEV are positive constants that the
consumer adjusts according to his/her preferences. When the
battery energy level of the PHEV at the end of the day in-
creases, consumer welfare, and consequently, consumer comfort
increases.

3) Washing-Drying Machine: It is assumed that the con-
sumers maximize the cleanliness of their clothes as much as pos-
sible using the washing-drying machines. Therefore, the welfare
of consumers increases as their clothes become cleaner. Ti,W is
the set of times that the consumer can use his/her washing-drying
machine. The maximum value of power consumption for the
washing-drying machine is formulated as

0 ≤ pi,W (t) ≤ pmax
i,W ∀t ∈ Ti,W ∀i ∈ J. (10)

Further, when the consumers do not use their washing-drying
machines T\Ti,W , the value of power consumption can be
written as

pi,W (t) = 0 ∀t ∈ T\Ti,W ∀i ∈ J. (11)

The minimum and maximum values of washing-drying en-
ergy consumption are Emin

i,W and Emax
i,W , respectively. Thus, the

aggregated power consumption of washing-drying machine can
be presented by

Emin
i,W ≤

∑
t∈Ti,W

pi,W (t) ≤ Emax
i,W ∀i ∈ J. (12)

The total welfare that consumer i derives from using his/her
washing-drying machine depends on the total energy that this
appliance consumes. Thus, welfare can be defined as a differen-
tiable and concave function of Ei,W as follows:

Weli,W (Ei,W ) = ai,WEi,W + bi,W (13)

where ai,W and bi,W are positive constants that consumer ad-
justs these parameters according to his/her preference. Based on
the proposed formulation, the welfare of the consumer enhances
as the energy consumption of the washing-drying machine in-
creases and the consumer’s clothes becomes cleaner.

4) Lighting System: It is assumed that the Ti,L parameter
indicates the hours that the consumer i keeps turning on his/her
lighting system. The value of power consumption of the lighting

system to achieve the desired brightness is defined as pLight.comf
i .

Further, the maximum power consumption of the lighting system
is defined aspmax

i,L . Thus, the power consumption of lighting
system can be written as

0 ≤ pi,L(t) ≤ pmax
i,L ∀t ∈ Ti,L ∀i ∈ J. (14)

Hence, when the lighting system is turned off its power
consumption can be presented as

pi,L(t) = 0 ∀t ∈ T\Ti,L ∀i ∈ J. (15)

The consumer welfare that he/she derives from using his/her
lighting system at time t ∈ Ti,L is formulated as a differentiable
and concave function of pi,L(t)

Weli,L(pi,L(t)) = ai,L − bi,L(pi,L(t)− pLight.comf
i )2 (16)

where ai,L and bi,L are positive constants that the consumer
adjusts according to his/her preferences. When the difference
between the obtained and the desired brightness increases, the
consumer welfare and comfort decrease.

5) Entertainment System: The entertainment system in-
cludes a TV, game console, and computer. The desired
power consumption of the entertainment system is presented
aspEnt.comf

i (t). It is assumed that the Ti,Ent parameter indi-
cates the hours that the consumer i keeps turning on his/her
entertainment system. The maximum power consumption of
the entertainment system is defined aspmax

i,Ent. Thus, the power
consumption of entertainment system can be written as

0 ≤ pi,Ent(t) ≤ pmax
i,Ent, ∀t ∈ Ti,Ent ∀i ∈ J. (17)

When the entertainment system is turned off, its power con-
sumption can be presented as

pi,Ent(t) = 0 ∀t ∈ T\Ti,Ent ∀i ∈ J. (18)

The consumer welfare that he/she derives from using his/her
entertainment system at time t ∈ Ti,Ent is formulated as a dif-
ferentiable and concave function ofpi,Ent(t)

Weli,Ent(pi,Ent(t)) = ai,Ent

− bi,Ent(pi,Ent(t)− pEnt.comf
i (t))2 (19)

where ai,Ent and bi,Ent are positive constants that consumer
adjusts them according to their preferences. When the difference
between the obtained and the desired power consumption of
the entertainment system increases, the consumer welfare and
comfort decrease.

