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Abstract 

Energy hub systems improve energy efficiency and reduce emissions due to the coordinated 

operation of different infrastructures. Given that these systems meet the needs of customers for 

different energies, their optimal design and operation is one of the main challenges in the field of 

energy supply. Hence, this paper presents a two-stage stochastic model for the integrated design 

and operation of an energy hub in the presence of electrical and thermal energy storage systems. 

As the electrical, heating, and cooling loads, besides the wind turbine’s (WT’s) output power, are 

associated with severe uncertainties, their impacts are addressed in the proposed model. Besides, 

demand response (DR) and integrated demand response (IDR) programs have been incorporated 

in the model. Furthermore, the real-coded genetic algorithm (RCGA), and binary-coded genetic 

algorithm (BCGA) are deployed to tackle the problem through continuous and discrete methods, 

respectively. The simulation results show that considering the uncertainties leads to the installation 

of larger capacities for assets and thus a 8.07% increase in investment cost. The results also indicate 

that the implementation of shiftable IDR program modifies the demand curve of electrical, cooling 
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and heating loads, thereby reducing operating cost by 15.1%. Finally, the results substantiate that 

storage systems with discharge during peak hours not only increase system flexibility but also 

reduce operating cost. 

Keywords: Energy Hub Planning; Genetic Algorithm; Integrated Demand Response Programs; 

Wind Turbine; Energy Storage Systems; Stochastic Programming. 

Nomenclature 

Acronyms  
WT Wind Turbine 
DR Demand Response 
IDR Integrated Demand Response 
RCGA Real-Code Genetic Algorithm 
BCGA Binary-Code Genetic Algorithm 
EES Electrical Energy Storage 
TES Thermal Energy Storage 
CHP Combined Heat and Power 
PV Photovoltaic 
MT Microturbine 
EH Electrical Heater 
EHP Electric Heat Pomp 
AC Absorption Chiller 
DER Distributed Energy Resource 
RER Renewable Energy Resource 
EV Electric Vehicle 
MCS Monte Carlo Simulation  
MILP Mixed-Integer Linear Programming 
MINLP Mixed-Integer Nonlinear Programming 
 
Sets  

 Index of time slots (h) ݐ
߱ Index of seasons  
 Index of scenarios ߛ
k Index of demand response programs 
݁݉ Index of emissions 
 
Scalars  

 Equivalent loss factor (߱,ߛ)ܨܮܧ
௘௘்ߟ  Efficiency factor of the transformer 
௘௘஼௢௡ߟ  Efficiency factor of the ac/ac converter 
௘௛ாு௉ߟ  Efficiency factor of the EHP 
௘௖ாு௉ߟ  Efficiency factor of the EHP 



௚௘஼ு௉ߟ  Electrical efficiency factor of the CHP unit 
௚௛஼ு௉ߟ  Heating efficiency factor of the CHP unit 
௚௛஻ߟ  Efficiency factor of the Boiler  
௘௛ாுߟ  Efficiency factor of the heater 
ாாௌ/்ாௌߟ
௖௛  ESS/TES system’s charging efficiency 
ாாௌ/்ாௌߟ
ௗ௜௦  ESS/TES system’s discharging efficiency 
 ௦௛௨௣ Load participation factor for shift up DRܨܲܮ
௦௛ௗ௢ܨܲܮ  Load participation factor for shift down DR 

ாாௌ/்ாௌߙ
ூ௡௜௧௜௔௟  The energy, available in the EES/TES system at the beginning of 

scheduling (kWh) 

ாாௌ/்ாௌߙ
ி௜௡௔௟  The energy, available in the EES/TES system at the end of scheduling 

(kWh) 
ாாௌ/்ாௌߙ
௅௢௦௦  Loss factor of EES / TES 

ாாௌ/்ாௌߙ
௠௜௡,௖௛  Minimum charging factor relating to the EES/TES system 

ாாௌ/்ாௌߙ
௠௔௫,௖௛  Maximum charging factor relating to the EES/TES system 

௘௠஼ு௉ܨܧ  Emission coefficient of the CHP 
௘௠஻ܨܧ  Emission coefficient of the Boiler 
 ௖௜ Cut-in speed of the WT (km/h)ݒ
௖௢ݒ  Cut-out speed of the WT (km/h) 
 ௥ Rated speed of the WT (km/h)ݒ
 
Parameters  

௘ܲ௖
ூ௡௦௧௔௟௟(ܿ) Installation candidates of each asset (kW) 

 The probability associated with each scenario of load demand (ܿݏ)ߩ
߮(߱) The number of days of each season 

௘ߨ
ே௘௧,஻௨௬(߱,  The cost, imposed to the system due to transacting power with the utility (ݐ

grid ($/kWh) 
௘ߨ
ே௘௧,ௌ௘௟௟(߱,  The revenue, obtained by exporting power to the utility grid ($/kWh) (ݐ

௚ே௘௧ߨ  The price of natural gas ($/kWh) 
 ௘ௐ The cost due to wind power generation ($/kWh)ߨ
௘ாேௌߨ  The ENS cost ($/kWh) 
 ௘௠ The cost imposed due to emissions ($/kg)ߨ
 ௘ௌ The operating of the EES system ($/kWh)ߨ
 ௛ௌ The operating cost of the TES ($/kWh)ߨ
 ௘௖ Investment cost, relating to the assets ($/kW)ܥܫ
௘ܲ(ߛ, ߱,  Power demand before applying the DR (kW) (ݐ
,ߛ)ݒ ߱,  Wind speed (km/h) (ݐ
 
Variables  

 ு௨௕ Total cost of hub ($/year)ܥܶ
 ு௨௕ Investment cost of hub ($/year)ܥܫ
 ு௨௕ Operating cost of hub ($/year)ܥܱ
௘௖ܥ  Installed capacity for each asset (kW) 



௘ܲ௖
௠௔௫ Maximum capacity of each asset (kW) 
௘ܲ
ே௘௧,஻௨௬(ߛ, ߱,  The amount of power imported from the utility grid (kW) (ݐ
௘ܲ
ே௘௧,ௌ௘௟௟(ߛ, ߱,  The amount of power exported to the utility grid (kW) (ݐ
௘ܲ
ௐ(ߛ, ߱,  Power generated by the wind turbine (kW) (ݐ
௚ܲ
ே௘௧,஼ு௉(ߛ, ߱,  The amount of gas consumed by the CHP unit (kW) (ݐ
௚ܲ
ே௘௧,஻(ߛ, ߱,  The amount of  gas consumed by the boiler (kW) (ݐ
௘ܲ
௖௛(ߛ, ߱,  Charging power of the EES system (kW) (ݐ
௘ܲ
ௗ௜௦(ߛ,߱,  Discharging power of the EES system (kW) (ݐ
௛ܲ
௖௛(ߛ, ߱,  Charging power of the TES (kW) (ݐ
௛ܲ
ௗ௜௦(ߛ,߱,  Discharging power of the TES (kW) (ݐ
௘ܲ
ாேௌ  Energy not served (kW) 
௚ܲ
ே௘௧(ߛ, ߱,  Imported natural gas (kW) (ݐ

