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Storage and Transmission Capacity Requirements of a Remote Solar
Power Generation System

Yue Chen , Member, IEEE, Wei Wei , Senior Member, IEEE, Cheng Wang , Member, IEEE,
Miadreza Shafie-khah , Senior Member, IEEE, and João P. S. Catalão

Abstract—Large solar power stations are usually located in remote areas
and connect to the main grid via a long transmission line. The energy
storage unit is deployed locally with the solar plant to smooth its output.
Capacities of the grid-connection transmission line and the energy storage
unit have a significant impact on the utilization rate of solar energy, as well
as the investment cost. This article characterizes the feasible set of capacity
parameters under a given solar spillage rate and a fixed investment budget.
A linear programming-based projection algorithm is proposed to obtain
such a feasible set, offering valuable references for system planning and
policy making.

Index Terms—Energy storage unit, polyhedral projection algorithm,
renewable power spillage, transmission line.

I. INTRODUCTION

The penetration of wind and solar generation in power systems has
witnessed dramatic growth during the past decade. However, solar
energy is intermittent; no power can be produced during the night,
calling for sufficient backup capacity to mitigate the intrahour/daily
fluctuations. Energy storage can rapidly change its input/output power
and shift demand over time, exhibiting great potential in supporting
renewable power integration [1].

At the current stage, the unit capacity cost of energy storage is still rel-
atively high, although it is continuously decreasing. The size of energy
storage must be carefully determined. Existing works can be classified
into two categories, according to the system scale. At the generation
side, the energy storage siting and sizing problem was studied in [2]
and [3] via stochastic unit commitment and stochastic model predictive
control under the multiperiod economic dispatch framework. Joint
capacity optimization of energy storage and transmission connector
was discussed in [4] using a bilevel stochastic mixed-integer optimiza-
tion in a market environment. In the above works, the uncertainty of
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Fig. 1. Configuration of the remote solar generation system.

renewable generation was represented by probability distributions and
approximated through scenarios, or the operational risk was limited by
chance constraints. The authors in [5] proposed two multiparametric
programming models to investigate the impact of energy storage on
renewable spillage and flexibility enhancement. The optimal value
function delivers useful information for storage sizing.

At the distribution-level and demand side, Bahramirad et al. [6]
proposed a reliability-constrained stochastic programming model for
energy storage sizing in microgrids; supply inadequacy due to generator
outage and intermittency of renewable plant was compensated by the
energy storage unit. Storage sizing in island and grid-connect micro-
grids was discussed in [7]. The problem was revisited in [8] considering
battery degradation, operating modes, and multiple choices of batteries.
The authors in [9] presented a two-stage method for the optimal plan-
ning and operation of prosumer energy system. Storage was planned
in the first stage aiming at minimizing life-cycle costs of renewable
and storage facilities; the second-stage entailed a multiobjective energy
management problem. The authors in [10] developed an optimization
method to size the battery energy storage in electric vehicle parking lots.
The uncertainty of charging demand was estimated by investigating the
driving patterns and behaviors, such as the probability distributions of
arrival/departure time and driving distances.

This article considers a particular scene: a large photovoltaic power
station connects to the main grid via a long transmission corridor, as
shown in Fig. 1. Given the long distance between the solar plant and
the main grid, the unit capacity cost of the transmission line is usually
much higher than that of the energy storage. Through a coordinated
planning of line and storage capacities, the line capacity can be greatly
reduced while maintaining renewable curtailment below a certain level.
The contributions of this article are twofold.

1) A data-driven robust formulation is established to evaluate the
storage and transmission capacity requirements of a remote solar
plant. Distributional uncertainty of solar energy is captured by the
perturbation of the probability coefficient associated with each day.
The deterministic counterpart of the operation problem is derived
based on duality theory.
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2) A linear programming-based projection algorithm is developed
to generate the feasible set of storage and transmission line capacity
parameters. In the case study, we demonstrate how such a feasible set
can help make an investment decision.

Unlike existing works which aim to provide a single planning
strategy, the proposed method offers the entire feasible set of storage
and transmission line capacities which ensures an efficient utilization
of renewable energy. Such a method is useful in system planning
and policy making, wherever long-distance transmission of renewable
power is needed.

II. MATHEMATICAL MODEL

The remote solar power generation system in Fig. 1 consists of a solar
plant, an energy storage unit, and a transmission line. The components
must interact and cooperate with each other to smooth the delivered
power and achieve a lower renewable curtailment rate. The power flow
relation is shown in Fig. 1.

