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A B S T R A C T   

This paper proposes a comprehensive optimization program to increase economic efficiency and improve the 
resiliency of the Distribution Network (DN). A Demand Response Program (DRP) integrated with Home Energy 
Storage Systems (HESSs) is presented to optimize the energy consumption of household consumers. Each con-
sumer implements a Smart Home Energy Management System (SHEMS) to optimize their energy consumption 
according to their desired comfort and preferences. To modify the consumption pattern of household consumers, 
a Real-Time Pricing (RTP) algorithm is proposed to reflect the energy price of the wholesale market to the retail 
market and consumers. In addition, a Self-Healing System Reconfiguration (SHSR) program integrated with 
Distributed Energy Resources (DER), reactive power compensation equipment, and Energy Storage Systems 
(ESSs) is presented to manage the DN energy and restore the network loads in disruptive events. The reconfi-
guration operation is performed by converting the isolated part of the DN from the upstream network to several 
self-sufficient networked virtual microgrids without executing any switching process. Real data of California 
households are considered to model the home appliances and HESSs. The proposed comprehensive program is 
validated on the modified IEEE 123-bus feeder in normal and emergency operating conditions.  

Nomenclature 

Abbreviation 
AC Air Conditioner 
DER Distributed Energy Resources 
DISCO Distribution Company 
DN Distribution Network 
DNR Distribution Network Reconfiguration 
DRP Demand Response Program 
DRPHESSs Demand Response Program integrated with Home 

Energy Storage Systems 
ELs Essential Loads 
ENT Entertainment system 
ESSs Energy Storage Systems 
EVs Electric Vehicles 

HESSs Home Energy Storage Systems 
ISO Independent System Operator 
L Lighting system 
MTs Micro Turbines 
PHEV Plug-in Hybrid Electric Vehicle 
PVs Photo-Voltaic generators 
RTP Real-Time Pricing 
SHEMS Smart Home Energy Management System 
SHSR Self-Healing System Reconfiguration 
SHSRDE SHSR integrated with DERs, ESSs, and DN reactive power 

compensation equipment 
SVCs Static VAR Compensators 
W Washer-dryer machine 
WTs Wind Turbines  
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Indices and sets  

t ∈ T Index of time, T = {1, 2, ..., 23,24}. 
i ∈ J Index of consumers. 
d1 ∈ D1 Index of smart home devices that consumers care about their power 

consumption at each time, D1 = {AC, L,ENT}. 
d2 ∈ D2 Index of smart home devices that consumers care about the total 

amount of energy they use throughout the day, D2 = {PHEV,W}. 
d ∈ D Index of all smart home devices, D = {AC,PHEV,W, L,ENT}. 
Tm(i,d) ∈

T 
Set of times when consumer i wants to use device d. 

b, g ∈ B Index of buses. 
m,n ∈ Bd Index of buses that are disconnected from the upstream network. 
id ∈ Jd Index of consumers that are not supplied from the network. 
to ∈ To Index of time during emergency conditions. 
s ∈ S Index of scenarios. 
fs ∈ FS Index of faulted sources. 
fl ∈ FL Index of faulted lines.  

Parameters  

Tempout(i, t) The temperature outside the house of consumer i at time t. 
Δ(i) The heat transfer factor between indoor and outdoor 

environments of consumer i’s house. 
∇(i) The thermal efficiency of the air conditioner belongs to 

consumer i. 
TempComfmin(i)/
TempComfmax(i)

Minimum/Maximum comfortable temperature for consumer i. 

a(i,d)/b(i,d) Positive constants in the device d’s gross surplus function of 
consumer i. 

Pmax(i,d) Maximum power consumed by device d owned by consumer i. 
Emin(i, d2)/
Emax(i, d2)

Minimum/Maximum energy usage of the device d2 owned by 
consumer i. 

TempComf(i) The desired comfortable temperature of consumer i. 
PLightComf(i) The amount of power consumed to achieve the desired 

brightness of consumer i. 
PEntComf(i, t) The desired power consumption of consumer i’s entertainment 

system at time t. 
PHESSDmax(i) Maximum discharge power of the HESS of consumer i. 
PHESSCmax(i) Maximum charge power of the HESS of consumer i. 
EffPHEV(i) The efficiency of consumer i’s PHEV charger. 
EffHESS(i) The efficiency of the HESS of consumer i. 
CapHESS(i) The capacity of consumer i’s HESS. 
σ1 ,σ2,σ3,σ4 Positive constants in the operating cost function of each HESS. 
γ(i) Minimum SOCHESS of consumer i that still allows the consumer 

to get power from the HESS. 
ζ Constant step size. 
r(b, g)/x(b, g) Resistance/Reactance of the line between bus b and g. 
AD(b, t, s) Predicted active demand at bus b at time t for scenario s. 
RD(b, t, s) Predicted reactive demand at bus b at time t for scenario s. 
CapMT(b),
CapWT(b),
CapPV(b)

The capacity of the MT, WT, and PV at bus b. 

ω(t),GHI(t) Wind speed, Global horizontal irradiance at time t. 
PRW(b, t, s) Predicted active output power of the WT at bus b at time t for 

scenario s. 
PRPV(b, t, s) Predicted active output power of the PV at bus b at time t for 

scenario s. 
CapSVC(b) The capacity of the SVC at bus b. 
ProbAD(b, t, s) Probability of scenario s for predicted active demand at bus b at 

time t. 
ProbRD(b, t, s) Probability of scenario s for predicted reactive demand at bus b 

at time t. 
ProbPRW(b, t, s) Probability of scenario s for predicted active output power of 

the WT at bus b at time t. 
ProbPRPV(b, t, s) Probability of scenario s for predicted active output power of 

the PV at bus b at time t. 
MTP(t) Price for buying active power from each MT at time t. 
MTQ(t) Price for buying reactive power from each MT at time t. 
CP(t) Price for selling energy to consumers at time t. 
UPSP(t) Price at wholesale spot market for selling energy to upstream 

network at time t. 
UPBP(t) Price at wholesale spot market for buying energy from the 

upstream network at time t. 
EFES(b) Charging efficiency of the ESS at bus b. 
CapES(b) The capacity of the ESS at bus b. 
maxSOC(b) Maximum state of charge of the ESS at bus b. 

(continued on next column)  

(continued ) 

maxCES(b)/
maxDES(b)

Maximum charging/discharging power of the ESS at bus b. 

maxQWT(b) The coefficient for maximum output reactive power of WT at 
bus b. 

maxQMT(b) The coefficient for maximum output reactive power of MT at 
bus b. 

minrsv Minimum necessary spinning reserve of system.  

Variables  

CNS(i) Consumer i’s net surplus. 
CGS(i) Consumer i’s gross surplus. 
P1(i,d1, t) Power consumption of device d1 owned by consumer i at time t. 
P2(i,d2, t) Power consumption of device d2 owned by consumer i at time t. 
PHESS(i, t) Power consumption of HESS belongs to consumer i at time t, 

Positive → Charging / 
Negative → Discharging. 

Pt(i, t) The total power consumption of all devices owned by consumer i at 
time t. 

E2(i,d2) Energy consumption of device d2 owned by consumer i in simulation 
horizon. 

GSur(i,d1, t) The gross surplus consumer i gets from using device d1 at time t. 
GSurtd(i,d2) The gross surplus consumer i gets from using device d2 throughout 

the day. 
Tempin(i, t) The temperature inside the house of consumer i at time t. 
HESSCost(i) The operating cost function of HESS of consumer i throughout the 

day. 
SOCHESS(i,

t)
The state of charge for the HESS of consumer i at time t. 