ாாௌ/்ாௌܧ
ௌ ,ߛ) ߱,  Energy stored in EES/TES (kWh) (ݐ

ாாௌ/்ாௌܧ
௅௢௦௦  Losses of  EES/TES system (kW) 
ாܲாௌ/்ாௌ
ௗ௜௦  Discharging power of the ESS/TES system (kW) 
௘ܲ,௛,௖
ା ,ߛ) ߱,  Shifted-up load by DR (kW) (ݐ
௘ܲ,௛,௖
ି ,ߛ) ߱,  Shifted-down load by DR (kW) (ݐ
௛ܲ
ாு௉(ߛ, ߱,  Heating generation of EHP (kW) (ݐ
௖ܲ
ாு௉(ߛ, ߱,  Cooling power generation by the EHP (kW) (ݐ
௘ܲ
ாு  The amount of power consumed by the heater (kW) 
௛ܲ
஺஼(ߛ,߱,  Heat consumed by absorption chiller (kW) (ݐ

்ܲ௠௔௫ The size of the transformer (kW) 
 
Binary Variables  

,ߛ)ே௘௧,஻௨௬ܫ ߱,  Binary variable, associated with buying power (ݐ
,ߛ)ே௘௧,ௌ௘௟௟ܫ ߱,   Binary variable, associated with selling power (ݐ
௛ாு௉ܫ  Binary variable determining the heating operation mode of the EHP 
௖ாு௉ܫ  Binary variable determining the cooling operation mode of the EHP 
௘ܫ
௦௛௨௣ Binary variable relating to the shift up DR 
௘௦௛ௗ௢ܫ  Binary variable relating to shift down DR 
 ௘௖(ܿ) Binary variable of the candidateܫ
ாாௌ/்ாௌܫ
௖௛  Binary variable showing the charging status of the EES/TES system 
ாாௌ/்ாௌܫ
ௗ௜௦  Binary variable, showing the discharging status of the EES/TES system 

 

1. Introduction 

1.1. Motivation 

Multi-carrier energy systems have been introduced to power systems as “energy hub” [1]. These 

energy networks not only enhance the power system reliability and stability, but also lead to 



reducing the operating costs compared to the individual operation [2]. Besides, the coordinated 

operation of the energy hub systems and renewable energies caused energy hub systems to help to 

reduce emissions drastically.  

An energy hub includes the generation, energy storage, and conversion assets. The generation 

assets of electrical energy in the hub comprise renewable energy resources (RERs) like solar 

photovoltaic (PV) panels and WTs, as well as microturbines (MT’s), and combined heat and power 

(CHP) generation technology. Besides, boiler, electric heater (EH), electric heat pump (EHP), 

absorption chillers (ACs), and other assets, are utilized to supply electrical, cooling, and heating 

loads. Electrical, thermal, or cooling energy storage systems are available in hub as well. Owing 

to the simultaneous impacts of electrical, heating, and cooling loads and various generation and 

conversion assets on the energy hub operation, the planning and operation of the energy hub has 

faced more challenges compared to the separate electrical and gas networks. 

Lack of accurate prediction of various loads of hubs and use of RERs like PV and WT cause the 

planning and operation of the energy hub to face many uncertainties. This issue motivates the 

authors of this article to consider almost all the uncertainties in the proposed model.  To this end, 

the Monte-Carlo simulation (MCS) method would be employed to provide scenarios related to 

different types of loads. For the scenarios related to the uncertainties of WT power generation, 

historical data are used.  

With the advent of DR programs in recent years, the role of end consumers in the electricity market 

has become much more prominent. DR programs are generally categorized into price-based and 

incentive-based programs. In multi-carrier energy systems, DR programs can be applied to thermal 

and cooling loads in addition to electrical loads, called IDR programs. It is noteworthy that by 

participating in these programs, consumers shift part of their load from peak hours to off-peak 



hours, thereby increasing flexibility, increasing system reliability and reducing operating costs. It 

should be noted that the impact of DR and IDR programs on the load demand curve and costs is 

different. Therefore, in this study, a comprehensive study is performed on the effect of different 

DR and IDR programs on the results of planning and operation.  

Determining the size of hub equipment in the presence of renewable resources and storage systems, 

and by considering short-term operating constraints as well as DR/IDR programs, is a huge 

problem with many decision variables. Therefore, choosing the method of solving this problem is 

very important. In this paper, in order to linearize the mentioned problem, a two-stage framework 

is presented, which solves the problems of sizing and operation in two separate stages. Besides, 

the effect of continuous and discrete solution space on the speed of problem solving and planning 

results is investigated. In this regard, the problem of optimal determination of the capacity of assets 

is solved in the continuous and discrete modes. Noted that the operation problem is also tackled 

for four seasons by considering the seasonal variation pattern in the proposed model. 

 

1.2. Literature review 

As described previously, the mentioned joint operation and planning of an energy hub would 

encounter severe uncertainties, mainly due to the volatile renewable power generation, and 

forecast error of the market price and uncertain load demand. In this regard, a bi-level mixed-inter 

linear programming (MILP) model was presented for the optimal planning of multi-carrier energy 

systems in [3] taking into consideration the impacts of distributed energy resources (DERs). The 

type of assets was settled in the first level while the communication between assets was specified 

in the second level. To improve efficiency, decrease pollution, and improve reliability, a novel 

framework for the optimal planning of the energy hub systems was devised in [4]. Furthermore, a 



reliability and vulnerability evaluation framework has been developed in [5] for multi-energy 

networks by using the models of the energy hub. An innovative optimal sizing strategy was 

presented in [6] for a multi-carrier energy system with IDR programs. In this model, the matrix 

structure was deployed. The role of IDR programs in the determination of the capacity of assets 

was also investigated. Ref. [7] presented a standardized multi-step modeling method for the 

management of an energy hub. First, the primary complex model of the energy hub would be 

separated into multiple hubs with more straightforward models by utilizing the nodes arrangement 

and virtual nodes insertion techniques. Afterward, the coupling matrix relating to the resulting 

energy hubs is simply modeled. The final coupling matrix of each hub would be attained by the 

multiplication of the coupling matrix. Also, electrical energy storage (EES) systems, demand 

response (DR) programs, and RERs in the energy hub, are considered in the mentioned model. 