A. Energy Storage Model

The storage model developed in [11] is used

et+1 = et + ηcpctΔt − pdtΔt/η
d (1a)

αlem ≤ et ≤ αhem (1b)

pct ≥ 0, pdt ≥ 0, pct + pdt ≤ pm (1c)

where ηc/ηd represents the charging/discharging efficiency; Δt is the
duration of period t; pm/em is the power/energy capacity of the storage
unit, depending on the size of power electronics converter/battery array;
αl ∈ (0, 0.5) andαh ∈ (0.9, 1) are constant coefficients implying stor-
age operation limits. Decision variables include charging/discharging
power pct/p

d
t , as well as the state-of-charge (SoC) et. Constraints (1a)

and (1b) describe the dynamics and feasible range of SoC.
In constraint (1c), strict complementary condition pct · pdt = 0 is

relaxed. The storage unit can switch between charging and discharging,
yielding more flexibility and positive pct and pdt in the same period.
Suppose Δt is divided into a charging interval Δc

t and a discharging
intervalΔd

t , pct , and pdt are the average charging and discharging power.
The physical charging power p̂ct and discharging power p̂dt can be
calculated as

p̂ct = pctΔt/Δ
c
t , p̂

d
t = pdtΔt/Δ

d
t . (2)

Physical implementation requires

p̂ct ≤ pm, p̂dt ≤ pm,Δc
t +Δd

t ≤ Δt. (3)

Substituting (2) into (3) gives pctΔt ≤ pmΔc
t , pdtΔt ≤ pmΔd

t . Sum
them up, we have (pct + pdt )Δt ≤ pm(Δc

t +Δd
t ) ≤ pmΔt, which is

(1c). Furthermore, for any feasible solution (pct , p
d
t ) of model (1), the

strategy p̂ct = p̂dt = pm, Δc
t = pctΔt/pm, Δd

t = pdtΔt/pm is always
physically implementable. More details are available in [11].

B. Renewable Generation Model

Historical data include hourly solar power output prnt in day n =
1 : N and period t = 1 : 24 intraday. Each day is associated with an
empirical probability ρ0n, n = 1 : N . Without loss of generality, we
assume the empirical distribution is ρ01 = · · · = ρ0N = 1/N , which
could be inexact, and the true probability ρ = [ρ1, . . . , ρN ]� resides
in the following set:

Π =
{
ρ
∣∣‖ρ− ρ0‖∞ ≤ Γ, ρ ≥ 0, ‖ρ‖1 = 1

}
. (4)

The first inequality restricts the distance between ρ and ρ0 by a constant
Γ; the remaining constraints ensure ρ is a valid probability distribution.
If we expect the real distribution is contained in Π with a confidence
level of β, the recommended value of Γ is [12]

Γ =
1

2 N
ln

2 N

1− β
. (5)

C. System Operation Model

Following power flow variables defined in Fig. 1, the solar plant
operation must obey the following constraints:

ent+1 = ent + ηcprsntΔt − psgntΔt/η
d ∀n ∀t (6a)

αlem ≤ ent ≤ αhem ∀n ∀t (6b)

prsnt ≥ 0, psgnt ≥ 0, prsnt + psgnt ≤ pm ∀n, ∀t (6c)

psgnt + prgnt ≤ Fm, prgnt ≥ 0 ∀n ∀t (6d)

prgnt + prsnt +Δprnt = prnt, Δprnt ≥ 0 ∀n ∀t (6e)

N∑
n=1

24∑
t=1

ρnΔprnt ≤ σ

N∑
n=1

24∑
t=1

ρnp
r
nt ∀ρ ∈ Π (6f)

where (6a)–(6c) are storage operation constraints; (6d) limits the total
power flow in the transmission line whose capacity is Fm; (6e) pre-
scribes power balancing, and the excessive power Δprnt is curtailed;
the last inequality (6f) imposes a cap σ on renewable power spillage
rate. In China, this value is σ = 5%. To eliminate the qualifier ∀ρ ∈ Π
constraint (6f) can be written as

max
ρ

N∑
n=1

ρn

(
24∑
t=1

(Δprnt − σprnt)

)
≤ 0

s.t. ρ ≤ 1 · Γ + ρ0 : μ+, ρ ≥ ρ0 − 1 · Γ : μ−

1�ρ = 1 : λ, ρ ≥ 0 (7)

where the constraints interpret set Π; μ+, μ−, and λ following a colon
is the dual variable associated with each constraint.