E. Model of ESS

The electrical energy storage facility is utilized to enhance the
flexibility and resiliency of the system. The integration of ESS
with the DRP enables the consumer to use his/her appliances in
emergency conditions.

The ESS capacity energy level and state of charge (SOC) are
denoted by Capi and soci(t), respectively. Further, the charge
and discharge powers are pchgi (t) and pdchgi (t), respectively.

The cost of ESS is presented by

BCosti(p
chg
i (t) + pdchgi (t)). (20)
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The SOC of the ESS is determined by

soci(t) =
t∑

τ=1

(rtEffi.p
chg
i (τ) + pdchgi (τ)) + soci(0) (21)

where soci(0) is the ESS SOC at the beginning of the simulation
interval. rtEff denotes the round trip efficiency of each con-
sumer’s ESS. The maximum values of charging and discharging
power are pchg,max

i , pdchg,max
i , respectively. Thus, the charging

and discharging constraints can be written as

0 ≤ pchgi (t) ≤ pchg,max
i ∀t ∈ T ∀i ∈ J (22)

pdchg,max
i ≤ pdchgi (t) ≤ 0 ∀t ∈ T ∀i ∈ J. (23)

Further, the maximum value of soc is presented by

0 ≤ soci(t) ≤ Capi ∀t ∈ T ∀i ∈ J. (24)

The cost function of electrical energy storage is defined as a
convex function of (pchgi (t) + pdchgi (t)) that can be formulated
as

BCosti(p
chg
i (t) + pdchgi (t))

= σ1

∑
t∈T

(pchgi (t) + pdchgi (t))
2

− σ2

23∑
t=1

((pchgi (t) + pdchgi (t))(pchgi (t+ 1)

+ pdchgi (t+ 1)))

+ σ3

∑
t∈T

(min(soci(t)− γCapi, 0))
2 + σ4 (25)

where, σ1, σ2, and σ3 are positive constants. The first term of
(25) presents the destructive effect of fast charging and dis-
charging on the ESS. The second term denotes that if the values
of (pchgi (t) + pdchgi (t)) and (pchgi (t+ 1) + pdchgi (t+ 1)) have
different signs, an additional cost will be imposed. The third
term presents that the available energy level of ESS should be
greater than a predefined minimum value, which is denoted by
γ. Finally, the fourth term (σ4) is a function of the calendar life
of the ESS.

F. Cost Function of the Utility Company

It is assumed that the cost function of the utility company can
be presented as a quadratic function

Cost(p(t))

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cc1(p(t))
2 + cb1(p(t)) + ca1; 0 ≤ p(t) ≤ X1

cc2(p(t))
2 + cb2(p(t)) + ca2;X1 ≤ p(t) ≤ X2

.

.

.

ccm(p(t))2 + cbm(p(t)) + cam;Xm−1 ≤ p(t) ≤ Xm

(26)

where ccm > ccm−1 > . . . > cc1 > 0.

Fig. 1. Proposed algorithm flowchart.

G. Objective Function of Consumer

It is assumed that the consumer utilizes smart appliances to
maximize his/her comfort level. Thus, the objective function of
each consumer is defined as

maxCLi = max
∑
t∈T

(
∑
d∈D

weli,d(pi,d(t)))

−BCosti(p
chg
i (t), pdchgi (t))−

∑
t∈T

Pr(t)pi(t)

(27)

where Pr(t) is the electricity price at time t.

III. SOLUTION ALGORITHM OF DYNAMIC REAL-TIME PRICING

AND DRP

As shown in Fig. 1, at first, the utility company performs an
hourly demand forecast p(t) ∀t ∈ T . Then, the utility company
determines the electricity price of each hour to meet the demand
of consumers based on

n

Pr(t) = cost′
(∑

i

pn−1
i (t)

)
∀t ∈ T (28)

where pn−1
i (t) is the optimal power consumption of consumer

i at time t in the (n-1) th iteration of the algorithm. The pn−1
i (t)

is determined by the SHEMS of the consumer i to maximize
his/her welfare. Further, Prn(t) presents the electricity price at
time t in the nth iteration of the algorithm.