The mutual impacts of energy facilities and operational parameters on the planning problem are 

the main challenges in energy hub planning. In [8] the effect of uncertainty of operational 

parameters including market price, demand, and PV output power, on the resource scheduling of 

the energy hub, was analyzed by utilizing a risk-oriented stochastic optimization framework. Also, 

a MILP model is introduced in [9] for addressing the operation problem of the energy hub. In this 

model, the best site, installation time, and type of assets were determined, intended to achieve the 

minimum investment cost. In [10], a dynamic structural sizing is presented for energy hubs with 

residential loads. In this model, the planning horizon was separated into sub-intervals, and the 

installation of the components was optimally determined in each sub-interval. In [11], a multi-

objective dynamic model is introduced for hub design, in which the installation year of equipment 

is also considered. The problem is formulated in MILP format and the optimization goals include 

total cost, losses and emissions. The results show that the minimization of losses and emissions 



leads to an increase in the installation capacity of PV panels and, consequently, an increase in 

investment costs. In addition, the results indicate that considering the IDR program leads to a 

reduction of about 9% in total cost. 

It is necessary to investigate reliable and clean energy to promote the generation, increase the 

competition, and grow the economy. In order to reduce the operating costs, a hybrid stochastic-

interval optimization model is presented for creating robust programming [12]. In this model, the 

deviation and average cost are considered in a two-objective MILP model by utilizing the 

weighted-sum method. Also, a robust optimization approach, considering techno-economic and 

environmental aspects, besides the uncertainty caused by the market price, was presented for 

scheduling of multi-carrier energy networks [13]. Ref [14] developed a three-level concept for 

planning and operation of the energy hubs. This model is handled as a MILP model. The objective 

of the first, the second, and the third level is the investment cost minimization, worst scenario 

identification, and operation cost minimization, respectively. 

Many research works have been recently conducted on the use of RERs in energy hubs to prevent 

the increase in greenhouse gas emissions, and alleviate the concerns on global warming. The 

energy hub with RERs has been analyzed in [15]. In this investigation, a multi-objective model by 

employing the ε-constraint technique has been used to simultaneously decrease carbon emission 

and operation costs. Besides, using clean and renewable energies in the energy hub was explored 

in [16,17]. In these references, an ice storage system as an emerging storage system was introduced 

for promoting the energy hub’s performance and efficiency. Moreover, a MILP formulation for 

the scheduling of an energy hub, equipped with wind and solar renewable energies is presented in 

[18]. The results indicated the positive effect of RERs on the energy hub’s increased profit and 

reduced cost due to reduced power purchased from the main grid. 



RERs’ uncertainties lead to great challenges for the optimal operation of the energy hubs. In this 

relation, the optimal operation of an energy hub has been investigated in [19] while addressing the 

uncertainties and storage systems. It is proved that the fluctuations caused by uncertainties are 

neutralized by using an EES system. A robust optimization model, considering forecast errors of 

PV power, is presented for the energy hub planning in [20]. It is noteworthy that the storage system 

was employed to damp the intermittency of the solar power generation and promote the system’s 

efficiency. The competition among energy hubs operating in the island mode has been addressed 

in [21] by using the Cournot model and the Nash equilibrium has been derived. The interaction 

between the energy hubs has been modeled by using a trasactive energy trading framework in [22] 

where local markets have been designed to enable the energy trading between hubs. In this respect, 

a virtual energy hub model plant concept has been introduced in [23] which significantly improved 

the performance of multi-carrier energy systems by utilizing a self-scheduling strategy.   

Supplying consumers’ load demand considering economic and environmental constraints is 

categorized into the main issues in the electric power system studies. An optimal power flow model 

has been devised for an energy hub network with electric vehicles (EVs) in [24]. The main purpose 

of this model was the total cost reduction of the system such as operation and CO2 emission costs. 

The EVs’ uncertainties were simulated by employing a scenario-based model. The coordinated 

performance of EVs causes the reduction of the total cost. A risk-based scheduling model was 

investigated in [25]. The IDR programs, heat market, and energy scheduling are all addressed by 

considering RER’s, electricity market, and energy storage systems. The environmental issues have 

been addressed in the context of energy hub management problem in [26] through a stochastic 

optimization problem, tackled by using the quantum particle swarm optimization (QPSO) method. 



A bi-objective optimization framework has also been devised in [27], incorporating the total cost 

and emissions minimization as the two objective functions of the problem. 

During the recent two decades, DR program implementation has been very interesting for 

flattening the load profile of the system and alleviating the operating costs. Accordingly, a mixed-

integer non-linear programming (MINLP) model was presented for the coordinated scheduling of 

an energy hub with WTs and DR programs [28], taking into consideration the degradation of the 

energy storage systems. The role of the DR programs in the system’s economic operation, 

reliability, and flexibility has been investigated in [29]. Moreover, the energy hub planning with 

DR programs, intended to alleviate the costs, has been studied in [30]. The authors in [31] present 

a robust optimization model for the operation of a hospital hub in which the problem is solved 

under both normal and emergency situations. The problem is formulated in MINLP format and its 

objective function is to minimize operating costs. This model is implemented on a real case study 

located in Hamedan, Iran and the results demonstrate that the use of robust method leads to a 

6.41% increase in operating costs.  The results also illustrate that the presence of storage systems 

leads to a reduction of about 1% in operating costs. In [32] a comprehensive analysis has been 

performed on demand side management aspects. In this study, not only the advantages of DR 

programs are discussed but also the impact of demand side management on system reliability is 

investigated. Ref. [33] indicates that the development of storage systems is essential to deal with 

the uncertainties of RERs. In this study, the applications of storage system to reduce costs and 

improve reliability in the presence of RERs are investigated. 