Pr(t) Energy price in the retail market at time t. 
CostWhM(t) Cost of utility company for buying energy from the wholesale market 

at time t. 
Pl(b,g, t) Line transmitted active power from bus b to bus g at time t. 
Ql(b,g, t) Line transmitted reactive power from bus b to bus g at time t. 
Vol(b, t) Voltage of bus b at time t. 
PMT(b, t) Active generated power of the MT at bus b at time t. 
QMT(b, t) Reactive generated power of the MT at bus b at time t. 
PES(b, t) The active output power of the ESS at the bus b at time t. 
QWT(b, t) Reactive generated power of the WT at bus b at time t. 
QSVC(b, t) Reactive generated power of the SVC at bus b at time t. 
ZP(b, t) Binary, 1 if the WT or PV at the bus b is synchronized with the 

network at time t and generates active power, otherwise 0. 
ZQ(b, t) Binary, 1 if the WT at bus b is synchronized with the network at time t 

and generates or uses reactive power, otherwise 0. 
PUPB(t) Active power bought from the upstream network at time t. 
PUPS(t) Active power sold to the upstream network at time t. 
BUPB(t) Binary, 1 if energy is bought from the upstream network at time t, 

otherwise 0. 
BUPS(t) Binary, 1 if energy is sold to the upstream network at time t, 

otherwise 0. 
rsv(t) Spinning reserve of the system at time t. 
UTP Profit of the utility company. 
Lin(m,n) Binary, 0 if the energy flow in the line between buses m and n can be 

zero, otherwise 1. 
Din(m, to) Binary, 1 if the load at the bus m at time to is supplied by the network, 

otherwise 0. 
dsd(fl) Downstream demand of faulted line fl. 
nxtdsdnth(fl) Downstream demand of nth next upstream faulted line after fl. 
ReCoCase Resiliency coefficient for each case in emergency operation mode. 
RDCase Restored demand ratio in each case in emergency operation mode. 
Resiliency Resiliency of the system.  

1. Introduction 

The cost of outages to the customer community is so high that the 
power system should be able to survive all usual disturbances without 
widespread load outages [1]. Thus, the concept of resiliency has been 
introduced to improve the system’s efficiency in emergencies [2]. Ac-
cording to [3], resilience is the ability of a system to prepare and adapt 
to changes in conditions; and withstand and quickly recover from 
disruptive events. Self-healing is one of the capabilities that increase 
resilience and flexibility in intelligent distribution networks. Therefore, 
after occurring a disruptive event, an intelligent distribution network 
with self-healing capability can turn the distribution system into several 
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microgrids using reconfiguration methods [4]. Integrating DERs and a 
suitable method for intelligent energy management enables microgrids 
to restore their loads and self-sufficiently supply their demand. 

Due to the high importance of the resiliency of distribution systems 
in recent years, the restoration of network loads after disruptive events 
has become a hot topic for researchers. Some papers have used the ad-
vantages of DERs to restore interrupted loads. Ref. [5] utilizes distrib-
uted energy resource management systems and renewable energy 
resources to adjust the frequency and voltage for the restoration of 
distribution systems. The two-step scenario-based model is used to uti-
lize Renewable energy resources in the resilient operational scheduling 
of the system. Ref. [6] introduces an optimization process for enhancing 
the resiliency of the distribution system considering the interaction of 
DERs and loads. The method integrates the loads and DERs into a switch- 
level facility model to enhance the controllability of the system during 
outage conditions. Ref. [7] evaluates a model for increasing the dynamic 
stability in secondary frequency control using synchronous DERs 
considering the communication delay. The method encounters the time- 
varying communication delays in the simulation process of secondary 
frequency control and a delay compensator is utilized. Ref. [8] proposes 
a bi-level simulation process to restore islanded microgrid loads by 
managing frequency stability using DERs and considering network 
imbalance. The first level problem optimizes the restoration problem; 
meanwhile, the transient model is solved to manage frequency stability. 

Some papers have benefited from integrating Electric Vehicles (EVs) 
or ESSs with DERs to improve the speed and flexibility of operation in 
emergencies. Ref. [9] proposes a stochastic mixed-integer linear pro-
gram to improve the resiliency of the distribution system. The model 
uses a guidance method to send EVs to faulted areas. The restoration of 
Essential Loads (ELs) is done by considering the probabilistic nature of 
EVs availability. Ref. [10] develops a model to enhance DN resiliency in 
emergencies. The model uses a partitioning method for ESSs to reduce 
the peak load and necessary load shedding through a MILP method. 
Ref. [11] presents a strategy to improve the resiliency of a hydro-diesel- 
battery microgrid in island mode. The paper takes advantage of DERs 
and ESSs in the microgrid to restore high-priority loads. 

Sometimes, due to the high intensity of disruptive events, a part of 
the system, in addition to losing its connection with the upstream 
network, also suffers from a shortage in its DERs and local ESSs. Also, the 
uncertainties related to the availability of EVs exacerbate the situation 
for the operators. To overcome this issue, the operators can utilize 
mobile energy resources and mobile storage systems in the load resto-
ration. Mobile energy resources and mobile storage systems meliorate 
the load restoration process by providing energy for the isolated parts of 
the system suffering from resource shortage. Ref. [12] presents a pre-
ventive scheduling method to increase network resiliency and reduce 
the cost associated with unsupplied loads. In this method, the authors 
have used DERs and mobile energy resources. Meanwhile, this paper 
does not model the connection of the faultless part of the DN with the 
upstream network. 

However, during highly destructive events, multiple faults, 
numerous unsupplied consumers, lack of sufficient resources, and weak 
transmission and distribution networks make it very difficult to restore 
service to consumers. When the generation and transmission sectors are 
severely limited to restoring the loads, demand-side management 
through appropriate DRPs is one of the effective methods for restoring 
system loads and increasing resilience [13]. In fact, by determining 
sufficient incentives for consumers, the system operator can modify their 
consumption pattern to utilize the capabilities of the demand side to 
increase resilience and operate economically effectively. Taking 
advantage of DSM in load restoration is one of the effective ways that 
has attracted the attention of researchers in recent years. Ref. [14] 
proposes a stochastic scenario-based model to boost DN resiliency. The 
model uses the DRP, solar energy resources, determination of starting 
points, and displacement of essential mobile energy resources to mini-
mize the interrupted loads considering the uncertainty for solar 

generation and load. Ref. [15] presents a two-stage method to decrease 
the disruptive impacts of pre-planned outages on a residential sector. 
The method integrates EV scheduling with reshaping the load curve of 
household consumers to minimize the unsupplied loads. Ref. [16] pro-
vides a stochastic optimization model to increase the resiliency of 
microgrids by modeling the uncertainties in the energy market price, 
renewable energy resources, and load. The model uses DERs, renewable 
energy resources, and interruptible and transferable loads in the 
scheduling of microgrids. Ref. [13] proposes a real-time pricing method 
in a DRP for modifying the consumption pattern of household consumers 
and improving the distribution system’s resiliency. HESSs are utilized to 
supply the demand of the consumers’ houses in a self-sufficient manner 
when the power supply from the network is interrupted. 

Forming microgrids through Distribution Network Reconfiguration 
(DNR) is one of the most efficient and promising solutions to increase 
distribution system resiliency in emergencies and restore loads. 
Ref. [17] proposes a framework for enhancing the resiliency of the in-
tegrated power DN and district heating system. The framework uses 
sectionalizing switches and valves in the DNR and changes the topology 
of the integrated system to isolate faults and restore services. Ref. [18] 
develops a self-healing method to control microgrids and increase sys-
tem resiliency during operation in island mode. The method uses lines 
and switches added to the system as backups to reduce unsupplied ELs. 
Ref. [19] evaluates the resiliency of DNs by introducing an index to 
measure the superiority of the reconfigured system. The paper focused 
on maximizing the restored loads and minimizing the cost associated 
with additional switching in the DNR. Ref. [20] proposes a restoration 
method for a hybrid AC-DC distribution system to increase DN resil-
iency. The method restores ELs in DN after a disaster by determining the 
output of voltage source converters and optimally planning the stored 
energy in electric buses in the DNR. Ref. [21] improves DN resiliency by 
maximizing natural gas reserves and the stored energy in EVs before the 
storm, applying DNR, reducing the congestion of essential lines, and 
directly controlling loads after the storm. 