The SHEMS calculates the optimal values of power consump-
tion of consumer appliances and charging /discharging power of

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on February 17,2022 at 11:33:20 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TEHRANI et al.: DRP INTEGRATED WITH ELECTRICAL ENERGY STORAGE SYSTEMS FOR RESIDENTIAL CONSUMERS 7

ESS by solving the following equations, respectively,

pni,d(t) = pn−1
i,d (t) + γ

(
∂Weli,d(p

n−1
i,d (t))

∂pn−1
i,d (t)

− Prn(t)

)

∀t ∈ Ti,d ∀i ∈ J ∀d ∈ D (29)

(pchg,ni (t) + pdchg,ni (t)) = (pchg,n−1
i (t) + pdchg,n−1

i (t))

− γ

(
∂BCosti(p

chg,n−1
i (t) + pdchg,n−1

i (t))

∂(pchg,n−1
i (t) + pdchg,n−1

i (t))
+ Prn(t)

)

∀t ∈ T ∀i ∈ J (30)

where pni,d(t) is the power consumption of appliance dof the
consumer i at time t and at the nth iteration of the algorithm.
Further, pchg,ni (t) and pdchg,ni (t) are the values of charging and
discharging power of the ESS of the consumer i at time t and
at the nth iteration of the algorithm, respectively. γ is a constant
step size. Then, the consumer reports his/her total power de-
mand pni (t) ∀t ∈ T ∀i ∈ J to the utility company through smart
meter infrastructure. This optimization process is repeated until
convergence is achieved.

The main advantages of the proposed algorithm are: the utility
company does not need to have the detailed information of the
consumers’ consumption and the hourly data of total consump-
tion of consumer is adequate for simulating process; the hourly
data of total consumption of consumer is more accurate than
the previous information of the consumer’s consumption; and
the utility company does not have to solve complex equations to
determine the optimal prices.

IV. SIMULATION INPUT DATA

In this article, at the first step, 20 households were simulated in
a neighborhood in the Southern California area. Based on [32],
[33] data, there were 5.07 persons per household (PPH) for the
2009 year in the selected area. Further, the annual population
growth rate was about 0.61% [32].

Thus, it was assumed that each of these households compro-
mised six people for 2021 considering the population growth
rate. Then, the sensitivity analysis for the number of households
and number of PPH was performed. The simulation was carried
out for a typical summer day. Based on the International Energy
Conservation Code (IECC) climate zones, as shown in Fig. 2, the
United States is divided into eight different climatic zones and
the California state is located in the third zone. The hourly out-
side temperature Tempouti (t) for a typical summer day is shown
in Fig. 3. The households were divided into two categories:
The first group of households are J1 = {i1, i2, i3, . . . , i10}
that the families were at home all day. The second group are
J2 = {i11, i12, i13, . . . , i20}, which the families were not at
home for 08:00–18:00 h. It was assumed that the area of each
house was 250 square meters and all the houses were single-level
buildings with a concrete slab floor, which removed up to 215.2
BTU of heat for every square meter of floor area. Thus, for
each house, it was considered that an air conditioning system
with a capacity of 53800 BTU was needed and each household
used the American Standard Platinum 20 Series TAM 9 model

Fig. 2. IECC climate zones map [34].

Fig. 3. Hourly temperature outside of the simulated houses [35].

TABLE I
COEFFICIENTS OF THE WELFARE FUNCTIONS

4A7V0060A1 central air conditioning system with the capacity
of 54000 BTU and the energy efficiency ratio of 12.75.