In recent years, many studies have examined the technical, economic, and environmental aspects 

of Dynamic line rating (DLR).  DLR is a philosophy related to the electric power transmission 

operation aiming at maximizing load without compromising safety and environmental restrictions 



[34,35]. In addition, many researchers have also explored the concept of Dynamic thermal rating 

(DTR) [36,37]. DTR of transmission lines is related to wind speed, wind direction, ambient 

temperature, and so on. Ref. [38] presents an optimization method for using DR programs with the 

aim of reducing losses and temperature of lines. The operation problem is modeled in the form of 

a multi-objective optimization problem by the fuzzy method and the GA algorithm is employed to 

solve it. The results of this study show that lowering the temperature of the lines leads to increasing 

the lifetime of the lines. The authors in [39] have proposed a new method for the coordinated 

operation of EES systems and DR programs. This study shows that discharging EES systems 

during peak hours reduces costs. The results also show that the presence of EES systems increases 

reliability. In [40], the optimal placement of EES systems has been done with the aim of 

minimizing the curtailment of solar energy. The proposed model is modeled as a two-part 

optimization problem and the simulation results show that the optimal placement of EES systems 

not only prevents the curtailment of solar energy but also enhances reliability. 

 

1.3. Research Gap and Contribution 

Table 1 provides a comparison between the model proposed in this paper and recent studies. As 

can be seen, none of the previous studies has conducted a comprehensive study on the impact of 

different DR and IDR programs on determining the capacity of hub equipment. This table also 

indicates that none of the previous studies have examined the effect of continuous and discrete 

solution spaces on the speed of calculations and planning results. Therefore, in this study, 

integrated planning and operation of energy hub in the presence of uncertainty of electrical, heating 

and cooling loads, as well as the output power of WT has been done. The problem of hub planning 

has been solved by continuous and discrete methods and the impact of each of these methods on 



the planning and operation results has been investigated. In the proposed model, emission costs 

are considered for three types of gas: ܱܥଶ, ܱܵଶ, and ܱܰଶ. Also, in this model, two DR programs 

and three IDR programs are considered and the impact of the implementation of each of these 

programs on the equipment capacity and operation results is investigated in detail. Given that the 

intended problem is a MILP problem with many decision variables and a high computational 

burden, the methodology used to tackle the problem is separated into two levels. First, the capacity 

of the equipment of the hub would be optimally specified by using the Genetic algorithm (GA), 

and subsequently, the resource scheduling problem of the hub would be tackled. Overall, the 

novelties and main points addressed in this paper are: 

 Developing a stochastic model for the joint planning and operation of the energy hub 

 Dividing the solution space into two stages to increase the solution speed 

 Tackling the problem by using continuous and discrete methods 

 Reducing planning cost by employing RCGA  

 Investigating the effect of continuous and discrete methods on the hub planning 

 Assessing the impacts of various DR and IDR programs on the hub planning

1.4. Organization 

The contents of the paper have been categorized as follows: 

The energy hub configuration, mathematical modelling and solution method are presented in 

Section 2. The results, obtained from simulating the studied problem are proposed in Sections 3. 

Lastly, Section 4 includes some final remarks. 

 

 



Table 1. Comparison of the proposed model in this paper with recent studies. 

Ref. 

Optimization 
Constraints 

Planning Search 
Space Optimization Model DR Programs Storage Systems 

RES Emission 

Four 
Seasons 

Load 
Pattern 

Impact 
of DR 

on 
Sizing Planning Operation Discrete Continuous Deterministic Stochastic Incentive-

based 
Price-
based IDR EES TES CES 

[41]                 
[42]                 
[43]                 
[44]                 
[45]                 
[46]                 
[47]                 
[48]                 
[49]                 
[11]                 
[10]                 
[50]                 
This 

Paper                 



2. Model Development 

2.1. Energy Hub Configuration 

Candidate components for installation in the hub are depicted in Fig. 1. As can be seen, the input 

of the system is electricity and natural gas, while its output comprises electrical power, cooling 

power, and heating power. CHP is an installation candidate for power generation. It is noteworthy 

that the hub provides its electrical load through CHP, wind turbine and purchase from the upstream 

grid. Candidates for heating power generation include boilers, EH and EHP. Due to the fact that 

EHP is able to generate cooling power, this equipment is also among the candidates for cooling 

load supply. Overall, candidates for cooling power generation are AC and EHP. In addition, EES 

and thermal energy storage (TES) systems are also considered as storage candidates. It should be 

noted that some of these components may not be installed after solving the planning problem.  

 
Fig. 1. The scheme of the energy hub. 

 

2.2. Formulation 

In this section, the proposed two-stage model is formulated in MILP format. In the first stage, the 

capacity of assets is selected, while in the second stage, the operation problem is solved. Note that 



the operation problem is solved by considering seasonal variations in load and WT production. 

The main objective function of the model is presented in Eq. (1). As can be seen, the main objective 

function is to minimize total investment (ICHub) and operation (OCHub) costs. 

: Hub Hub HubMin TC IC OC   (1) 
 

2.2.1.  Planning Problem Formulation  

Eqs. (2)-(5) model the first stage of the proposed model. In this regard, in Eq. (2), the objective 

function of the first stage is presented, which is the minimization of the total investment costs. Eq. 

(2) shows that the total investment cost comprises the total assets’ installation costs such as boiler, 

EH, EHP, AC, transformer, EES system, and TES system. Note that the interest rate and lifetime 

of assets are also considered in the objective function of investment [51]. k, r, and ܥ௘௖  are the 

lifetime of assets, interest rate, and investment cost of each asset, respectively. 

 
 1

1
1 1

kEC
Hub

eck
ec

r r
IC C

r




 
  (2) 

Eq. (3) calculates the investment cost of each asset according to its selected capacity. In this 

equation, ܥܫ௘௖ and ௘ܲ௖
௠௔௫ are the new capacity installation cost per kilowatt, and the capacity 

installation of each asset in the continuous mode, respectively. 

max
ec ec ecC IC P  (3) 

Eq. (4) is presented to solve the model in discrete space.  Since the installation capacities are certain 

values in the discrete mode, the binary variable ܫ௘௖(ܿ) is used in equation (4) [52].  Finally, Eq. (5) 

prevents the selection of more than one candidate for each asset. 
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2.2.2. Operation Problem Formulation 

Eq. (6) illustrates the operating cost of the system for one year. Where ߮(߱) and (ߛ)ߩ represent 

the number of days of a season and the probability, associated with any of the scenarios, 

respectively. Besides, Eq. (7) represents the cost and revenue due to transacting power with the 

utility grid. Eq. (8) indicates the operating cost of the CHP and boiler. Eq. (9) expresses the 

operating costs of the storage systems. Fuurthermore, the emission cost of ܱܥଶ, ܱܵଶ, and ܱܰଶ has 

also been incorporated [53]. In this respect, the emission cost relating to the CHP unit and boiler 

is calculated as Eq. (10). Lastly, the cost of the DR program, and the penalty of the energy not 

served (ENS) are represented in Eqs. (10) and (11), respectively. It should be mentioned that t  

is equal to 1 hour. 
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2.2.2.1. Energy Exchange Constraints 

Eqs. (13) and (14) limit the purchase and sale of power from/to the grid, respectively. Constraint 

(15) states that the hub is not able to buy and sell power at the same time. Constraint (16) also 



models the restriction of gas purchase from the network. It is noted that energy exchange for 

electricity is bidirectional while natural gas is unidirectional, i.e. from the main system to the hub.  