During the blackout, the black start capability of the generating unit 
is an essential challenge for system restoration. Ref. [22] determines the 
best method to restore the DN from blackouts by examining several 
generation units with self-starting capability. In addition, to ensure the 
radiality of the network topology, the optimal switching sequence dur-
ing the DNR has been provided. 

In emergencies, priority should be given to improving network 
resiliency and reducing unsupplied loads. However, the lack of attention 
to economic efficiency in the frameworks proposed in the literature 
leads to high operating costs and the inability to implement them in 
practice. A detailed examination of the papers mentioned above gives us 
the following points:  

• In most of the work, only the improvement of the DN resilience has 
been targeted for optimization without considering the economic 
issues. In addition, optimizing the operation of the connected part of 
the network to the upstream network has not been considered. 

• In most papers that have modeled the disruptive events in the sys-
tem, only the outage of one line or a few limited lines has been 
modeled. 

• The use of mobile energy resources and repair group planning in-
creases the load restoration delay time.  

• In most papers after the disaster, the black start operation has been 
ignored.  

• The use of EVs as sources of energy after a disaster, results in the 
following problems: 1. The uncertainty of the availability of these 
cars; 2. The need to recharge immediately after exiting the emer-
gency condition and the emergence of a new peak load; 3. The 
inability of the owner to use the car in emergencies and after that 
when charging, and as a result, damage to their comfort; 4. The need 
to pay incentive payments to car owners to make cars available in 
emergencies. 
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• The use of electric buses to provide energy to the network in emer-
gencies causes the transportation network to face a shortage and 
exacerbates the problem during a disaster.  

• In all papers that have restored the load using reconfiguration, 
switching has been carried out, which brings the following disad-
vantages: a) Time delay; b) The need for two switches on both sides 
of all lines in DN; c) The need to reconfigure the system again after 
another fault occurs; 4. Lower participation of loads in microgrids 
compared to the origin DN topology reduces load inertia in the sys-
tem, which makes the primary frequency control more difficult.  

• Almost all papers execute direct load control and load shedding as 
DRPs in emergencies, which severely harms the comfort of 
consumers. 

To answer and solve the issues raised above, in this paper, a DRP 
integrated with HESSs (DRPHESSs) to manage the energy of household 
consumers and a SHSR integrated with DERs, ESSs, and DN reactive 
power compensation equipment (SHSRDE) program to manage the en-
ergy of the DN and restore interrupted loads in emergencies is provided 
through the transformation of the DN into several self-sufficient net-
worked virtual MGs. In DRPHESSs, every SHEMS offers the optimal 
energy consumption schedule and HESSs’ optimal charging and dis-
charging schedule to each household according to the real-time prices. 
Furthermore, each SHEMS manages the stored energy in the HESS in 
emergencies to optimally supply the household appliances. In SHSRDE, 
ISO optimizes the active and reactive power of dispatchable resources to 
maximize the economic efficiency according to the network conditions. 
In addition, ISO dispatches the available resources and controls the 
equipment in the isolated part of the network to maximize the restored 
loads. The proposed framework has the following advantages over 
previous work in the field:  

• In this article, a framework is presented that, in addition to 
improving network resiliency, simultaneously enhances the eco-
nomic efficiency of operating all parts of the network (the fault- 
prone part that has lost its connection with the upstream network 
and the connected part of the network to the upstream network).  

• In the model of this paper, regardless of the type of disasters, outages 
and faults in all types of resources, devices, and network components 
are considered. Also, to avoid time delays, available resources of the 
system are used to restore loads. 

• Due to the necessity of black start management, a minimum aggre-
gate amount of stored energy is considered in ESSs as the spinning 
reserve using the PJM method, so load restoration is carried out 
immediately and without time delay.  

• Uncertainties related to renewable energy resources and load are 
generated through different scenarios by appropriate distribution 
functions. Furthermore, to speed up the optimization time, the 
developed backward reduction algorithm using Kantorovich dis-
tances has been used in reducing the scenario.  

• Utilizing ESSs and HESSs with almost constant availability (except in 
cases of faults or pre-planned repairs) removes incentive payments 
without harming the comfort and convenience of consumers and 
owners of EVs. It is also shown in the paper that the initial cost of 
their construction will break even in less than five years.  

• The restoration is done much faster without executing any switching 
process. In addition, if a microgrid faces another component fault, 
the resources available in other microgrids can supply the demand of 
the faulted microgrid without further reconfiguration. In addition, 
with the connection of microgrids, the participation of loads has 
increased, which causes an increase in load inertia and consequently 
improves the primary frequency control.  

• Instead of load shedding, a pricing algorithm has been used in the 
DRPHESSs, which according to the comfort and priority of con-
sumers, modifies the consumption pattern of consumers to achieve 

more economical operation (in normal operation conditions) and 
increase DN resiliency (in emergency operation conditions). 

• A parameter has been introduced to measure the level of DN resil-
iency, which measures the system’s ability to restore the loads ac-
cording to the severity of the disasters in different experiences. 

Table 1 makes a comparison between the works in the literature 
review and the proposed framework of the manuscript. 

The rest of this paper is organized as follows. Section 2 explains the 
modeling and formulation of the proposed framework. Section 3 pro-
vides the simulation settings and results of the proposed framework. 
Section 4 provides a discussion of main achievements of the proposed 
framework. Finally, the conclusions of the paper are drawn in Section 5. 

2. Modeling 

2.1. Requirements description 

The main security problems of power systems are caused by the 
imbalance between load and generation and security issues related to 
the transmission network. 

2.1.1. Balance issues 
The balance between load and generation is constantly disturbed by 

load fluctuations, inaccurate control of generators’ output, and some-
times by the sudden outage of generation units or transmission lines. The 
services utilized to solve these phenomena are listed below: 1. Regula-
tion services designed to respond to rapid load fluctuations and small 
unwanted changes in electricity generation; 2. Load-following services 
that deal with slower fluctuations; By keeping the unbalance close to 
zero and the frequency close to its nominal value, these two service 
models are considered preventive security measures. Nevertheless, the 
regulatory actions are relatively few, and the load-following actions are 
predictable. On the other hand, 3. Reserve services are for managing 
massive and unpredictable power shortages (which threaten system 
stability). Therefore, this paper will focus on the reserve services due to 
their importance in balance issues. Reserve services are for providing 
corrective actions. 

2.1.2. Network issues 
In a power system, the connection between generators and con-

sumers is through an extensive network. When the load and electricity 
generation change, branch currents and node voltages fluctuate. The 
system operator can increase the amount of power transferred from one 
part of the network to another by using reactive power sources as 
voltage control services. 

The amount of reactive power support service depends on the ability 
to supply reactive power and prevent voltage collapse after an outage 
occurs. Therefore, this paper will focus on reactive power support ser-
vices due to their importance in network issues. 

2.2. Players of the system 

2.2.1. Independent system operator (ISO) 
Since maintaining security and improving resiliency is a systemic 

concept, it should be managed centrally. Therefore, ISO is responsible 
for the operation of the system and the supply and purchase of the re-
quirements for maintaining security and improving resilience. 

