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Abstract Solar irradiance forecasting is a major priority for the power trans-

mission systems in order to generate and incorporate the performance of mas-

sive photovoltaic plants efficiently. As such, prior forecasting techniques that

use classical modelling and single deep learning models that undertake feature

extraction procedures manually were unable to meet the output demands in

specific situations with dynamic variability. Therefore, in this study, we pro-

pose an efficient novel hybrid solar irradiance forecasting model based on three

steps. In the first step, we employ a powerful variable input selection strategy

named as partial mutual information (PMI) to calculate the linear and non-

linear correlations of the original solar irradiance data. In the second step, un-

like the traditional deep learning models designing their architectures manually,
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we utilize several deep long short term memory–convolutional neural network

(LSTM–CNN) models optimized by a novel modified whale optimization algo-

rithm in order to compute the forecasting results of the solar irradiance datasets.

Finally, in the third step, we deploy a deep reinforcement learning strategy for

selecting the best subset of the combined deep optimized LSTM–CNN models.

Through analysing the forecasting results over two real-world datasets gathered

from the USA solar irradiance stations, it can be inferred that our proposed al-

gorithm outperforms other powerful benchmarked algorithms in 1-step, 2-step,

12-step, and 24-step ahead forecasting.

Keywords: Solar irradiance forecasting, Deep neural networks, Evolutionary

computation, Ensemble strategy, Deep reinforcement learning.

1. Introduction

In recent years, the serious concerns of environmental protection using

non-conventional renewable energy sources (NRES) such as solar photo-

voltaic (PV) systems have become an attractive alternative. PV systems

and isolated PV panels as one of the most common solar energy appli-5

cations have been developed widely all around the world. It has been re-

ported that the annual growth rate of PVs as one of the most key emerging

technologies has been over 40% on average. Several market leaders pre-

dicted that revenues in the photovoltaics, innovations, and industries will

be doubled, from 35-40 billion euros in 2010 to 70 billion euros in 201510

1. The main attribute of the solar resources that need to have well char-

acterized in order to operate effectively in photovoltaic and concentrated

solar energy plants are, in particular, global horizontal irradiance (GHI).

Although NRES can bring us several advantages, they are quite chal-

lenging because of mismatch between power supply and energy demand,15

generating issues on stability, safety, reliability and frequency response of

the grid 2. There are several studies that focus on implementation of stor-

age 3, 4 and demand response 5. However, to have an appropriate storage
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energy management, we need to forecast the source availability 6, 7, 8.

It should be noted that weather variability can cause fluctuation of solar20

irradiation and affect the power supply from grid-connected photovoltaic

plant. This fluctuation in solar irradiation is causing considerable diffi-

culty in creating balance between power storage and demand responses 9.

To solve this issue, it is essential to predict grid-connected power supply

of PV plants. A prediction system can offer several beneficial inputs and25

raw data for different regional power system operation activities includ-

ing economical transportation management of grid connection and safety

evaluation. An accurate solar irradiance forecasting system will be neces-

sary for the established generators to schedule various energy plants for

maintaining resources, and provide more details upon on the solar energy30

trades. This system can increase the degree of transparency, safety and

contribute to more economical operational electricity grid preferences.

One of the areas in power systems domain that gained huge attention in re-

cent years is deep neural network (DNN) models 10, 11, 12, 13, 14, 15, 16.

Also, DNNs have gained a considerable attention in other well-known ap-35

plications 17, 18, 19, 20, 21. Convolutional Neural network (CNN) as a

promising technique for the time-series data analysis has been successfully

used to predict solar irradiance 22. In a study 23, CNN and long short-term

memory (LSTM) is used for solar irradiance forecasting. In this study, a

model is applied to decompose the solar dataset in different climate re-40

gions and they have achieved outperforming performance compared to

other state-of-the-art algorithms. Moreover, in 24, a CNN algorithm is

developed for forecasting 5 to 20 minutes ahead of solar irradiance by

a dataset of collected sky images. By assessing the efficiency of utilized

CNN with other compared forecasting models, the experimental results45

show that the proposed CNN algorithm is more effective for short-term

solar irradiance forecasting. Although the performance of LSTM networks

in resolving different problems is promising, training these networks like
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other neural networks 25, 26 needs to set their hyperparameters that de-

termine many aspects of algorithm behavior 27. Most of the studies relied50

on manual hyperparameter optimization which needs human experts and

it is time consuming 28, 29, 30, 31. In other words, manual hyperparameter

optimization is based on the trial and error where human experts interpret

how the hyperparameters affect the performance of the model. To over-

come this issue, evolutionary algorithms can be employed to automatically55

find the optimal values of the hyperparameters 32, 33, 34, 35.