,min , ,

,max ,

( , , ) ( , , )

( , , )

Net Net Buy Net Buy
e e

Net Net Buy
e

P I t P t

P I t

 

 




                               , ,s t  (13) 

,min , ,

,max ,

( , , ) ( , , )

( , , )

Net Net Sell Net Sell
e e

Net Net Sell
e

P I t P t

P I t

 

 




                              

 
, , t   (14) 

, ,0 ( , , ) ( , , ) 1Net Buy Net SellI t I t                                                        
 

, , t   (15) 

,min ,max( , , )Net Net Net
g g gP P t P                                     , , t   (16) 

 

2.2.2.2. Modelling of Storage Systems 

The equations of EES and TES systems are illustrated in (17)-(24). Constraint (17) represents the 

stored energy rate in the storage system at every hour. The amounts of energy available in the 

storage system at the initial and final hours of operation are described by Eqs. (18) and (19), 

respectively. Eq. (20) models the loss rate at every hour. The lower and upper bounds of energy 

available in the storage system are shown through constraint (21). Besides, constraints (22) and 

(23) represent the allowable charging and discharging rates at every hour, respectively. Constraint 

(24) shows that the storage system can operate only in the charging or discharging modes at every 

hour [54].  
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2.2.2.3. DR and IDR Programs 

In order to investigate the impact of DR and IDR programs on system flexibility and planning and 

operation costs, the proposed model is solved by considering different DR and IDR programs [55]. 

For this purpose, two traditional DR programs and three IDR programs are introduced in this 

section. It's worth mentioning that to measure the individual impact of each DR/IDR program, the 

problem was solved using one DR/IDR program in each execution.  

2.2.2.3.1. Shiftable DR program 

In this program, customers transfer their load to the off-peak time slots for a reward. The sum of 

the daily load demand remains constant, and only a part of the load would be transferred from one 

hour to another. Shiftable DR program’s constraints were provided below. 
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2.2.2.3.2. Price-based DR program  



In the priced-based DR, customers decrease or increase their demand based on the electricity price. 

In this model, the demand decreases and increases depend upon the price change rate as well as 

demand elasticity. The model's constraints are as follows [56]. 
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2.2.2.3.3. Shiftable IDR 

The IDR programs would enable all types of load demand to participate in the demand-side 

management. In other words, DR programs are employed for the three types of the load demand. 

The constraints of the shifting IDR mechanism simulation are provided in (35)-(38). This 

program's simulation method is similar to the shifting DR program, except that the program has 

been applied to the cooling and heating loads [57].  
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2.2.2.3.4. Transferable IDR 



This type of IDR program relates to the time a load starts to consume which is possible to transfer 

while the consumption duration should remain unchanged. Typically, it would not be possible to 

interrupt this type of load demand, and the amount of load demand over the day would be 

unchanged.  
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2.2.2.3.5. Curtailable IDR 

This IDR program enables the decision maker to curtail the load at a given time, but the load 

rebound may occur for the subsequent time intervals.  

, , ,
, , 1 , , 2 , ,

,
3 , ,

( , , ) ( , , 1) ( , , 2)

( , , 3)

cu do cu up cu up
e h c e h c e h c

cu up
e h c

P t P t P t

P t

  



    

 

   

 
 , , t   (43) 

, , ,
, , , , , ,0 ( , , ) ( , , ) ( , , )cu up cu up cu up

e h c e h c e h cP t LPF P t I t      , , t   (44) 
, , ,

, , , , , ,0 ( , , ) ( , , ) ( , , )cu do cu do cu do
e h c e h c e h cP t LPF P t I t      , , t   (45) 

 

2.2.2.4. Power Balance Constraints 

Constraints (46)-(48) ensure the balance of production and consumption of electrical, heating and 

cooling powers, respectively. These constraints express that the amount of production and 

consumption in scenario s and time t must be equal. These constraints also indicate that storage 

system discharge and load reduction through the DR/IDR program are on the production side, 

while storage system charge and load increase through the DR/IDR program are on the 

consumption side. 
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2.2.2.5. Operation Constraints of Hub Assets 

Operation constraints of Hub assets are provided in (49)-(56) [52]. In this regard, Eq. (9) states 

that the rate of power exchange with the grid should be less than or equal to the capacity of the 

transformer. Constraints (50) and (51) state that the electricity and heat generated by the CHP unit 

are a function of the gas consumed and its electrical and thermal efficiencies. Constraint (52) limits 

the amount of heat generated by the boiler. Similarly, in constraint (53), the cooling power 

produced by AC is limited. Note that the AC receives its heat from CHP and boiler units. 

Constraints (54) and (55) limit the heat and cooling produced by EHP, respectively. EHP
hI and EHP

cI

are binary variables that represent EHP activity in heating and cooling modes, respectively. 

Constraint (56) prevents simultaneous production of heat and cooling by EHP. Finally, constraint 

(57) states that the heat generated by EH must be less than or equal to its capacity. 
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2.2.2.6. Operational Constraints of Hub Assets 

To model the WT generation rate according to the wind speed, the following constraints are 

utilized [58]. Eq. (57) shows that if the wind speed is higher than the cut-out speed ( cov ) or less 

than the cut-in speed ( civ ), the turbine output power will be zero. Eq. (58) also shows that if the 

wind speed is between the cut-in speed and the rated speed ( rv ), the output power will be calculated 

through the corresponding function ( ( , , ) ci

r ci

v t v
v v




 ). Finally, Eq. (59) shows that if the wind speed 

is between the rated speed  and the cut-out speed, the output power will be equal to the rated power 

of the turbine ( rP ). 
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2.2.3. The Process of Generating and Reducing Scenarios 



As stated, the scenarios related to the uncertain parameters are generated by probabilistic 

distribution functions. In this regard, electrical, heating and cooling load scenarios are generated 

by the normal distribution function [59], while WT output power scenarios are generated by the 

Weibull distribution function. It should be noted that 1000 scenarios are generated for each 

uncertain parameter. Eq. 60 presents the normal distribution function. Where, x  and x  are the 

mean and standard deviation, respectively; tx is load prediction error. The values of x  and x  

are assumed to be 0 and 0.3, respectively. Eq. 61 presents the Weibull distribution function. Where, 

 and k are assumed ߣ and k are the scale and shape parameters, respectively [60]. The values of ߣ

to be 1 and 1.5, respectively. 