2.2.2. Utility company 
The utility company participates in the wholesale energy market on 

behalf of the consumers (as a retailer) and buys the energy they need. 
Determining the price of selling electricity to consumers is also one of 
the utility company’s duties. 
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2.2.3. Distribution company (DISCO) 
The ownership and operation of the distribution network resources 

and equipment is on DISCO. The resources and equipment in this model 
are Micro Turbines (MTs), Wind Turbines (WTs), Photovoltaic genera-
tors (PVs), ESSs, and Static VAR Compensators (SVCs). 

2.2.4. Consumers 
In this paper, all consumers are household consumers. Each con-

sumer utilizes a SHEMS, home appliances Air Conditioner (AC), Washer- 
dryer machine (W), Lighting system (L), Entertainment system (ENT), a 
Plug-in Hybrid Electric Vehicle (PHEV), and a HESS. 

Table 1 
Comparison between the Works in the Literature Review and the Proposed Framework.  
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2.3. DRPHESSs 

At the beginning of the day, SHEMSs cooperated with the utility 
company in implementing the DRPHESSs. Each SHEMS maximizes the 
consumer’s net surplus by considering energy prices and settings related 
to consumer comfort and preferences. The utility company informs 
SHEMSs of the energy prices according to the total demand for each 
hour. This RTP program reflects wholesale market prices to consumers. 
Then, each SHEMS offers the optimal energy consumption schedule for 
each home appliance and the optimal charging and discharging schedule 
of the HESS. In emergencies, the energy supply to some consumers may 
be interrupted. In this situation, SHEMSs announces the optimal con-
sumption schedule according to the stored energy in HESSs. Fig. 1 shows 
the DRPHESSs flow chart. 

2.4. SHSRDE 

Initially, the utility company informs ISO of the network load and the 
energy price obtained from the DRPHESSs. Moreover, DISCO informs 
ISO of information related to the status of system resources and equip-
ment, such as the amount of energy stored in ESSs, failures, and pre- 
planned repairs. Then, by adding weather information, ISO predicts 
the demand and the amount of RERs generation power. Finally, ISO 
optimizes the active and reactive power of dispatchable resources. The 
objective is to maximize the utility company’s profit according to 
network-related constraints, network equipment and resource con-
straints, and system security constraints. In emergency conditions, ISO 
transforms the isolated part of the system into several self-sufficient 
networked virtual microgrids. ISO implements this process by resource 
dispatching and equipment control in the isolated part. The objective in 

emergencies is maximizing the restored loads and number of microgrids. 
The SHSRDE flow chart is shown in Fig. 2. 

2.5. Economic concepts 

2.5.1. Consumer’s gross surplus 
The consumer’s gross surplus represents the overall value that the 

consumer gives to the energy they buy from the utility company [23]. In 
this paper, each consumer considers a gross surplus for each household 
appliance, and the sum of all these functions for a consumer forms the 
gross surplus function of that consumer. 

2.5.2. Consumer’s net surplus 
The net surplus of each consumer is the difference between the 

consumer’s gross surplus and the consumer’s costs (energy purchase 
cost and HESS usage cost) [23]. The consumer’s net surplus expresses 
the additional value the consumer obtains due to the ability to purchase 
the entire amount of energy they need at one price. 

2.5.3. Producer’s revenue 
In the retail market, the utility company sells energy to household 

consumers. From an economic point of view, the utility company can be 
considered a producer in the retail market. The utility company’s 
(producer’s) revenue at each hour equals the hourly sold energy 
multiplied by the energy price per hour. 

2.5.4. Global welfare 
In this paper, global welfare equals the sum of the consumers’ net 

surplus plus the total utility company’s profit 

Fig. 1. The DRPHESSs flow chart.  
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Fig. 2. The SHSRDE flow chart.  
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2.6. Scenario generation and reduction 

Forecasting the generation of RERs is always associated with un-
certainties originating from unpredictable weather conditions. The beta 
distribution is used in this paper to predict the amount of energy pro-
duction from wind and solar energy resources [24]. In addition, the 
normal distribution function has been used to model the uncertainties 
associated with load forecasting [25]. 

2.6.1. Scenario generation 

2.6.1.1. Wind energy resources. After the wind forecast, ISO predicts the 
energy produced by the wind resources according to the following linear 
piecewise function [24]: 

PpredWT(b, t) = CapWT(b) ×

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

r1ω(t) − vci;

r1(v1 − vci) + r2(ω(t) − v1);

r1(v1 − vci) + r2(v2 − v1)

+r3(ω(t) − v2);

1;
0;

vci⩽ω(t)⩽v1
v1⩽ω(t)⩽v2

v2⩽ω(t)⩽vr
vr⩽ω(t)⩽vco

otherwise

,∀t

∈ T,∀b ∈ B [24]
(1)  

where ω(t) is the wind speed in t, CapWT(b) is the capacity of the WT in 
bus b, PpredWT(b, t) is the predicted generation power of the WT in bus b at 
time t, and r1, r2, r3, vci, v1, v2, vr, vco are positive parameters related to 
the technical features of WTs. 

2.6.1.2. Solar energy resources. After predicting solar radiation, ISO 
predicts the energy produced by solar resources according to the 
following function [24]: 

PpredPV (b, t) = CapPV(b) ×

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

GHI(t) × 0.65
Rc

; 0⩽GHI(t) < Ra1

GHI(t) × 0.95
Rc

;Ra1⩽GHI(t)
,∀t ∈ T,∀b

∈ B [24]
(2)  

where GHI(t) is the global horizontal irradiance at time t, CapPV(b) is 
the capacity of the PV in bus b, PpredPV(b, t) is the predicted generation 
power of the PV in bus b at time t, and Ra1, Rc are positive parameters 
related to the technical features of PVs. 

The beta distribution is denoted by two positive parameters: alpha α 
and beta β. 

FPnorm(x) = xα− 1.(1 − x)β− 1
.N [24] (3)  

Mean(b, t) = Pnorm(b, t) =
Ppred(b, t)
Cap(b)

=
α

α + β
,∀t ∈ T,∀b ∈ B [24] (4)  

Variance(b, t) = σ2(b, t) = std2(b, t) =
α.β

(α + β)2
.(α + β + 1)

,∀t ∈ T,∀b

∈ B [24]
(5)  

std(b, t) = 0.2Pnorm(b, t)+ 0.21,∀t ∈ T,∀b ∈ B [24] (6)  

2.6.1.3. Demand. ISO predicts the demand according to DRPHESSs, 
where the mean of the normal distribution equals the demand from 
DRPHESSs. 

2.6.2. Scenario reduction 
In the simulation of this paper, 1000 scenarios are generated for each 

of the above variables per hour. Then, the number of scenarios for each 

case per hour was reduced to 10 scenarios by the developed backward 
reduction algorithm using Kantorovich distances [26]. In addition to 
increasing the optimization speed, this algorithm also maintains the 
accuracy of the optimal answer. 

2.7. Determination of spinning reserve 

Ideally, the level of security provided by purchasing ancillary ser-
vices should be determined by a cost/benefit analysis. The optimal point 
of this level is the equality of the marginal cost of providing more se-
curity and the marginal value of this level of security. However, calcu-
lating the marginal value of system security is an impractical task. 
Therefore, the PJM method, as one of the most comprehensive and 
practical methods, is used to evaluate the spinning reserve of the system 
[27]. The basis of this method is to evaluate the probability that the 
planned generation during the period when it is not possible to replace 
the generators (known as lead time) will supply the expected load. 
Therefore, the risk index shows the risk of providing or not providing the 
demand during the lead time. Finally, the spinning reserve of the system 
is determined based on the acceptable system’s risk. The acceptable 
system’s risk specification is a management decision based on economic 
and social criteria. The failure probability function is defined as follows: 

P(failure) = 1 − eλ×LT [27] (7)  

LT =
Time to start up micro turbines
60min × 24hours × 365.5days

[27] (8)  

where P(failure) is the failure probability function, λ is the number of 
failures per year, and LT is the lead time. 