It was assumed that the air conditioning system was deter-
mined as the first rank of the consumers’ priority list based on the
fact that the simulation was run for a typical summer day. Then,
the PHEV and washing-drying machine were chosen as the
second and third ranks of the list. Finally, the last priorities were
the lighting system and the entertainment system. Therefore,
the coefficients of the welfare functions for different appliances
were selected as given in Table I. Table II gives the input data
for the simulation of smart home appliances and ESS. The
desired amount of power consumption for the entertainment
system is given in Table III. As shown in Fig. 4, the 18-bus
IEEE test system was considered as a part of the utility that
the smart homes were allocated. The priority list numbers were
determined by the consumers. The more importance was given to
the home appliance that was the higher priority for that consumer
in normal and emergency conditions.

V. SIMULATION RESULTS

The simulation was carried out using GAMS optimization
software version 25.1.3 and MATLAB (MATPOWER for OPF)
on a computer system with Intel Core i7-5500 U CPU @
2.40 GHz 2.40 GHz processor and 8 GB of memory. The
simulation time for 20 households was about 19 s.
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TABLE II
DATA FOR THE SIMULATION OF THE SMART HOME APPLIANCES AND ESS

TABLE III
CONSUMERS’ DESIRED TIME OF USING EACH DEVICE FOR THE

ENTERTAINMENT SYSTEM

Fig. 4. 18-bus IEEE test system topology.

Fig. 5. Demand of energy of consumers for different steps under normal
operating conditions.

TABLE IV
RESULTS OF THE LOWEST, HIGHEST, AND AVERAGE PRICES OF ELECTRICITY

CASES FOR NORMAL OPERATING CONDITIONS

A. Normal Operation Conditions

Under these operating conditions, the proposed model was
initially simulated without DRP/ESS and the consumers maxi-
mized their welfare regardless of electricity prices. In the next
case, the DRPs were applied and the consumers reacted to
real-time electricity prices through the DRP. In the final case of
normal operation conditions, the DRPs with the home ESSs were
integrated. Thus, three cases were considered for the normal
operation conditions.

1) Case 1: The DRP and ESS were not considered.
2) Case 2: The DRP without ESS was considered.
3) Case 3: The DRP was integrated with ESS.
Fig. 5 shows the total demand of energy of consumers for

different cases of simulation under normal operating conditions.
As shown in Fig. 5, the proposed DRP significantly reduced the
peak of demand and effectively flattened the load shape. Table IV
gives the results of the lowest, highest, and average prices
of electricity cases for normal operating conditions. Table V
gives a brief comparison of three cases of the normal operating
conditions. According to Table V, the real-time pricing method
effectively increased the load factor. The proposed method not
only reduced the energy purchased cost for the utility company
but also increased the comfort level of the consumers.

Besides, the integration of ESS with the DRP increased the
comfort level of each consumer and the load factor of the system.
It also effectively reduced the cost of the utility company and
the energy cost of consumers. For the third case, the total energy
demand of consumers’ increased, but the energy purchased costs
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TABLE V
BRIEF COMPARISON FOR THREE CASES OF THE NORMAL

OPERATING CONDITIONS

of the utility and consumers were reduced. Further, for the third
case, the welfare of consumers was increased.

B. Emergency Operating Conditions

For emergency operating conditions, sixty-nine scenarios
were considered to model the power supply disruptions every
24 h of the day

S = {s1,1, s1,2, s1,3, s2,1, s2,2, s2,3, . . . , s23,1, s23,2, s24,1}.
For example, s22,3 presents the scenario that the power supply

disruption occurred for the twenty-second hour of the day (from
21:00 to 22:00) and lasted for three hours. The set of times when
the power supply was disconnected is presented: Ts ∀s ∈ S for
each scenario.

The following conditions were considered to model the emer-
gency conditions.