Since problem solving for 1000 scenarios is very time consuming, the number of initial scenarios 

is reduced to 10 by the ScenRed tool in GAMS software. 
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2.3. Methodology 

The integrated planning problem of the energy hub through the continuous and discrete methods, 

i.e. RCGA [61] and BCGA [62] are used to solve the problem, respectively. It is noteworthy that 

the major difference between RCGA and BCGA relates to the way variables are defined. In other 

words, the variables are determined by ‘0’ and ‘1’ bits in the BCGA, while the variables are 

determined based on real numbers in the RCGA. In fact, it depends on the type of variables. The 

BCGA can be applied for discrete variables, while the RCGA is more useful for continuous 

variables since it has the benefit of requiring less memory than BCGA. The continuous variables 



are represented by floating-point numbers instead of N-bit integers. Furthermore, the RCGA is 

inherently faster than the BCGA because the chromosome does not have to be decoded before the 

evaluation of the objective function. Accordingly, the algorithm is deployed according to the 

flowchart shown in Fig. 2.  According to the flowchart, after entering the input data, the solution 

algorithm is selected from RCGA and BCGA. The initial population is then generated, which in 

this study is considered 10 times the number of variables. In the next step, a capacity is selected 

for each asset and the investment cost is calculated. Next, the selected capacities are sent to GAMS 

and the operation problem is solved. Note that if the operation is not feasible with the selected 

capacities, an error is sent to MATLAB (first stage) and the capacities are re-selected. Conversely, 

if the operation is feasible, the problem is solved with the aim of minimizing costs and the total 

operating cost is sent to MATLAB. Finally, the total cost is calculated, which is the sum of the 

total operating cost and the total investment cost. It should be mentioned that the criterion for 

stopping the algorithm is not to change the solution in twenty consecutive iterations. 



 
Fig. 2. The conceptual representation of the devised framework. 



3. Simulation Results  

3.1. Input Data 

The devised problem has been tackled in the form of 10 case studies according to Table 2. As can 

be seen, the effect of considering the uncertainties of electrical, heating and cooling loads on the 

capacity of assets as well as the operating results will be fully investigated. Table 2 also illustrates 

that the effect of discrete and continuous solution spaces on the solution speed as well as the size 

of the assets will be investigated. It should be noted that in cases 1 and 6, the problem is solved 

deterministically without considering the uncertainties. The data of loads, as well as WT’s power 

output, for one day of every season, are demonstrated in Fig. 3. Noted that every 24-hour period 

relates to one season. The peak values of the three load types and the WT’s power output are 

respectively considered 800 kW, 600 kW, 350 kW, and 200 kW. The electricity price for each 

season is depicted in Fig. 4. Table 3 includes the candidate assets. Finally, the technical data of the 

hub assets are classified in Table 4. 

Table 2. Case studies and their associated assumptions. 

Case No. Planning Mode 
Uncertain Parameters 

Wind Turbine Electrical Load Heating Load Cooling Load 

1 

C
on

tin
uo

us
     

2     
3     
4     
5     
6 

D
isc

re
te

     
7     
8     
9     

10     
 

Table 3. Candidate assets in discrete mode and their installation cost [52]. 

Installation Cost 
($/kW) 

Discrete mode’s 
Capacity Step 

(kW) 

Maximum Capacity 
(kW) 

Minimum Capacity 
(kW) Asset 



450 50 500 50 Trans. 
990 50 500 100 CHP 
450 50 500 50 Boiler 
400 50 300 50 EH 
500 50 300 50 EHP 
470 50 500 50 AC 
250 50 300 50 EES 
250 50 300 50 TES 

 
 

 
Fig. 3. The seasonal loads and wind profiles [52]. 

 

 
Fig. 4. The price of electrical energy [52]. 

 

 



Table 4. The operation data of energy hub assets [52,63]. 

CHP  Boiler  EES / TES 
Parameter Unit Value  Parameter Unit Value  Parameter Unit Value 

௚௛஻ߟ  ௚௘஼ு௉ % 40ߟ ாாௌ/்ாௌߟ  85 % 
௖௛/ௗ௜௦  % 90 

ாாௌ/்ாௌߙ  ௘௠஻ ௖௖ଶ - 1.755ܨܧ  ௚௛஼ு௉ % 35ߟ
ூ௡௜௧௜௔௟/௙௜௡௔௟  % 30 

ாாௌ/்ாௌߙ  ௘௠஻ ௦௢ଶ - 1.011ܨܧ  ௘௠஼ு௉ ௖௖ଶ - 1.596ܨܧ
௠௜௡/௠௔௫ % 10 / 90 

ாாௌ/்ாௌߙ  ௘௠஻ ௡௢ଶ - 0.62ܨܧ  ௘௠஼ு௉ ௦௢ଶ - 0.008ܨܧ
௠௜௡/௠௔௫,௖௛  % 0 / 25 

 ௛ௌ $/kWh 0.03ߨ / ௘ௌߨ  - - -  ௘௠஼ு௉ ௡௢ଶ - 0.44ܨܧ

Electrical Heater  Absorption Chiller  Trans. and Converter 
Parameter Unit Value  Parameter Unit Value  Parameter Unit Value 

௛௖஺஼ߟ  ௘௛ாு % 85ߟ ௘௘ߟ  85 % 
்/஼௢௡ % 0.9 

Wind Turbine  DR / IDR Program  EHP 
Parameter Unit Value  Parameter Unit Value  Parameter Unit Value 

 ௘௛ாு௉ % 85ߟ  ௦௛ௗ௢ % 10ܨܲܮ  ௖௜ m/s 4ݒ

 ௘௖ாு௉ % 85ߟ  ௦௛௨௣ % 10ܨܲܮ  ௥ m/s 13ݒ
௘஽ோߨ  ௖௢ m/s 22ݒ  $/kWh 0.02  - - - 

 

3.2. Continuous and Discrete Planning Results 

Table 5 includes the results, derived for the studied cases. The minimum installed capacity of all 

assets is considered 50 kW in all cases. In the first case, the required capacity for storage systems 

is less than the minimum value; hence, it is set to 50 kW. The capacity of the EHP is also less than 

the minimum value since the installation cost of EHP is higher than the heating and cooling assets 

such as boiler, EH, and AC. It is therefore set to 50 kW. 