2.8. Formulation 

2.8.1. DRPHESSs 

maxCNS(i) = max

(

CGS(i) − HEssCost(i) −
∑

t∈T
Pr(t)Pt(i, t)

)

(9)  

The objective function of each consumer in DRPHESSs is maximizing 
their net surplus CNS(i) according to (9). In (9), CGS(i) is the consumer’s 
gross surplus, HEssCost(i) is the operation cost of the HESS, and 

∑
t∈TPr 

(t)Pt(i, t) is the consumer’s payment to the utility company. Smart home 
appliances are divided into two categories: 1. The smart home appli-
ances that consumers care about their power consumption at each time, 
D1 = {AC, L, ENT}, 2. The smart home appliances that consumers care 
about the total amount of energy they use throughout the day, D2 =

{PHEV,W}. Hence, the gross surplus functions of the first category 
appliances are dependent on their power consumptions at each time. 
However, the gross surplus functions of the second category depend on 
the total amount of energy they use throughout the day. 

Furthermore, in the proposed schedule of each SHEMS for the first 
category of household appliances, the optimal consumption power is 
suggested to the consumer. While, for the second category of household 
appliances, optimal energy consumption is suggested to the consumer. 
This means that the consumer will know when to use his washing-drying 
machine, or when to charge his electric vehicle battery. 

The indoor temperature of each consumer in each hour is defined in 
equation (10): 

Tempin(i, t) = Tempin(i, t − 1)+Δ(i)(Tempout(i, t)

− Tempin(i, t − 1))+∇(i)P1(i,′AC′, t), ∀i

∈ J,∀t ∈ T (10)  

where Tempin(i, t) is the indoor temperature of consumer i’s house at t, 
Tempout(i, t) is the outdoor temperature of consumer i’s house at time t, 
and Δ(i) is the heat transfer factor between the indoor and outdoor 
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environments of the consumer i’s house. ∇(i) shows the thermal effi-
ciency of the air conditioner belongs to the consumer i, and P1(i,′AC′, t) is 
the power consumption of the AC belongs to consumer i at time t. 

The limitation on the minimum and maximum comfort temperature 
of the consumer’s house is shown in equation (11): 

TempComf min(i)⩽Tempin(i, t)⩽TempComf max(i), ∀i ∈ J, ∀t ∈ Tm(i,′AC′)

(11)  

where TempComfmin(i) and TempComfmax(i) are the minimum and 
maximum comfortable temperature for consumer i, respectively. 

Equations (12) and (13) are the power consumption constraints of 
ACs: 

0⩽P1(i,′AC′, t)⩽Pmax(i,′AC′), ∀i ∈ J,∀t ∈ Tm(i,′AC′) (12)  

P1(i,′AC′, t) = 0,∀i ∈ J,∀t ∈ T\Tm(i,′AC′) (13)  

where Pmax(i,′AC′) is the maximum power consumption limit on the AC 
of consumer i. 

Equations (14) and (15) are the gross surplus function of each con-
sumer’s AC: 

GSur(i,′AC′, t) = a(i,′AC′) − b(i,′AC′)(Tempin(i, t) − TempComf (i))2
, ∀i

∈ J, ∀t ∈ Tm(i,′AC′)

(14)  

GSur(i,′AC′, t) = 0, ∀i ∈ J, ∀t ∈ T\Tm(i,′AC′) (15)  

where TempComf(i) is the desired comfortable temperature of consumer 
i. In addition, a(i,′AC′) and b(i,′AC′) are positive constants. This function 
is defined as a differentiable and concave function of Tempin(i, t) in a 
way that when the temperature inside the house is equal to the desired 
temperature of the consumer, the gross surplus of the consumer is 
maximized. When the difference between the desired comfort temper-
ature and the inside temperature increases, the gross surplus of the 
consumer decreases. 

Equations (16) and (17) are the limitations of the PHEV power 
consumption of each consumer: 

0⩽P2(i,′PHEV′, t)⩽Pmax(i,′PHEV′),∀i ∈ J,∀t ∈ Tm(i,′PHEV′) (16)  

P2(i,′PHEV′, t) = 0, ∀i ∈ J,∀t ∈ T\Tm(i,′PHEV′) (17)  

where P2(i,′PHEV′, t) is the power consumption of consumer i’s PHEV at 
time t, and Pmax(i,′PHEV′) is the maximum power limit on consumer i’s 
PHEV. 

Equation (18) shows the minimum and maximum PHEV energy 
consumption during the simulation day: 

EminPHEV(i)⩽
∑

t∈Tm(i,′PHEV′)

EffPHEV(i)P2(i,′PHEV′, t)⩽EmaxPHEV(i),∀i ∈ J

(18)  

where EminPHEV(i) and EmaxPHEV(i) are the limits on minimum and 
maximum energy usage of consumer i’s PHEV, and EffPHEV(i) is the 
efficiency of consumer i’s PHEV charger. 

Equation (19) is the PHEV gross surplus function of each consumer: 

GSurtd(i,′PHEV′) = a(i,′PHEV′)E2(i,′PHEV′)+ b(i,′PHEV′),∀i ∈ J (19)  

where E2(i,′PHEV′) is the energy consumption of consumer i’s PHEV. In 
addition, a(i,′PHEV′) and b(i,′PHEV′) are positive constants. The con-
sumers only care about their PHEVs to be charged to a certain level 
within a specified time (Tm(i,′PHEV′)). This function is defined as a 
differentiable and concave function of E2(i,′PHEV′) in a way that the 
gross surplus of the consumer’s PHEV is maximized when the electric 

vehicle battery is fully charged. The higher the energy stored in the 
PHEV’s battery, the higher the gross surplus of the consumer. 

Equations (20) and (21) show Ws’ power consumption limits: 

0⩽P2(i,′W′, t)⩽Pmax(i,′W′),∀i ∈ J,∀t ∈ Tm(i,′W′) (20)  

P2(i,′W′, t) = 0, ∀i ∈ J,∀t ∈ T\Tm(i,′W′) (21)  

where P2(i,′W′, t) is the power consumption of consumer i’s W at time t, 
and Pmax(i,′W′) is the maximum power limit on consumer i’s W. Equa-
tion (20) is defined for this purpose so that the power consumption in the 
optimization of SHEMS does not exceed its maximum limit. This does 
not mean that the power consumption of the washing machine can be 
changed during its operation. Because the minimum time for optimi-
zation in this article is 1 h, this may be misunderstood. If this equation is 
not defined for the SHEMS, it may determine the suggested hourly en-
ergy consumption more than the permissible limit, which is contradic-
tory to the reality. These issues are also true for equation (16). 

Equation (22) shows the minimum and maximum energy consump-
tion for the Ws during the simulation day: 

EminW(i)⩽
∑

t∈Tm(i,′W′)

P2(i,′W′, t)⩽EmaxW(i),∀i ∈ J (22)  

where EminW(i) and EmaxW(i) are the limits on minimum and maximum 
energy usage of consumer i’s W. 

Equation (23) defines the W gross surplus function of each consumer: 

GSurtd(i,′W′) = a(i,′W′)E2(i,′W′)+ b(i,′W′), ∀i ∈ J (23)  

where E2(i,′W′) is the energy consumption of consumer i’s W. In addi-
tion, a(i,′W′) and b(i,′W′) are positive constants. This function is defined 
as a differentiable and concave function of E2(i,′W′). Each consumer 
cares about cleaning the desired amount of clothes using their washing 
machine. The more clothes cleaned in the washing-drying machine, the 
higher the consumer’s gross surplus from using W. Hence, according to 
the assumptions and based on the proposed formulation, the gross sur-
plus of the consumer improves as the energy consumption of the W in-
creases, and more of the consumer’s clothes become cleaner. 