Recently, reinforcement learning (RL) has been utilized to conduct wide

research in developing time series-based forecasting models 36, 37, 38. In

39, the forecasting model is constructed using three different deep neural

networks, and the forecasting outputs for each sub-series are calculated60

separately. Then, these three deep neural networks are combined using

the reinforcement learning technique. In comparison to nineteen state-

of-the-art algorithms, the proposed ensemble deep reinforcement learning

engine can achieve precise findings in all situations and offers the highest

accuracy for wind speed forecasting problem. In another work presented by65

40, for the purpose of predicting short-term load, an unique asynchronous

deep reinforcement learning model is offered. The temporal correlation of

various samples is first disrupted using an innovative asynchronous deep

deterministic policy gradient technique, which lowers the agent’s over-

statement of such total expected discount reward. The convergence of70

model training is further stabilised by a novel reward incentive mechanism

that considers the trend of agent activities at various time steps. Accord-

ing to the experimental findings, the proposed model outperforms eleven

benchmark approaches in terms of predicting accuracy, time expenditure,

and convergence stability. Besides, the authors in 41 used RL for solving75

a wind speed forecasting problem. In order to accomplish dynamic selec-

tion, the non-dominated combined weighting alternatives are integrated

into a deep reinforcement learning environment. It is feasible to contin-
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uously generate non-dominated solutions per each forecast in accordance

with the time-varying features of wind speed by appropriately constructing80

the reinforcement learning environment. The outcomes demonstrate the

competitiveness of the proposed dynamic ensemble model for wind speed

prediction and also it greatly excels six ensemble approaches and five con-

ventional intelligence forecasting techniques. In the work presented by 42,

the authors employed the forecasting model pool offered by Q-learning to85

construct a powerful and innovative hybrid framework for online model

selection. The proposed framework is the first framework proposed for the

RL approach to dynamically select the optimal forecasting model online.

To increase accuracy, a Q-learning agent is constructed that dynamically

chooses the optimum forecasting model at each time-step. The real-time90

wind speed datasets are used in two experiments. According to experimen-

tal findings, the proposed algorithm outperformed benchmark methods in

both case studies by 47% and 48%.

In this paper, a novel ensemble solar irradiance forecasting model is intro-

duced based on the integration of deep LSTM-CNN neural networks and95

reinforcement learning (RL). Specifically, at first, we utilize the partial

mutual information strategy to extract a set of features from the original

input data leading to an enhancement in the quality of input vectors for

the deep LSTM-CNN models. Then, the extracted features are used as the

inputs of deep LSTM-CNN models to predict solar time-series data. To ob-100

tain more accurate predictions, we develop a novel evolutionary algorithm

based on the whale optimization algorithm to optimize the hyperparam-

eters of deep LSTM-CNN models. To this end, two effective evolutionary

operators are incorporated into the search process of the original ver-

sion of whale optimization algorithm to speed-up the search process and105

escaping from the local optima. The aim of the proposed evolutionary al-

gorithm is to automatically obtain the optimal values of hyperparameters

of deep LSTM-CNN models. After performing the proposed evolutionary
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algorithm in order to obtain the optimal LSTM-CNN architectures, the

forecasting results of all these optimized models are integrated into an en-110

semble strategy based on deep reinforcement learning algorithm to output

the best forecasting GHI performance. The experimental results on two

real-world datasets confirm that the proposed forecasting model exhibits

the best performance among other state of the art algorithms for solar

GHI prediction.115

The rest of the paper is organized as follows: in Section II, the proposed

forecasting model is represented in details. The description of solar ir-

radiance datasets and the initialized setting for the proposed model is

presented in Section III. Section IV denotes to the discussion of the ob-

tained results from the proposed model and finally, the paper is concluded120

in Section V.

2. Methodology

In this section, we introduce our novel solar irradiance forecasting model,

which is based on three main steps: (1) partial mutual information strat-

egy, (2) hyperparameter optimization, and (3) ensemble strategy. The de-125

tails of these steps will be provided in the following.

2.1. Partial Mutual Information Strategy

We first utilize the partial mutual information (PMI) strategy as a pow-

erful input variable selection for the deep LSTM–CNN models. The aim

of using PMI strategy is to obtain an appropriate set of input data to be130

utilized in training deep LSTM-CNN models. Therefore, instead of using

the original input data, we use an improved set of inputs leading to en-

hance the performance of deep LSTM-CNN models in forecasting solar

irradiance time-series. PMI approach is fundamentally similar to the par-

tial correlation-based model. However it incorporates mutual information135
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instead of sequential relation to select the input data 43. The value of

PMI is a closely related entropy between the output Y and the candidate

Cj , which is, therefore, not already in S, represented by MI (Cj : Y | S).