In the second case, the capacity of the transformer, indicating the amount of energy bought or sold, 

is increased due to the uncertainty related to the WT’s power generation. Also, the mentioned 

uncertainty causes to reduce the EH capacity and increase the capacity of the boiler, instead. 

Analysis of the results of Table 5 illustrates that investment and operating costs in Case 2 have 



increased by 3.54% and 14.11% compared to Case 1, respectively, which is due to the choice of 

larger capacity for some assets and also considering the uncertainty of WT in this case. 

In the third case, the electrical heater capacity is reduced again, and the transformer and EES 

capacity are increased. Since there is an electrical load uncertainty in addition to the wind power 

generation uncertainty, the capacities of the EES and generation assets of the hub are increased for 

facing the uncertainties. Numerical results show that considering the load uncertainties in Case 3 

has led to a 0.85% increase in total cost compared to Case 2. 

In the fourth case, the uncertainty related to heating load is also added to the system. In this case, 

the capacity of thermal assets such as boiler and CHP are increased. Besides, the capacity of TES 

is increased to establish the thermal equilibrium. It is noted that the transformer capacity is 

decreased in the fourth case due to the increased CHP capacity.  

In the fifth case, the uncertainty related to the cooling load is also considered. As can be seen, the 

AC’s capacity is increased to face cooling load uncertainty. This has been associated with the 

increased CHP capacity. This is due to the supplying the required thermal power of the AC by the 

heating power generation assets. In this case, the boiler capacity is decreased because of the 

increased CHP capacity. Also, the transformer’s capacity is increased due to the increased EHP’s 

capacity. Overall, the results of this section show that uncertainties have a high impact on the 

selected capacity of assets as well as the operation of the hub. In this regard, numerical results 

show that in case 5, where all uncertainties are taken into account, investment and operating costs 

are increased by 8.07% and 14.52% compared to case 1 (in the absence of uncertainties), 

respectively. 

The results of continuous and discrete planning are depicted in Fig. 5. It is evident that the 

investment cost for the continuous planning is less than the discrete planning in all cases. However, 



as shown in Fig. 6, the operation cost for discrete planning is less than the continuous one. The 

main reason is the higher capacity of the assets in discrete cases while buying a lower amount of 

power from the main electric system. 

The total costs of discrete and continuous planning are compared in Fig. 7. As this figure depicts, 

the total costs of the hub in the continuous planning are less than the discrete one in all cases. It is 

noteworthy that the difference in the costs is increased by increasing the uncertainties. 

Table 5. The results, derived for the continuous and discrete planning of the hub. 

 Capacity (kW) 

Mode Continuous  Discrete  

Case  1 2 3 4 5 6 7 8 9 10 

AC  323.32 323.32 323.32 323.32 344.9 350 350 350 350 400 

EHP 50 50 50 50 61.2 50 50 50 50 50 

EH 104.8 62.68 50 53.04 50 100 50 50 100 50 

Boiler 80.14 114.69 113.49 160.89 139.96 100 150 150 100 100 

CHP 452.81 453.48 454.84 469.85 473.83 450 450 450 500 500 

EES 50 69.54 82.97 83.26 83.52 50 100 100 100 100 

TES 50 50 50 65.62 65.71 50 50 50 100 100 

Trans. 291.17 349.37 380.15 316.7 331.72 300 350 350 300 350 

IC ($) 171207.041 177272.76 179850.74 182407.93 185037.46 175341.82 182813.77 182813.77 190186.09 199351.69 

OC($) 476861.28 544166.42 547777.33 547177.6 546122.5 473905.78 540619.58 545281.52 543875.03 541311.84 

TC ($) 648068.321 721439.18 727628.07 729585.53 731159.96 649247.6 723433.35 728095.29 734061.12 740663.53 

 

 
Fig. 5. The investment cost of discrete and continuous planning 

 



 
Fig. 6. The operation cost of discrete and continuous planning 

 

 
Fig. 7. The total cost of discrete and continuous planning. 

 

3.3. Comparative Results  

In this section, the operation and planning problem of the hub has been tackled by using the GAMS 

software and the results have been compared with the proposed model. To measure the 

performance and accuracy of the devised model, the results obtained through DICOPT solver are 

assessed with respect to the results of the proposed model, as shown in Figs. 8a and 8b. It is clear 

from the figures that in some cases the DICOPT solver cannot solve the problem, which these 

cases are marked with black squares in the figure. As Fig. 8a depicts, the total cost in the proposed 



model is less than the DICOPT solver, and this difference in the discrete method (cases 6-10) is 

higher since the computational burden in the discrete method is higher compared to the continuous 

planning.  

In terms of the computational burden, the execution time for different cases using DICOPT solver 

and the proposed model are compared in Fig. 8b. According to Fig. 8b, the execution time of the 

DICOPT solver is less than the proposed model since a stop at DICOPT solver occurred due to the 

nonconvergence in the consecutive iterations. Therefore, the obtained result does not address all 

planning and operation constraints. In other words, the DICOPT solver is merely able to tackle the 

mentioned problem in two cases. 

 
(a) 



 
(b) 

 
Fig. 8. (a) The comparative curves of the total cost using the DICOPT solver and proposed 

model, (b) execution time using the DICOPT solver, and proposed model. 

 

3.4. The Operation Results of Case 1 

The operation results of the first case are represented and discussed in this case. Besides, the 24-

hour operating point of each hub asset for a typical day of every season is demonstrated in Fig. 9. 

As this figure indicates, the CHP unit is at its maximum operating point at all hours in winter 

because of the high heating load demand. Also, the boiler, EH, and EHP are contributing to the 

supplying heating load demand in this season. A large amount of electrical power generated in the 

CHP unit and WT are sold to the network to make a profit. 

The assets’ operating points in spring are illustrated in Fig. 9b. Since there is a cooling load demand 

along with the electrical and heating load demands, more equipment contribute to supplying the 

loads. According to Fig. 9c, the EHP and AC are responsible for supplying the cooling load in 

summer. The CHP unit and boiler generate the heat needed for the AC in this season. Unlike that 

of spring, the boiler is active in the middle of the day in addition to the early hours to supply the 

heat required for the AC. Fig. 9d shows the operating points of assets in fall, while the only active 



assets in the generation are WT and CHP units. In this season, the electrical and heating loads are 

met by the CHP system, and any electrical power shortage is addressed by the WT and power 

purchased from the upstream grid. 