1) The ESS charging power was zero during the hours when
the power supply from the network to consumers was
disconnected

pchgi (t) = 0 ∀t ∈ Ts ∀i ∈ J. (31)

2) When the utility power supply disconnected, the power
consumption of the household appliances equaled to the
discharge power of the household ESS

pdchgi (t) +
∑
d∈D

pi,d(t) = 0 ∀t ∈ Ts ∀i ∈ J. (32)

The System Average Interruption Duration Index (SAIDI) for
these emergency conditions was considered two hours according
to [36]. The SAIDI values for less destructive and more destruc-
tive emergency cases were considered one hour and three hours,
respectively. Numerous emergency scenarios were generated
and their impacts on the utility system and consumers were
analyzed.

The worst-case emergency scenarios are as follows.
1) Worst-Case Scenario 1: Supply interruption for 11:00–

14:00.

Fig. 6. Demand of energy of the first category of consumers’ household for
the worst-case scenario 1.

Fig. 7. Demand of energy of the second category of consumers’ household
for the worst-case scenario 1.

2) Worst-Case Scenario 2: Supply interruption for 16:00–
19:00.

Figs. 6 and 7 show the demand of energy of the first and
second categories of households for the worst-case scenario 1,
respectively. As shown in Fig. 6, the power supply interruption
occurred between 11:00 and 14:00 h, when the consumer was at
home. Despite the high power consumption of the AC system,
the proposed DRP committed the EES to increase the comfort
level of the consumer that utilized his/her entertainment system.
According to Fig. 7, the power supply interruption occurred
when the consumer was not at home. Therefore, the power
outage did not affect the second type of residential consumers.
However, due to the large difference between the outdoor tem-
perature and the desired temperature, the power consumption of
the AC system was high. Thus, this scenario was known as the
worst-case emergency scenario. Fig. 8 depicts the aggregated
demand of energy of the first and second categories of house-
holds for the worst-case scenario 1. As shown in Fig. 8, due to the
interruption of power supply, the aggregated demand of energy
of consumers was zero for 11:00–14:00, but the air conditioning
and entertainment systems were active.

In this emergency condition, the ESS supplied other appli-
ances of consumers. Despite the high electrical energy con-
sumption of the air conditioning system, consumers utilized their
entertainment system during emergency condition hours.

Figs. 9 and 10 present the demand of energy of the first and
second categories of households for the worst-case scenario 2,
respectively. As shown in Fig. 9, the power supply interruption
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Fig. 8. Aggregated demand of energy of the consumers’ household for the
worst-case scenario 1.

Fig. 9. Demand of energy of the first category of consumers’ household for
the worst-case scenario 2.

Fig. 10. Demand of energy of the second category of consumers’ household
for the worst-case scenario 2.

occurred between 16:00 and 19:00 h for the second scenario. The
ESS supplied the consumer’s power demand. By comparing this
scenario and the first worst-case scenario, it can be concluded
that the AC system energy consumption was decreased. Accord-
ing to Fig. 10, when the power supply interruption occurred, the
consumer was not at home from 16:00 to 18:00 h. However, the
difference between the indoor temperature and the consumer’s
desired temperature was high base on the fact that the AC system
was off before 16:00 h. Thus, the AC system energy consumption
was high and this scenario was one of the worst-case scenarios.
Gradually, as the indoor temperature decreased between 18:00
and 19:00 h, the AC consumption decreased, and the consumer

Fig. 11. Aggregated demand of energy of the consumers’ household for the
worst-case scenario 2.

used the lighting system and entertainment system by using the
proposed DRP integrated with ESS.

Fig. 11 depicts the aggregated demand of energy of the first
and second categories of households for the worst-case scenario
2. By comparing Figs. 8 and 11, it can be concluded that
the proposed model optimized the DRP process with no load
shedding or curtailment, which did not reduce the comfort level
of the consumers.

Thus, the proposed model considered both the priority and
the desired comfort level of the consumers, not only for normal
operating conditions but also in emergency operating conditions.
It is important to note that despite an emergency condition
that had disconnected the power delivery to the consumers,
the proposed model successfully supplied the consumers and
they utilized their home appliances. The results showed that
the proposed DRP integrated with the ESS using the real-time
pricing method controlled the demand and flattened the load
shape of the consumers.