Equations (24) and (25) are the limitations of the power consump-
tion of the Ls: 

0⩽P1(i,′L′, t)⩽Pmax(i,′L′),∀i ∈ J,∀t ∈ Tm(i,′L′) (24)  

P1(i,′L′, t) = 0, ∀i ∈ J, ∀t ∈ T\Tm(i,′L′) (25)  

where P1(i,′L′, t) is the power consumption of consumer i’s L at time t, 
and Pmax(i,′L′) is the maximum power consumption of consumer i’s L. 

Equations (26) and (27) define the gross surplus function of each 
consumer’s L: 

GSur(i,′L′, t) = a(i,′L′) − b(i,′L′)(P1(i,′L′, t) − PLightComf (i, t))2
, ∀i ∈ J,∀t

∈ Tm(i,′L′)

(26)  

GSur(i,′L′, t) = 0, ∀i ∈ J, ∀t ∈ T\Tm(i,′L′) (27)  

where PLightComf(i, t) the amount of power consumed to achieve the 
desired brightness of consumer i at time t. In addition, a(i,′L′) and b(i,′L′)
are positive constants. This function is defined as a differentiable and 
concave function of P1(i,′L′, t) in a way that when the consumer house’s 
brightness is equal to their desired brightness, the gross surplus of the 
consumer’s L is maximized. When the difference between the desired 
and obtained brightness increases, the gross surplus of the consumer 
decreases. 

Equations (28) and (29) show the power consumption limits of the 
consumers’ ENTs: 
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0⩽P1(i,′Ent′, t)⩽Pmax(i,′Ent′),∀i ∈ J,∀t ∈ Tm(i,′Ent′) (28)  

P1(i,′Ent′, t) = 0, ∀i ∈ J,∀t ∈ T\Tm(i,′Ent′) (29)  

where P1(i,′Ent′, t) is the power consumption of consumer i’s Ent at time t 
, and Pmax(i,′Ent′) is the limit on maximum power consumption of 
consumer i’s Ent. 

Equations (30) and (31) define the gross surplus function of each 
consumer’s ENT: 

GSur(i,′Ent′, t) = a(i,′Ent′) − b(i,′Ent′)(P1(i,′Ent′, t) − PEntComf (i, t))2
, ∀i

∈ J, ∀t ∈ Tm(i,′Ent′)
(30)  

GSur(i,′Ent′, t) = 0,∀i ∈ J,∀t ∈ T\Tm(i,′Ent′) (31)  

where PEntComf(i, t) is the desired power consumption of the consumer 
i’s entertainment system at time t. In addition, a(i,′L′) and b(i,′L′) are 
positive constants. This function is defined as a differentiable and 
concave function of P1(i,′Ent′, t) in a way that when the consumer ENT’s 
power consumption is equal to their desired power consumption, the 
gross surplus of the consumer’s L is maximized. When the difference 
between the desired and real power consumption increases, the gross 
surplus of the consumer decreases. 

Equation (32) is the cost of operating each consumer’s HESS: 

HEssCost(i) = σ1

∑

t∈T
(PHEss(i, t))2

− σ2

∑23

t=1
(PHEss(i, t)PHEss(i, t + 1))

+σ3

∑

t∈T
(min(SOCHEss(i, t) − γ(i)CapHEss(i), 0))2

+ σ4,∀i ∈ J

(32)  

where PHEss(i, t) is the power consumption of HESS belongs to consumer 
i at time t, if this variable is positive the HESS is charging and if this 
variable is negative the HESS is discharging. SOCHEss(i, t) is the state of 
charge of consume i’s HESS at time t. CapHEss(i) is the capacity of 
consumer i’s HESS, and γ(i) shows the minimum SOCHESS of consumer i 
that still allows the consumer to get power from the HESS. In addition, 
σ1, σ2, σ3, σ4 are positive constants in the operating cost function of each 
HESS. The first term of (32) presents the destructive effect of fast 
charging and discharging on the HESS. The second term denotes that if 
the values of PHEss(i, t) and PHEss(i, t+1) have different signs, an 
additional cost will be imposed. The third term presents that the avail-
able energy level of HESS should be greater than a predefined minimum 
value, which is denoted by γ(i). Finally, the fourth term shows the effect 

of the shelf life of the HESS. 
Equation (33) is the limitation on the maximum charging and dis-

charging power of HESSs: 

PHEssDmax(i)⩽PHEss(i, t)⩽PHEssCmax(i), ∀i ∈ J, ∀t ∈ T (33)  

where PHEssDmax(i) is the limit on maximum discharging power and 
PHEssCmax(i) is the limit on maximum charging power of consumer i’s 
HESS. 

Equation (34) represents the SOC of HESSs per hour: 

SOCHEss(i, t) = SOCHEss(i, t − 1) −
(

EffHEss(i)PHEss(i, t)
CapHEss(i)

)

,∀i ∈ J,∀t

∈ T
(34)  

where EffHEss(i) is the efficiency of the HESS of consumer i,and 
CapHEss(i) is the capacity of consumer i’s HESS. 

Equation (35) is the acceptable range of HESSs’ SOC: 

0⩽SOCHEss(i, t)⩽1,∀i ∈ J,∀t ∈ T (35)  

Equation (36) represents the minimum stored energy in HESSs for the 
next day: 

SOCHEss(i, t)⩾0.4,∀i ∈ J, ∀t ∈ T|t⩾24 (36)  

Equation (37) defines the total power consumption of each consumer 
per hour: 

Pt(i, t) =
∑

d1∈D1
P1(i, d1, t)+

∑

d2∈D2
P2(i, d2, t),∀i ∈ J,∀t ∈ T (37)  

Equation (38) defines the cost function of the utility company:   

Equation (39) is the real-time energy price determined by the utility 
company: 

Prn(t) =
∂CostWhM(t)

∂
∑

i∈JPtn− 1(i, t)
,∀t ∈ T (39)  

For each hour, the utility company sets the price of selling energy to 
consumers equal to the marginal cost of buying it from the wholesale 
market. 

Equations (40), (41), and (42) optimize the power consumption of 
smart home appliances and the charging and discharging power of 
HESSs in each iteration of the algorithm according to the real-time 
prices: 

CostWhM(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cc11

(
∑

i∈J
Pt(i, t)

)2

+ cc12

(
∑

i∈J
Pt(i, t)

)

+ cc13; 0⩽
∑

i∈J
Pt(i, t)⩽X1

cc21

(
∑

i∈J
Pt(i, t)

)2

+ cc22

(
∑

i∈J
Pt(i, t)

)

+ cc23;X1⩽
∑

i∈J
Pt(i, t)⩽X2

.

.

.

cck1

(
∑

i∈J
Pt(i, t)

)2

+ cck2

(
∑

i∈J
Pt(i, t)

)

+ cck3;Xk− 1⩽
∑

i∈J
Pt(i, t)⩽Xk

,∀t ∈ T (38)   
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P1n(i, d1, t) = P1n− 1(i, d1, t) + ζ
(

∂GSurn− 1(i, d1, t)
∂P1n− 1(i, d1, t)

− Prn(t)
)

,∀i ∈ J,∀d1

∈ D1,∀t ∈ Tm(i, d1)
(40)  

P2n(i, d2, t) = P2n− 1(i, d2, t) + ζ
(

∂GSurtdn− 1(i, d2)
∂P2n− 1(i, d2, t)

− Prn(t)
)

,∀i ∈ J,∀d2

∈ D2,∀t ∈ Tm(i, d2)
(41)  

PHEssn(i, t) = PHEssn− 1(i, t) − ζ
(

∂HEssCostn− 1(i)
∂PHEssn− 1(i, t)

+ Prn(t)
)

, ∀i ∈ J,∀t ∈ T

(42)  

Equation (43) represents the gross surplus of each consumer.: 

CGS(i) =
∑

d1∈D1

∑

t∈T
GSur(i, d1, t)+

∑

d2∈D2
GSurtd(i, d2), ∀i ∈ J (43)  

In normal operating conditions, the objective function of each consumer 
is (9) and constraints are (10)-(43). 