 
(a) Winter 

 
(b) Spring 

 
(c) Summer 

 
(d) Fall 

 
Fig. 9. The operating points of the hub assets. 

 

In Table 6, the emission costs of the CHP and boiler units are presented for a typical day of each 

season. As it is obvious from this table, the maximum emission cost relates to winter, since the 

CHP unit is almost at its maximum operating point over the day. Also, the boiler generates more 

power in comparison with other seasons. The emission cost of fall is also higher than spring and 

summer, owing to the higher CHP generation. 

The power transaction with the upstream grid is represented in Figs. 10 and 11. According to Fig. 

10, the maximum power bought from the utility grid occurs in the early and late hours in spring 

and summer. As Fig. 11 depicts, the power sales have been at all hours in winter. Besides, the 



generated power of WT and CHP is delivered to the main grid during the beginning and late time 

slots in fall because of the low electrical load demand. Finally, Fig. 12 shows the state of charge 

(SoC) of the EES system and while the SoC of the TES system is illustrated in Fig. 13. 

Due to low electricity prices, the EES system absorbs power over the early time slots of the day, 

and delivers power to the system over the peak hours to supply the load demand, and reduce the 

total cost of the hub. The extra heating power generation is stored in the TES over the middle time 

slots of the day and then, it delivers power over the early and late hours since the heating load 

increases. 

Table 6. Emission costs of the CHP and boiler. 

Asset Gas Type 
Emission ($/day) 

Spring Summer Fall Winter 

CHP 
CO2  3.783 4.075 5.132 5.860 
SO2  1.341 1.444 1.819 2.077 
NO2  312.906 337.005 424.419 484.658 

Boiler 
CO2 0.090 0.222 0.002 0.360 
SO2 0.040 0.098 0.001 0.159 
NO2 9.585 23.514 0.261 38.117 

Total  327.746 366.357 431.634 531.231 
 

 
Fig. 10. Purchased power from the grid. 

 



 
Fig. 11. Sold power to the grid. 

 
Fig. 12. SoC of EES in spring 

 
Fig. 13. SoC of TES in winter. 

 

3.5. Assessment of DR / IDR Programs Impact 

In this section, Case 5 is solved by considering different DR / IDR programs and the impact of 

each program on the results of planning and operation is evaluated separately. Table 7 presents the 



results of solving the problem by considering each of the DR / IDR programs. Comparing the 

results of Table 7 with Table 5 shows that the implementation of shiftable DR program has reduced 

the capacity of all assets except AC, which is due to the transfer of part of the load from peak hours 

to non-peak hours. The results of Table 7 also illustrate that the implementation of the price-based 

DR program has a greater impact on reducing costs, especially operating costs, which is due to the 

fact that the implementation of this program is free. 

In addition, a comparison of the results of different programs shows that IDR programs clearly 

have a much greater impact on assets capacity as well as operating costs than DR programs . 

Because IDR programs not only modify the demand curve of electrical load, but also the demand 

curve of heating and cooling loads. Numerical results illustrate that the implementation of shiftable 

IDR program leads to the selection of smaller capacity for assets and thus reduces investment cost 

by 10.26% compared to case 5. The results also indicate that the implementation of shiftable IDR 

program by modifying the demand curve of electrical, cooling and heating loads, has reduced 

operating cost by 15.1% compared to Case 5. 

The impact of the shiftable IDR program on the cooling and heating demands for summer and 

winter are provided in Figs. (14a) and (14b), respectively. These figures show that applying the 

shiftable IDR program decreases the cooling load peak demand in summer, and the heating load 

peak in winter. Also, the shiftable IDR program effects on the electrical load demand curve of the 

system over the year are shown in Figs. (15a) – (15d). As can be seen, the shiftable IDR program 

has satisfactorily revamped the demand curve in each season by transferring the electrical load to 

off-peak intervals. This performance significantly increases scheduling flexibility and also 

improves system reliability. 

 



Table 7. Impact of DR programs on planning and operation results. 

Assets Shiftable (DR) Price-Based (DR) Transferable (IDR) Curtailable (IDR) Shiftable (IDR) 
CHP 447.55 447.94 451.55 452.16 462.76 
EH 99.75 102.20 135.39 90.00 91.85 
AC 351.27 349.02 313.32 322.41 290.99 

EHP 50.00 50.00 50.00 50.00 50.00 
Boiler 97.13 94.35 91.30 85.56 60.69 
EES 50.00 50.00 50.00 50.00 50.00 
TES 50.00 50.00 50.00 50.00 50.00 

Trans. 283.45 280.96 265.20 271.76 276.33 
IC ($/year) 173098.35 172895.45 171133.76 168560.38 166035.82 
OC ($/year) 471873.45 466548.01 475797.21 478363.26 463609.84 
TC ($/year) 644971.79 639443.46 646930.97 646923.64 629645.66 
 

 
(a) The cooling demand in summer. (b) The heating demand in winter. 

 
Fig. 14. Impact of the shiftable IDR program on the cooling and heating demand curves. 

 

 
(a) Spring 

 
(b) Summer 

 
(c) Fall 

 
(d) Winter 

Fig. 15. Impact of Shiftable IDR on the electrical demand curve. 



4. Conclusion 

In this study a holistic framework was developed for the integrated planning and operation of an 

energy hub. The mentioned problem was studied for the different seasons of the year by 

considering uncertainties of the electrical, heating, and cooling loads as well as the WT’s power 

output. Besides, the emission cost was considered. The proposed model was solved in the discrete 

and continuous modes by interfacing Matlab and GAMS software and the outstanding results 

obtained from this study are as follows: 

 The design problem was solved by BCGA and RCGA algorithms in discrete and 

continuous forms, respectively, and the results demonstrated that the use of continuous 

method leads to more optimal results. In addition, the results illustrated that the use of 

continuous method leads to a reduction in solution time. 

 The problem was solved by considering the uncertainties of different loads and WT output 

power, and the results mirrored that these uncertainties not only increased the capacity of 

assets but also increased the operating costs. 

 Five different DR programs were applied to assess the DR programs’ impact on the 

planning and operation results. The results show that applying the shiftable IDR program 

decreased the planning and operation costs, significantly, compared with other programs.  

 A comparison of the proposed model with  DICOPT solver in the GAMS software was 

substantiated that the proposed method was more precise and effective to tackle the 

problems with various uncertainties and heavy computational burden since the DICOPT 

solver is not able to solve such problems. 
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