Conditional expectation of x given S, is provided by the following formula

as the non-parametric regression kernel approximation:140

E[x | S = s] =
1

n

∑n
i=1 xiKh (s− si)∑n
i=1 Kh (s− si)

(1)

where the selected input set is denoted by S, n represents the total number

of samples, x represents the cy or y, and the Gaussian kernel function (Kh)

is expressed by:

Kh (x− x1) =
1

(
√
2πh)d

√
|σ|

exp

(
− (x− xi)

T
σ−1 (x− xi)

2h2

)
(2)

where σ represents a matrix of covariance sample, and the dimensionality

of x is denoted by d. The kernel bandwith which is represented by h is145

described by the following formula:

h =

(
4

d+ 2

) 1
d+4

n
−1
d+4 (3)

Therefore, the PMI value is computed by the following formula:

PMI (Cj ;Y | S) = MI(u; v) ≈ 1

n

n∑
i=1

loge

[
f(u, v)

f(u)f(v)

]
(4)

where u = Y −Y (S) and v = Cj−Ĉj(S) in which S shows a set of selected

inputs and j represents a set of candidate inputs by using the estimators of

the non-parametric kernel indicated by C1(S) = E [cj | S = s] and φ(S) =150

E[y | S = s]. It should be noted that variable φ denotes to the sample

covariance matrix, f(u) and f(v), and f(u, v) represent probability density

functions of u, v, and joint u and v, respectively, and the variables of Ĉj

and Ŷ represent the linear least squares regression estimates for the Cj

and Y .155

2.2. Hyperparameter Optimization

The second step optimizes the hyperparameters of the base LSTM–CNN

models using a novel optimization approach, which is based on the the-
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orem of evolutionary computation. To this end, we introduce our novel

evolutionary algorithm, which is used to optimize the hyperparameters of160

deep LSTM-CNN models. LSTM architecture encompasses specific units,

i.e., memory cells, in spot of conventional neurons. Furthermore, LSTM

employs a gate pathway that encompasses input, forget, and output gates,

giving the LSTM the ability to update and regulate the information trans-

mission of data. LSTM helps to overcome the downsides of recurrent neural165

networks (RNNs) through reducing the possibility of gradient vanishing

and effectively carries long-term interconnections in data with the assis-

tance of intrinsic memory cells and gate pathway 44. On the other hand,

convolutional neural network (CNN) is a type of deep neural networks that

processes grid-based structured data 45. Despite the fact that CNNs have170

been effectively used in a wide range of feasible application domains, quite

few researchers have described CNN for solar irradiance forecasting prob-

lems. To improve the capabilities in designing complex information, the

CNN algorithm encompasses three mapping layers: convolutional layer,

pooling layer, and fully-connected layer. Every convolutional layer is de-175

signed to retrieve patterns from the input variables (i.e., GHI) as well as

its associated input data (i.e., historical GHI values).

In the proposed method, we utilize the competitive advantages among

both LSTM and CNN models to establish an innovative method to fore-

cast solar irradiance more quickly and precisely. By coordinating memory180

cells which can be used for updating the hidden layer situation, LSTM

practises the features in historical solar irradiance dataset and conserves

the long-term interconnections to comprehend the relationships among

the features. The features derived by LSTM from solar irradiance time-

series are then transmitted to the CNN model’s input nodes. Furthermore,185

the CNN provides structural information about the target and its neigh-

bours’ locations. CNN’s convolutional layer uses the convolution function

on time-series data of target object and neighbour placement to retrieve
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underlying features from GHI variable. Then, a fully connected such as

dense layer is employed to integrate and forecast the solar irradiance vari-190

able (i.e., GHI) depending on the retrieved features. The dropout layer is

also utilized in the framework to avoid over-fitting problem.

In order to optimize the hyperparameters of deep LSTM-CNN models, we

develop an evolutionary approach based on whale optimization algorithm

(WOA). This algorithm has shown excellent performance in numerous en-

gineering applications 46. However, to further improve its capabilities in

optimizing the hyperparameters of deep LSTM-CNN models, we incorpo-

rate two effective evolutionary strategies termed as the chaotic map (CM)

47 and the opposition-based learning (OBL) 48 into the search process

of WOA algorithm. The following formulas are presented throughout the

optimization to mathematically model the surrounding phenomenon.