Equations (44) and (45) indicate that for each consumer who lost the 
power supply from the network during emergencies, the HESS supplies 
the demand for their home appliances: 

PHEssDmax(id)⩽PHEss(id, to)⩽0, ∀id ∈ Jd, ∀to ∈ To (44)  

PHEss(id, to)+Pt(id, to) = 0, ∀id ∈ Jd,∀to ∈ To (45)  

The objective function and constraints of the DRPHESSs in emergency 
conditions are the same as in normal operating conditions, in addition to 
(44) and (45). However, only the consumers whose power supply has 
been interrupted from the upstream network cooperate in emergency 
DRPHESSs. Therefore, the objective function and constraints are 
implemented on ∀to ∈ To instead of ∀t ∈ T. 

2.8.2. SHSRDE   

The objective function of SHSRDE in normal operating conditions (46) is 
to maximize the profit of the utility company. CP(t) is the price for 
selling energy to consumers at time t, ProbAD(b, t, s) is the probability of 
scenario s for predicted active demand at bus b at time t, and AD(b, t, s) is 
the predicted active demand at bus b at time t for scenario s. BUPS(t) is a 
binary variable that equals 1 if energy is sold to the upstream network at 
time t, otherwise it equals to 0. UPSP(t) is the price at wholesale spot 
market for selling energy to the upstream network at time t, and PUPS(t)
is the active power sold to the upstream network at time t. MTP(t) and 
MTQ(t) are the prices for buying active and reactive power from each 
MT at time t, respectively. PMT(b, t) and QMT(b, t) are the active and 
reactive generated power of the MT at bus b at time t, respectively. 
BUPB(t) is a binary variable that equals 1 if energy is bought from the 
upstream network at time t, otherwise it equals to 0. UPBP(t) is the price 

at wholesale spot market for buying energy from upstream network at 
time t, and PUPB(t) is the active power bought from the upstream 
network at time t. The first part of (46) shows the utility company’s 
revenue from the sale of electricity to household customers and the 
upstream network. The second part of (46) represents the utility com-
pany’s cost of purchasing power from MTs and the energy market. 

Equation (47) is the limitation of purchased power from the up-
stream network (the variable is in kW): 

0⩽PUPS(t)⩽1000, ∀t ∈ T (47)  

Equation (48) indicates the maximum charging and discharging power 
of ESSs. 

− maxCES(b)⩽PES(b, t)⩽maxDES(b), ∀t ∈ T,∀b ∈ B (48)  

where PES(b, t) is the active output power of the ESS at the bus b at time 
t. maxCES(b) and maxDES(b) are maximum charging and discharging 
power of the ESS at bus b, respectively. 

The state of charge of ESSs per hour is defined in equation (49): 

SOC(b, t) = SOC(b, t − 1) −
(

EFES(b)PES(b, t)
CapES(b)

)

,∀t ∈ T,∀b ∈ B (49)  

where EFES(b) is the charging efficiency of the ESS at bus b, and 
CapES(b) is the capacity of the ESS at bus b. 

Equations (50) and (51) represent the constraints related to the 
stored energy in ESSs and the minimum stored energy in ESSs for the 
next day: 

0⩽SOC(b, t)⩽maxSOC(b), ∀t ∈ T,∀b ∈ B (50)  

SOC(b, t)⩾0.5 × maxSOC(b), ∀t ∈ T|t⩾24,∀b ∈ B (51)  

where maxSOC(b) is the maximum state of charge of the ESS at bus b. 
Equation (52) indicates the voltage of each bus for each hour: 

Vol(b, t) − Vol(g, t) = r(b, g)Pl(b, g, t) + x(b, g)Ql(b, g, t),∀t ∈ T,∀b, g ∈ B
(52)  

where Vol(b, t) is the voltage of bus b at time t. r(b, g) and x(b, g) are the 

resistance and reactance of the line between bus b and g. Pl(b, g, t) and 
Ql(b, g, t) are the line transmitted active and reactive power from bus b to 
bus g at time t, respectively. 

Equation (53) represents the minimum and maximum stability 
voltage of each bus: 

0.95⩽Vol(b, t)⩽1.05 (53)  

Equations (54) and (55) indicate the active and reactive power balance 
in the lines: 

Pl(b, g, t) +Pl(g, b, t) = 0, ∀t ∈ T,∀b, g ∈ B (54)  

Ql(b, g, t)+Ql(g, b, t) = 0, ∀t ∈ T,∀b, g ∈ B (55)  

Equations (56) and (57) indicate the active power flow in the lines:  

maxUTP = max

⎡

⎢
⎢
⎢
⎣

(
∑

t∈T

(
∑

b∈B

(
∑

s∈S
CP(t)ProbAD(b, t, s) × AD(b, t, s)

)

+ BUPS(t)UPSP(t)PUPS(t)

))

−

(
∑

t∈T

((
∑

b∈B
(MTP(t)PMT(b, t) + MTQ(t)QMT(b, t))

)

+ BUPB(t)UPBP(t)PUPB(t)

))

⎤

⎥
⎥
⎥
⎦

(46)   
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BUPB(t)PUPB(t) − BUPS(t)PUPS(t) =
∑

g∈B
Pl(b, g, t), ∀t ∈ T,∀b

∈ B|b⩾123, |r(b, g) > 0 (57)  

where ProbPRW(b, t, s) is the probability of scenario s for predicted 
active output power of the WT at bus b at time t, and PRW(b, t, s) is the 
predicted active output power of the WT at bus b at time t for scenario s. 
ProbPRPV(b, t, s) is the probability of scenario s for predicted active 

output power of the PV at bus b at time t, and PRPV(b, t, s) is the pre-
dicted active output power of the PV at bus b at time t for scenario s. 

In the simulation, the bus specified with the number 123 is the bus 
connected to the upstream network feeder. 

Equation (58) represents the reactive power flow in the lines:  

where QWT(b, t) is the reactive generated power of the WT at bus b at 
time t. QSVC(b, t) is the reactive generated power of the SVC at bus b at 
time t. ProbRD(b, t, s) is the probability of scenario s for predicted reac-
tive demand at bus b at time t, and RD(b, t, s) is the predicted reactive 
demand at bus b at time t for scenario s. 

Equations (59) and (60) respectively indicate the constraints of 
active and reactive power balance in the network for each hour:  

∑

b∈B
(QWT(b, t) + QSVC(b, t) + QMT(b, t))

=
∑

b∈B

(
∑

s∈S
ProbRD(b, t, s)RD(b, t, s)

)

,∀t ∈ T (60)  

According to (61), for each t, the power is either bought from the up-
stream network or sold to it, and simultaneous implementation of both is 
not feasible: 

BUPB(t)BUPS(t) = 0, ∀t ∈ T (61)  

Equation (62) shows the limitation of the reactive power produced by 
wind energy resources due to their power factor:  

where maxQWT(b) the coefficient for maximum output reactive power 
of WT at bus b. 