C. Sensitivity Analysis

A sensitivity analysis was carried out to assess the impacts of
the number of households on the simulation process outputs.
For the sensitivity analysis, the number of households was
considered 20, 50, and 100, respectively. Further, for each of
these scenarios, the number of PPH was assumed three and
six. For the three PPH case, the simulation input data were
readjusted. Thus, the AC system and electricity consumption of
home appliances were reduced. Hence, the worst-case scenario
was the supply interruption from 21:00 to 24:00 for this case.

As given in Table VI and for three PPH, when the number
of households increased, the load factor, peak load, and the
total load increased. The costs of utility for normal conditions
were decreased by about 14.09% and 29.84% for 20 and 100
households, respectively. The total payments of consumers for
normal conditions were decreased by about 19.37% and 30.49%
for 20 and 100 households, respectively.

Further, the consumers comfort level for normal conditions in-
creased by about 3.32% and 78.64% for 20 and 100 households,
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TABLE VI
COMPARISON BETWEEN THE NORMAL OPERATION MODE, WORST-CASE

SCENARIOS, AND THE AVERAGE VALUES OF VARIABLES IN

EMERGENCY CONDITIONS

respectively. Finally, the social welfare for normal conditions in-
creased by about 1.37% and 11.03% for 20 and 100 households,
respectively.

By comparing the values of Table VI for the three PPH
and 20 and 100 households, it can be concluded that the costs
of utility for emergency conditions were decreased by about
1.44% and 30.81% for 20 and 100 households, respectively.
The total payments of consumers for emergency conditions were
decreased by about 2.03% and 28.90% for 20 and 100 house-
holds, respectively. Further, the consumers comfort level for
emergency conditions increased by about 0.31% and 117.54%
for 20 and 100 households, respectively.

Finally, the social welfare for emergency conditions increased
by about 0.12% and 12.40% for 20 and 100 households, re-
spectively. By comparing the values of Table VI for 6 PPH and
100 households, it can be concluded that the costs of utility
in normal and emergency conditions were decreased by about
33.77% and 30.92%, respectively. The total payments of con-
sumers in normal and emergency conditions were decreased by
about 34.26% and 31.31%, respectively. Further, the consumers
comfort level for normal and emergency conditions increased
by about 146.78% and 110.2%, respectively. Finally, the social
welfare for normal and emergency conditions increased by about
46% and 49.06%, respectively.

VI. CONCLUSION

This article presented a resilient distributed demand response
process that was integrated with electrical storage systems in the
SHEMS. The results for 100 households with six PPH in normal
operating conditions can be presented as the comfort level of
the consumers was increased by about 146.78%; meanwhile,
the energy procurement costs of consumers were reduced by
about 34.26%; the social welfare was increased by about 46%;
and the utility costs from wholesale were reduced by about
33.77%. The proposed model results for 100 households with
six PPH in the case of emergency operating conditions can be
presented as the consumers were immediately supplied after a
power outage; based on the priority and the desired comfort level
of each consumer, the load commitment was performed; there
was no load shedding or curtailment process in the emergency
conditions; the utility cost was reduced by about 30.92%; the
consumers’ comfort level was increased by about 110.2%; the
social welfare was increased by about 49.06%; and the value of
total payments of consumers was decreased by about 31.31%.
It can be concluded that the proposed model successfully im-
proved the load factor of the distribution system and enhanced
the resiliency of smart homes. The costs of the utility com-
pany and total payments of consumers were highly reduced
in normal and emergency conditions. The method had better
performance for the higher number of PPH and the social welfare
and consumer comfort levels were increased for the higher
number of PPH. Finally, the comfort levels of consumers were
highly increased in the normal and emergency conditions. The
authors are working on the DER commitment process that can
be optimally dispatched through the proposed model as future
work.
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