−→
D =

∣∣∣−→C · −→X∗(t)−
−→
X (t)

∣∣∣ (5)

−→
X (t+ 1) =

−→
X∗(t)−

−→
A.
−→
D (6)

where the current iteration is represented by t,
−→
A and

−→
C denote to coef-

ficient vectors, X(t) denotes to the position vector (a random whale) and

X∗ represents the optimal solution position vector that has been so far

achieved. The
−→
A and

−→
C coefficient vectors are determined according to:

−→
A =2−→a · −→r −−→a (7)

−→
C =2 · −→r (8)

where −→a is declined linearly from 2 to 0 during iterations, and r repre-

sents a random vector in the interval of [0, 1]. The procedure of updating

position of each search agents based on the spiral (to simulate bubble-net

attacking mechanism of humpback whales) is given numerically as follows:

−→
D′ =

∣∣∣−→X∗(t)−
−→
X (t)

∣∣∣ (9)

−→
X ′(t+ 1) =

−→
D′ · ebl · cos(2πl) +

−→
X∗(t) (10)
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where
−→
D′ determines the difference to the best solution from the ith search

agent, b denotes to a parameter used to describe logarithmic spiral modes

and l represents a randomized value of the [-1,1] range. For further sim-

plification, we generally suppose that Eq. (13) or Eq. (17) would update

the position of the search agents, each having a 50% probability, that can

be given by the following mathematical formula:

−→
X (t+ 1) =


−→
X∗(t)−

−→
A ·
−→
D if p < 0.5

−→
D′ · ebl · cos(2πl) +

−→
X∗(t) if p > 0.5

(11)

where the variable p represents a random value within the interval of [0,

1].

Referring to the aforementioned mathematical formulas, the fundamental195

version of WOA has insufficient global search capabilities in the beginning

and a slow convergence speed in the latter stages. These shortcomings

motivated us to further improve the basic version of WOA from two as-

pects. Firstly, the chaos theory is used to increase the initial population

position’s efficiency. Furthermore, to counterbalance the exploration and200

exploitation of WOA, the opposition-based learning technique is deployed.

The details of these two modifications are provided in the following.

First Improvement:

A chaos model is a system of random behavior created by a stochas-

tic dynamic function, which combines consistency and randomization.205

While tackling functional operational issues, these qualities might cause

the method to readily stray away the local optimal solution, preserving

population variety and improving global search efficiency. Known chaotic

maps encompass logistic map, tent map, Chebyshev map, and so on. Due

to the great efficiency of the tent map, we utilize this strategy in the pro-210

posed evolutionary algorithm to initialize the whale population, which can

be computed by the following formula:
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xi+1 =

2× xi, 0 ≤ xi ≤ 1/2

2× (1− xi) , 1/2 ≤ xi ≤ 1

(12)

Let the population size be N and the search dimension be D, we can

generate the tent map sequence xij(i = 1, 2, . . . , N ; j = 1, 2, . . . , D).

Thus, the initial population P0 = {Xij} is obtained by mapping it into215

the search space as follows:

Xij = xij × (Xmax j −Xmin j) +Xmin j . (13)

where Xmax j and Xmin j are the maximum and minimum of the j dimen-

sion in the search space, respectively.

Second Improvement:

During the WOA optimization procedure, its population tends to reach220

the optimal solution, resulting in a decrease in population variety. As a

result, we advocate that the opposition-based learning (OBL) technique be

used per iteration in order to continually update the individual position.

It is utilized to compute the opposing solutions of search agents at the

conclusion of each iteration, in order to not only enhance the richness and225

variety of the population, but also raise the possibility of looking for global

optimal solutions. The OBL strategy works as follows:

In the first step, the generated population for all iterations is considered

as P = {Xij} , i = 1, 2, . . . , N ; j = 1, 2, . . . , D;. Then, the opposite pop-

ulation P ′ =
{
X ′

ij

}
is formed according to the given population computed230

by X ′
ij = Xmax j +Xmin j −Xij where Xmaxj and Xminj respectively rep-

resent the maximum and minimum values within the search space. The

populations P and P ′ are combined and organized in increasing order ac-

cording to the fitness value. The first N search agents having the highest

fitness value are chosen as the next population.235
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We show the flowchart of the proposed modified WOA (MWOA) in Fig. 1.

Now, it is the time to optimize the hyperparameters of LSTM–CNN mod-

els using the MWOA strategy. To this end, eight important LSTM–CNN

hyperparameters as tabulated in Table 1, which have the critical role in the

architectural design of LSTM–CNN models are optimized by the MWOA240

algorithm. Thus, in the solution space of the MWOA, each solution is

interpreted as an eight dimensional vector corresponded to the eight hy-

perparameters. The continuous variables in the LSTM–CNN hyperparam-

eters are transferred as D = [Hyp1, Hyp2, ...,Hypn] into a discrete search

space. The following formulas are taken into account for formulating the245

discretization model:

Λ = 1 + n×K (14)

ω = min(⌊Λ⌋, n) (15)

where K is a continuous variable in the [0, 1] exploration range for the

search space, Λ is a mapping operator of K to [1, n + 1] and ω repre-

sents another Λ mapping operator to [1, 2, 3, ..., n] interval. Any integer250

value that belongs to the continuous dimension of the solution can thus

be determined using the following equation:

Xij = Hω (16)

where Xij , i = 1..n and j = 1..8 represents an 8-dimensional vector stand-

ing for the ith solution encoding the eight LSTM–CNN hyperparameters

and Hω denotes to these hyperparameters mapped from discretization255

manner. Based on the obtained values of hyperparameters, we consider a

fitness function to test the efficiency of the configured LSTM–CNN archi-

tectures for GHI forecasting. In this regard, we take into consideration the

mean square error (MSE) to calculate the fitness value of each MWOA

solutions given by the following equation:260

MSE =
1

n

n∑
i=1

(yi − y′i)
2 (17)
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where yi and y′i are the actual and forecasted GHI values by the

LSTM–CNN model. The aim of the proposed method is therefore to

elicit the lowest MSE value solution containing the optimal values of the

LSTM–CNN hyperparameters. This means that an LSTM–CNN model

has been achieved with the best performance in the GHI test set.265

2.3. Ensemble Strategy

After obtaining the best LSTM–CNN models based on the optimal hy-

perparameters, the reinforcement learning strategy is adopted in the third

step to achieve an optimum subset of these models which can be deployed

in the ensemble strategy as the final selected base models. Reinforcement270

learning is one of the powerful machine learning techniques which is ex-

tensively utilized in different optimization problems. The aim of using this

technique is to obtain an optimal subset of the optimized deep LSTM-CNN

models to make the ensemble forecasting model. There are many methods

such as linear regression and linear combination of various models to be275

used as the optimization strategy in our model instead of reinforcement

learning. However, it should be noted that the optimization techniques

that are based on linear regression mainly suffer from falling into local

optima. Whilst, in reinforcement learning, we use a discrete search space

instead of a continuous one leading to better exploration and exploita-280

tion of the searching phase. Therefore, using reinforcement learning can

reduce the probability of falling into local optima resulting in an improve-

ment in the performance of the proposed ensemble forecasting model. The

Q-learning method is among the most common reinforcement learning al-

gorithms based on Q values being updated in the environment. We utilize285

this approach in the proposed method because of its flexibility and ef-

fective convergence. In other words, we employ Q-learning to achieve an

optimal subset of the optimized LSTM–CNN models in order to enhance

the accuracy of the proposed ensemble model. To this end, we apply the
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bagging mechanism to create a collection of optimized LSTM–CNN re-290

gression models (BaggM = {b1, b2, . . . , bM}) where M denotes to number

of optimized LSTM–CNN models and the principle is to use reinforcement

training strategy to choose an optimal subgroup of the optimized models

called Bagg′M ′ .

We require to specify the states set S and the actions set A to under-295

take reinforcement learning strategy. Each state in the proposed model

is represented by a st = [Lt,MSEt] tuple in which Lt refers to a vector

containing M elements with the values 0 or 1 where 0 means that the

corresponding LSTM-CNN model is not selected in the ensemble model

while 1 means that the corresponding LSTM-CNN model is selected in300

the ensemble model. Moreover, MSEt belongs to the error metric of the

ensemble regression model built by the selected optimized LSTM–CNN

regression models. In the proposed method, we use 1 −MSEt as the re-

ward obtained for a pair of state and action. Each action is represented

by at = i, i = 1, 2, ...,M referring to the index of the optimized LSTM-305

CNN model which will be added/removed to/from the subset of selected

models. In other words, for at = i, if the value of ith element in the Lt

vector is 0 demonstrating that the ith optimized model is not selected,

then its value will be changed to 1 demonstrating that the ith optimized

model is selected, and vice versa. The average of the outputs of the se-310

lected optimized LSTM–CNNmodels are calculated to measure the output

performance of the ensemble model. The proposed method is designed to

ensure that an ensemble regression model with minimum error is obtained

using the Q-Learning algorithm by choosing an efficient subgroup of the

optimized LSTM–CNN models.315

The reinforcement learning algorithm maps the state to an action de-

scribed as the Π : S → A policy 49, 50. The Q-Learning approach is

founded on a function-value named as QΠ(st, at), where the states and

actions are respectively represented by st and at. The overall estimated

15
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Figure 1: The flowchart for the proposed MWOA.
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Figure 2: An overall schema of the novel HYDEREL framework.

discount reward value depending on the optimal Π strategy is defined by320

the following equation:

Qπ(s, a) = E

( ∞∑
k=0

γirt | s0 = s, a0 = a, π

)
(18)

where γ corresponds to the discount coefficient of 0 ≤ γ ≤ 1. Using the

Q-learning algorithm, the optimized action-value function Q∗(s, a) can be

quantified by:

Q∗(s, a) = E
(
rt+1 + γmax

a′
Q∗ (st+1, a

′) | st = s, at = a
)

(19)

The technique proceeds with a series of episodes in which the action value325

function Q is updated based on the following formula to determine an

optimal search strategy:

Q (st, at)← Q (st, at) + α [rt+1 + λmaxa Q (st+1, a)

−Q (st, at)]
(20)

The desirable subgroup of the optimized LSTM–CNN regression mod-

els Bagg′L′ can be defined based on the best result achieved, after the

Q-learning technique has been executed. This optimum subset is subse-330

quently applied to yield the proposed ensemble GHI time series forecasting

strategy as a final frame for the optimized LSTM–CNN models. We show
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the entire framework of our optimized deep RL ensemble model briefly

named as HYDEREL in Fig. 2 and from technical point of view in Algo-

rithm 1.335

3. Experimental setups and solar irradiance datasets

In order to execute the proposed HYDEREL framework, we program it

with python using the powerful deep learning libraries including Keras

and TensorFlow. A machine with one 16 GB RAM, one GPU of GeForce

GTX 1080 Ti and the Ubuntu operating system is utilized to conduct340

the experiments. Before conducting the experiments, we need to set the

input parameters based on a strategy. To this end, we use a greedy search

procedure to obtain the values of the input parameters through trial and

error. Accordingly, for configuring the proposed MWOA algorithm, we

choose the number of population to 20 and maximum iteration number345

to 30. It should be mentioned that the proposed HYDEREL model and

the other competitor models are executed 10 times and the average of

results is reported. Furthermore, the LSTM–CNN hyperparameters that

are evolved with MWOA are described in Table 1. We optimize eight

hyperparameters during the constructing of the optimal LSTM–CNN ar-350

chitectures including number of filters (Nf ), kernel size (Ks), maxpooling

size (MP s), batch size (Bs), number of convolutional layers (Nc), num-

ber of epochs (Ne), dropout rate (Dr), and learning rate (Lr). Moreover,

we choose powerful Adam optimizer and Relu as the activation function

during the training process. For RL ensemble configurations, we set the355

number of episodes in the Q-learning algorithm to 200 and consider 15

base optimized LSTM–CNN regression models for selecting an optimal

subset of regression models with deep RL ensemble strategy.

In order to show the competitiveness of our proposed HYDEREL frame-

work, we compare it with seven hybrid powerful state of the art deep learn-360

ing models including adaptive hybrid model (AHM) 51, hybrid feature se-
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Algorithm 1 The pseudo-code of the proposed deep HYDEREL model for solar GHI

forecasting.

1: Input: N (Population size), GEN (Maximum number of generations), and L (Number of base

regression models).

2: Output: Predicted GHI values.

3: Begin algorithm:

4: Split GHI dataset into training Tr and testing Te sets;

5: Generate a set bag of base regression models BaggM = {b1, b2, . . . , bM};

6: Set m = 1;

7: while (m < L) do

8: Generate a random initial population Xi (i=1,2,. . . , N) by chaotic tent map;

9: Set g=1;

10: while (g < GEN) do

11: Set a LSTM–CNN model for each solution based on their hyperparameter values;

12: Calculate the population fitness as the MSE of LSTM–CNN algorithm obtained by Tr

set;

13: for each search agent do

14: Update a, A, C and p;

15: if (|A|<1) then

16: Update the position of search agent using Eq.(5);

17: else if (|A|≥1) then

18: Update the position of the search agent by the Eq.(11);

19: end if

20: end for

21: Perform OBL strategy;

22: Calculate the fitness of all search agents and update X∗ if a better solution is found.

23: Set g=g+1;

24: end while

25: Consider the bm LSTM–CNN regression model with hyperparameters obtained by the best

search agent;

26: Set m=m+1;

27: end while

28: Perform deep Q-learning model over the LSTM–CNN regression model BaggM in order to chose

an optimal subset of the regression models indicated by Bagg′
M′ ;

29: Apply the ensemble strategy to forecast the GHI points in the test set Te using the selected

regression models Bagg′
M′ ;

30: Return the predicted GHI as the output;

31: End algorithm
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Table 1: The symbols and corresponding values of the LSTM–CNN hyperparameters opti-

mized by the proposed MWOA model.