Because strong duality holds for feasible linear programs, condition
(7) requires that the optimum of the dual objective should be nonposi-
tive, i.e.,

1�(μ+ − μ−)Γ+ (μ+ + μ−)�ρ0 + λ ≤ 0, μ+ ≥ 0

μ+
n + μ−

n + λ ≥
∑24

t=1
(Δprnt − σprnt) ∀n, μ− ≤ 0. (8)

III. FEASIBLE SET OF CAPACITY PARAMETERS

For notation brevity, we use a compact form. Vector x includes all
dispatch variablesprsnt,p

rg
nt,p

sg
nt, ent,Δprnt ∀n∀t, and dual variablesμ+,

μ−, λ. Vector θ = [pm, em, Fm]� encompasses capacity parameters.
The operation problem entails finding a feasible solution in

Λ(θ) = {x | (6a)− (6e), (8)} (9)

under a fixed θ, where all constraints are linear. So (9) can be written
in a compact matrix form as

Λ(θ) = {x | Ax+Bθ ≤ b}. (10)

In (10), θ is regarded as a parameter, and equality constraints are
equivalently expressed via two opposite inequalities.

Suppose the unit capacity cost of power electronics converters,
battery array, and transmission line is cp, ce, and cl, respectively; the
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Algorithm 1.

1: Initiation: Θtemp = {θ|θ ≥ 0, c�θ ≤ ξm}.
2: Update vert(Θtemp); find unvisited vertices.
3: Solve problem (17) corresponding to unvisited vertices.
4: Update v∗ and γ∗ by (18) If v∗ = 0, terminate; if v∗ > 0, add

a cut (γ∗)�Bθ ≥ (γ∗)�b in Θtemp, and go to step 2.

available investment budget is ξm; vector c = [cp, ce, cl]
�. The feasible

region of θ is defined as

Θ = {θ | Λ(θ) 
= ∅, c�θ ≤ ξm}. (11)

The nonempty requirement inspires a projection formulation.
Define a polyhedron in variables x and θ

P = {(x, θ) | Ax+Bθ ≤ b, c�θ ≤ ξm}. (12)

Then Θ is the projection of P onto the subspace spanned by the
coordinates of θ. According to the projection theorem in [13], Θ can
be expressed as

Θ = {θ | γ�Bθ ≥ γ�b ∀γ ∈ vert(D), c�θ ≤ ξm} (13)

where D = {γ | A�γ = 0,−1 ≤ γ ≤ 0}, and vert(D) denotes all the
vertices of D. However, vertex enumeration in (13) is not a practical
method, because the dimension of D is high. By (13) we have

γ�Bθ ≥ γ�b ∀γ ∈ D ∀θ ∈ Θ (14)

which indicates that if θ∗ /∈ Θ, there must be some γ∗ ∈ D satisfying
(γ∗)�(b−Bθ∗) > 0. Therefore, the hyperplane

(γ∗)�Bθ = (γ∗)�b (15)

strictly separates θ∗ from Θ. As (15) will not remove any interior point
in Θ which satisfies (γ∗)�(b−Bθ∗) < 0, (15) is the boundary of Θ.

The strategy for computing Θ is to create a large enough initial set
Θtemp which contains Θ. Then remove θ /∈ Θ by (15), until (14) is met.
This entails solving

v∗ = max γ�(b−Bθ)

s.t. γ ∈ D, θ ∈ Θtemp. (16)

Since 0 ∈ D and γ = 0 is feasible, the optimum v∗ must be nonneg-
ative. If v∗ = 0, then (14) is certified; otherwise, if v∗ > 0, equality
(15) with the optimal solution γ∗ generates a boundary facet of Θ.
However, bilinear program (16) is nonconvex; a local optimal solution
is insufficient to certify (14).

It is proven that the optimal solution of a bilinear program like (16)
must be found at the vertices of D and Θtemp. As θ ∈ R3, the dimension
of Θtemp is low, we are able to enumerate its vertices as vert(Θtemp) =
{θk}Kk=1. Then, we solve K linear programs as follows:

v∗k = max
γ∈D

γ�(b−Bθk). (17)

The optimal solution and optimal value of thekth problem areγ∗
k andv∗k,

respectively. The maximum of the K optimums is the global optimum
of bilinear program (16), i.e.,

{v∗, k∗} : max{v∗k}, γ∗ = γ∗
k∗ . (18)

The flowchart of the linear programming-based projection method is
summarized in Algorithm 1.

IV. CASE STUDIES

The hourly solar radiation data recorded in the south of Qinghai
Province, China during 2019 are used. We choose the data in 120 days,

TABLE I
OPTIMAL SIZING STRATEGIES

10 in each month, to build the output curve of an 1-GW solar power
station in planning. In the uncertainty model,β is set to 0.99. According
to (5),Γ = 0.042 is used, implying that in the worst-case distribution, a
day can have a maximal probability of 1/N + Γ= 5.03%. For the en-
ergy storage, ηc = ηd = 0.95,αl = 0.25, andαh = 0.95. The unit ca-
pacity cost coefficients are cp = 106�/MW, ce = 1.2× 106�/MWh,
and cl = 1.1× 107�/MW; ξm = 1.5× 1010�.

The feasible sets of capacity parameters (pm, em, Fm) with
σ = 0, 5%, 10% are plotted in Fig. 2(a)–(c). With the increase of σ,
more renewable power spillage is allowed, leading to a larger feasible
set. If we solve minθ∈Θ c�θ, the optimal solution provides the sizing
strategy with the minimal investment cost. Results are listed in Table I.
In the three cases, Algorithm 1 converges in about 40 iterations; the
computation time is about half a minute. Hence, the computational
efficiency is satisfactory. With the help of energy storage, the capacity
of transmission line is about 68% of the capacity of solar station when
σ = 5% (stipulated in China), which greatly reduces the burden on
transmission line construction. The optimal energy-power capacity
ratio is about 5–7 h in all the three cases, which mainly depends on
the solar output curve. The cap of renewable spillage rate has notable
influence on the size of storage unit which is much cheaper, and its
impact on the transmission line capacity is not so significant.

The impact of storage cost can be analyzed based on the feasible sets.
According to above results, if we fix em/pm = 6, then the feasible sets
in R2 are portrayed in Figs. 2(d)–(f). The difference is clear: Without
energy storage (em = 0), the feasible capacity of the transmission line
decreases with the growth of σ. Since the energy–power ratio is given,
the unit capacity cost of energy storage is c0s = ce + cp/6 ≈ 1.367×
106�/MWh. We change cs in the interval [0.5c0s, 1.2c

0
s]. Coefficients cs

and cl determine the gradient vector of the investment cost, and, thus,
influence the optimal sizing strategy. Accounting for the continuous
variation of cs, the gradient vector of investment cost is illustrated in
Fig. 2(d). The optimal sizing strategy is one of the vertices of the feasible
region determined by the gradient vector, as in Fig. 2(d). In the same
way, all candidate solutions in each case are marked in Fig. 2(d)–(f).
When σ = 10% and the energy storage is expensive, only transmission
line is invested. In all the remaining cases, energy storage plays an
important role in reducing the line capacity and the total investment cost.

The feasible set in Fig. 2 offers more insightful information. The
Pareto front of the feasible set consists of the points, where capacities of
energy storage em and transmission line Fm cannot be reduced simul-
taneously. The Pareto front does not depend on the costs of storage and
transmission line. From Fig. 2 we can see that if em/pm = 6 h, at the
Pareto front, reducing line capacity by 100 MW requires the deployment
of about 1-GWh energy storage. Cost information is needed only when a
concrete optimal solution is needed. If the cost function is nonlinear, the
optimal solution can be observed by plotting the contour of the objective
function. The proposed method simplifies the operation problem which
involves much more variables and retains the operational requirements
on the capacities, making capacity optimization quite straightforward.
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Fig. 2. Feasible set of capacity parameters under different caps. (a) 3D feasible set of capacity parameters with σ= 0%. (b) 3D feasible set of capacity parameters
with σ = 5%. (c) 3D feasible set of capacity parameters with σ = 10%. (d) 2D feasible set of capacity parameters with em/pm = 6 and σ = 0%. (e) 2D feasible
set of capacity parameters with em/pm = 6 and σ = 5%. (f) 2D feasible set of capacity parameters with em/pm = 6 and σ = 10%.

Fig. 3. Relation between σ and ξm.

If the available budget ξm shrinks, the facet corresponding to the
budget constraint in Fig. 2(a)–(f) moves toward the origin; the feasible
set may become a singleton, which determines the optimal sizing
strategy under the given spillage cap. We investigate the relationship
between the budget and the corresponding minimum spillage rate. By
treating ξm and σ in (6a)–(6e), (8), and (12) as variables, we can
project polyhedron P onto the subspace spanned by the coordinates
of ξm and σ. In this case, capacities pm, em, Fm are also decision
variables; the parameter is θ = [σ, ξm]�, and the parameter set is
Θ = {(σ, ξm)|σ ∈ [0, 1], ξm ∈ [109, 1010]}. Executing Algorithm 1,
the relation between ξm and σ is obtained and depicted in Fig. 3.
This figure clearly shows how the spillage rate influences the minimum
budget. If σ = 0, the minimum budget is ξm = 9.5× 106�. Such an
illustrative result provides useful information for capacity sizing and
policy making.

V. CONCLUSION

This article studies the capacity requirements of storage and trans-
mission line in order to achieve a certain spillage target for a remote solar
generation system. A linear programming-based projection algorithm
is proposed to determine the feasible set of capacity parameters. The

proposed method can offer useful information for capacity sizing and
policy making.
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