Symbol Value

Nf [1, 600]

Ks [1, 30]

Ne [1, 400]

Nc [1, 2,..., 24]

MPs [1, 40]

Bs [10, 20,..., 350]

Dr [0.2, 0.25,..., 0.65]

Lr [0.001, 0.006,.., 0.1]

lection method (HFS) 52, XGboost, Outlier-robust hybrid model (ORHM)

53, novel hybrid deep neural network model (NHDNNM) 54, OHS-LSTM

55, and CNN-LSTM that have shown their strength in time-series forecast-

ing problems. Also, in order to demonstrate the search capabilities of our365

proposed HYDEREL algorithm, we use powerful evolutionary algorithms

such as genetic algorithm (GA), particle swarm optimization (PSO), ant

colony optimization algorithm (ACO), biogeography-based optimization

(BBO) and whale optimization algorithm (WOA) on the framework pro-

posed in this work. These models refer to cases in which the proposed370

MWOA algorithm is replaced by another optimization method (GA, PSO,

etc.) in the HYDEREL framework. Also, MWOA-LSTM-CNN has been

considered in order to show the role of proposed evolutionary approach

without using the element of ensemble-based reinforcement learning algo-

rithm.375

We use National Renewable Energy Laboratory 56 solar irradiance

datasets collected from two solar stations located in Los Angeles (LA)

and Phoenix in the western side of the United states. The general overview

of these two stations are provided in Figs. 3 and 4 for Los Angeles and
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Figure 3: An overview of the LA-based solar stations.

Phoenix, respectively. Each of these two solar stations contain 8760 GHI380

time series data points in one-hour intervals for the year 2018 in which

the GHI values are normalised. We consider 75% of each dataset as the

training set and the remaining 25% is allocated to test set. We should

note that the 25/75% split of the training and test sets is not random,

thus that both sets are made of distinct days. Based on these two sets of385

solar irradiance data, GHI has an increase from 8:00 to 13:00, and then,

has a decrease until it meets zero from about 18:00 to 20:00. For selecting

the input features of deep LSTM–CNN models, we utilize the partial mu-

tual information strategy (PMI). The PMI values considered above of the

threshold equal to Ξ = 0.4 is chosen which results in 57 input GHI fea-390

tures for training of the deep learning models. The root mean square error

(RMSE) and mean absolute error (MAE) which are widely used evalua-

tion metrics in the literature are considered to calculate the performance

of the forecasting models.

4. Experimental Results395

In this section, we test the forecasting performance of our proposed al-

gorithm compared to other powerful benchmark algorithms. Tables 2 and
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Figure 4: An overview of the Phoenix-based solar stations.

3 show that in all testing GHI data sets, the RMSE and MAE of our

proposed model are smaller than all other twelve benchmark models.

For instance, we notice that the RMSE of 1-step ahead prediction in400

Phoenix station for the proposed HYDEREL model equal to 0.034208

significantly outperforms in comparison with HFS as the closest competi-

tor algorithm equal to 0.034436, while the MAE of the proposed model

equal to 0.015111 significantly outperforms the GA-RL-Ens model equal

to 0.015411 as the most compatible model to HYDEREL. Furthermore,405

for the LA test dataset, the proposed HYDEREL method with a RMSE

value of 0.033451 and a MAE value of 0.016792 has the lowest values

among all the compared powerful competitive methods. It can be noted

that in comparison with AHM, HFS, ORHM, NHDNNM and HOS-LSTM

as the state of the art models for time series energy forecasting problems,410

we find that the performance of our proposed HYDEREL model is much

more reliable than these recent powerful models. Besides, the predicted

performance of the proposed model is still good compared to other hybrid

evolutionary-RL ensemble models. These results indicate that the HY-

DEREL algorithm can capture complex solar GHI features compared to415

other hybrid deep LSTM–CNN models optimized by RL ensemble models.
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Table 2: The performance results of RMSE and MAE metrics for Phoenix dataset.

Model 1-step 2-step 12-step 24-step

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

AHM 0.037729 0.020656 0.049905 0.024177 0.074583 0.034471 0.093377 0.045822

HFS 0.034436 0.016075 0.051074 0.024943 0.078714 0.034137 0.095067 0.044216

XGboost 0.036247 0.019855 0.051963 0.024639 0.072804 0.033414 0.091782 0.043693

ORHM 0.035758 0.018975 0.053833 0.026384 0.073988 0.032091 0.094503 0.043452

NHDNNM 0.035562 0.015896 0.050868 0.023332 0.077522 0.032355 0.095013 0.042383

OHS-LSTM 0.036146 0.019742 0.051916 0.024527 0.072677 0.033397 0.091561 0.043514

LSTM-CNN 0.037826 0.021139 0.050562 0.024913 0.075143 0.034891 0.093662 0.046091

MWOA-LSTM-CNN 0.036112 0.019422 0.051222 0.023922 0.072564 0.032818 0.091142 0.042989

GA-RL-Ens 0.034677 0.015411 0.051319 0.024451 0.074832 0.033511 0.094008 0.044192

PSO-RL-Ens 0.035192 0.016511 0.051922 0.023396 0.079166 0.035495 0.092381 0.045613

ACO-RL-Ens 0.039802 0.019389 0.060149 0.034888 0.079961 0.033995 0.095894 0.043617

BBO-RL-Ens 0.038226 0.020389 0.049823 0.023615 0.071998 0.032598 0.094142 0.042466

WOA-RL-Ens 0.034988 0.016503 0.053221 0.025096 0.083541 0.039562 0.096508 0.048115

HYDEREL 0.034208 0.015111 0.049533 0.022997 0.070286 0.031914 0.090416 0.041516

Table 3: The performance results of RMSE and MAE metrics for Los Angeles dataset.

Model 1-step 2-step 12-step 24-step

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

AHM 0.034389 0.018903 0.053352 0.033071 0.067799 0.036235 0.082938 0.040784

HFS 0.034481 0.017176 0.047231 0.029983 0.067668 0.041654 0.083894 0.046652

XGboost 0.034195 0.018007 0.048122 0.028775 0.067116 0.034133 0.082593 0.040888

ORHM 0.034641 0.017746 0.045537 0.024858 0.069499 0.034732 0.085318 0.038183

NHDNNM 0.039785 0.027732 0.046621 0.026433 0.076965 0.042568 0.092854 0.047328

OHS-LSTM 0.034156 0.017949 0.048055 0.028697 0.067045 0.034067 0.082507 0.040785

LSTM-CNN 0.034233 0.018032 0.048276 0.028754 0.067113 0.034119 0.082188 0.040712

MWOA-LSTM-CNN 0.034098 0.017988 0.048002 0.028599 0.067088 0.033915 0.082122 0.040615

GA-RL-Ens 0.033914 0.017187 0.053509 0.034491 0.066831 0.031911 0.081566 0.036217

PSO-RL-Ens 0.036706 0.020492 0.046581 0.024804 0.075191 0.041089 0.089096 0.046807

ACO-RL-Ens 0.036681 0.022705 0.060691 0.041818 0.067592 0.032981 0.082292 0.039489

BBO-RL-Ens 0.034011 0.017006 0.046575 0.023298 0.066461 0.035466 0.085197 0.039225

WOA-RL-Ens 0.034218 0.018416 0.062488 0.038092 0.078402 0.042139 0.092656 0.048307

HYDEREL 0.033451 0.016792 0.044396 0.023139 0.066385 0.031354 0.081216 0.035767
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Figure 5: Actual vs predicted points for Phoenix GHI test dataset.
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Figure 6: Actual vs predicted points for LA GHI test dataset.
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Figure 7: The convergence curves of the proposed HYDEREL model for legend horizons of

LA dataset.
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Figure 8: The convergence curves of the proposed HYDEREL model for legend horizons of

Phoenix dataset.
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If a forecasting algorithm can match the actual and predicted points op-

timally, it indicates the obvious strength of that method. As can be seen

from Figs. 5 and 6, our proposed HYDEREL algorithm matches well the

blue dots that represent the actual data points and the red dots that repre-420

sent the predicted data points for each of the next four different time-steps.

The important point should be noticed from Tables 2 and 3, as well as

Figs. 5 and 6, which show that as the time-step increases, the prediction

made by the our proposed HYDEREL model becomes more and more dif-

ficult, and in this case, our algorithm has the least amount of error metric425

values in comparison to other twelve benchmark models. In Figs. 8 and 7,

the diagrams generated by the proposed HYDEREL algorithm using the

next four different forecasting time-steps are demonstrated. The obvious

highlight from these diagrams refers to the high convergence speed of the

HYDEREL model in order to find the optimal solution, which is due to the430

use of two efficient operators including chaotic circle map and OBL in the

proposed MWOA algorithm. In summary, this work demonstrates that by

applying two efficient chaotic circle map and OBL operators in the pro-

posed MWOA algorithm, the hyperparameters of the deep LSTM–CNN

models are perfectly optimized, and also, the deep RL Q-learning algo-435

rithm selects the best subset of optimal solutions for solar irradiance GHI

forecasting, which indicates the strength performance of our proposed HY-

DEREL model.

5. Conclusion

In this research work, a hybrid model called HYDEREL is proposed based440

on three main components including PMI input selection strategy, the op-

timized deep LSTM–CNN models, and deep RL algorithm for predicting

solar irradiance. To validate the efficacy of the hybrid HYDEREL model,

the GHI data points obtained from two separate solar stations which are

near to the cities of Phoenix and Los Angeles are utilized. Meanwhile, in445
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different time-step scenarios, several well-known and recently published

algorithms are fairly compared with our proposed framework. The exper-

imental findings show that our proposed HYDEREL model can increase

the forecasting performance noticeably and indicate that the proposed

model is also more robust than other compared benchmark models.450
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