Equations (63) and (64) respectively indicate the system’s spinning 
reserve for each time and the minimum required spinning reserve of the 

system for each hour: 

rsv(t) =
∑

b∈B
SOC(b, t)CapES(b), ∀t ∈ T (63)  

rsv(t)⩾minrsv,∀t ∈ T (64)  

Equations (65) and (66) indicate the limitations of the maximum and 
minimum active and reactive (according to the power factor) power 
produced by MTs: 

0⩽PMT(b, t)⩽CapMT(b), ∀t ∈ T,∀b ∈ B (65)  

− maxQMT(b)PMT(b, t)⩽QMT(b, t)⩽maxQMT(b)PMT(b, t), ∀t ∈ T, ∀b

∈ B
(66) 

∑

s∈S
(ProbPRW(b, t, s)PRW(b, t, s) + ProbPRPV(b, t, s)PRPV(b, t, s)) + PES(b, t) + PMT(b, t)

−
∑

s∈S
ProbAD(b, t, s)AD(b, t, s) =

∑

g∈B
Pl(b, g, t),∀t ∈ T,∀b ∈ B|b⩽122, |r(b, g) > 0

(56)   

QWT(b, t) + QSVC(b, t) + QMT(b, t) −
∑

s∈S
ProbRD(b, t, s)RD(b, t, s) =

∑

g∈B
Ql(b, g, t)

,∀t ∈ T,∀b ∈ B|b⩽122, |r(b, g) > 0
(58)   

∑

b∈B

(
∑

s∈S
(ProbPRW(b, t, s)PRW(b, t, s) + ProbPRPV(b, t, s)PRPV(b, t, s)) + PES(b, t) + PMT(b, t)

)

+

BUPB(t)PUPB(t) =
∑

b∈B

(
∑

s∈S
ProbAD(b, t, s)AD(b, t, s)

)

+ BUPS(t)PUPS(t),∀t ∈ T

(59)   

− maxQWT(b)
∑

s∈S
ProbPRW(b, t, s)PRW(b, t, s)⩽QWT(b, t)⩽maxQWT(b)

∑

s∈S
ProbPRW(b, t, s)PRW(b, t, s)

,∀t ∈ T,∀b ∈ B
(62)   
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where CapMT(b) is the capacity of the MT at bus t, and maxQMT(b) is the 
coefficient for maximum output reactive power of MT at bus b. 

Equation (67) is related to the output reactive power of SVCs: 

− CapSVC(b)⩽QSVC(b, t)⩽CapSVC(b),∀t ∈ T, ∀b ∈ B (67)  

where CapSVC(b) is the capacity of the SVC at bus b. 
In normal operating conditions, the objective function of SHSRDE 

(46) aims to maximize the profit of the utility company subjected to 
(47)-(67). 

Equation (68) is the objective function of SHSRDE in emergency 
operating conditions: 

max

[
∑

m∈B

∑

to∈T

∑

s∈S
Din(m, to)(AD(m, to, s) + RD(m, to, s)) +

∑

m∈B

∑

n∈B|r(m,n)>0

(1

− Lin(m, n))

]

(68)  

where Din(m, to) is a binary variable that equals 1 if the load at the bus m 
at time to is supplied by the network, otherwise it equals to 0. Lin(m, n) is 
a binary variable that equals to 0 if the energy flow in the line between 
buses m and n can be zero, otherwise it equals to 1. The first part of (68) 
aims to maximize the restored load; meanwhile, the second part tries to 
maximize the number of self-sufficient microgrids in the isolated section 
of the network. 

Equations (69) and (70) determine whether each network line can be 
a microgrid border, in other words, whether it is possible to zero the 
transmitted power through these lines: 

Pl(m, n, to) = Lin(m, n)Pl(m, n, to), ∀m, n ∈ B|r(m, n) > 0, ∀to ∈ T (69)  

Ql(m, n, to) = Lin(m, n)Ql(m, n, to), ∀m, n ∈ B|r(m, n) > 0, ∀to ∈ T (70)  

Equation (71) represents the resiliency coefficient for each case: 

ReCoCase =

⎡

⎢
⎢
⎢
⎢
⎣

∑
fs∈FSFaultedSourceCapacity(fs)
∑

m∈BdSourceCapacity(m)
+

∑

fl∈FL

nxtdsdn− 1th(fl)
nxtdsdnth(fl)

...
nxtdsd1st(fl)
nxtdsd2nd(fl)

dsd(fl)
nxtdsd1st(fl)

⎤

⎥
⎥
⎥
⎥
⎦

(71)  

The first part of (71) shows the ratio of faulted resources to all available 
resources in the system. The second part of (71) shows the severity of the 

Fig. 3. Modified IEEE 123-bus feeder.  

Table 2 
Location and Capacity of Resources and Equipment.  

Type [Location (Bus No), Capacity (kW), and for SVCs (kVAr)] 

MT [13,80], [21,180], [35,120], [44,140], [48,100], [49,160], [65,120], 
[67,110], [73,140], [76,140], [78,120], [81,80], [87,140], [93,120], 
[101,150], [108,40] 

WT [5,80], [9,60], [18,100], [39,80], [41,30], [46,80], [51,95], [82,60], 
[86,100], [103,85], [112,50] 

PV [14,60], [15,60], [29,60], [31,80], [57,40], [62,80], [75,60], [95,40], 
[106,40] 

SVC [25,100], [36,100], [44,100], [50,100], [54,100], [81,100], [87,100], 
[89,100], [101,100], [110,100] 

ESS [7,100], [20,150], [27,90], [38,200], [42,300], [70,150], [84,150], [90,60], 
[97,200], [109,200]  
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line faults in terms of the downstream load of the line fault and hier-
archical faults in the communication path between the consumer and 
the upstream network. 

The ratio of restored load in each case is defined in equation (72):  

Equation (73) shows the network resiliency in emergency conditions 
according to: 1. the number and severity of faults and outages and 2. the 
ratio of the restored load in the isolated section: 

Resiliency =

∑
Cases(ReCoCase × RLCase)
∑

CasesReCoCase
(73)  

In emergency operating conditions, the objective function of SHSRDE is 
(68) subjected to (48)-(56), (58)-(60), (62)-(67), and (69)-(73). How-
ever, these constraints are implemented on ∀to ∈ To (i.e., during emer-

gency conditions) instead of ∀t ∈ T (i.e., during a day) and ∀m, n ∈ Bd (i. 
e., the set of buses isolated from the upstream network) instead of ∀b, g ∈

B (i.e., all of the buses). In addition, in the constraints of this step, 
instead of AD(b, t, s) and RD(b, t, s), the expressions Din(m)AD(m, to, s)
and Din(m)RD(m, to, s) are replaced, respectively. 

Fig. 4. The hourly temperature in the simulation area [29].  

Fig. 5. The hourly wind speed in the simulation area [30].  

RLCase =

∑
m∈B
∑

to∈T
∑

s∈SDin(m, to)(ProbAD(b, t, s)AD(m, to, s) + ProbRD(b, t, s)RD(m, to, s))
∑

m∈B
∑

to∈T
∑

s∈S(AD(m, to, s) + RD(m, to, s))
(72)   
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3. Simulation 

3.1. Simulation settings 

The simulation is performed on the modified IEEE 123-bus feeder. 
The equipment and resources connected to each bus in this feeder are 
specified in Fig. 3. 

Table 2 shows the type of resources or equipment, the bus number to 
which they are connected, and their capacity. 

Other details of the IEEE 123 bus feeder are specified according to 

Fig. 6. The solar radiation in the simulation area [31].  

Table 3 
The Coefficients in the Gross Surplus Functions.  

a(i,′AC′) =

3.45 
a(i,′PHEV′) =

0.002 
a(i,′W′) =

0.002 
a(i,′L′) =

0.76 
a(i,′Ent′) =

0.3 
b(i,′AC′) =

0.06 
b(i,′PHEV′) =

0.37 
b(i,′W′) =

0.466 
b(i,′L′) =

0.06 
b(i,′Ent′) =

0.06  

Table 4 
The Parameters of Household Appliances.  
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[28]. All loads of the system are household consumers divided into two 
parts. Households in the first category are at home all day, while the 
second category is not at home between 8:00–18:00. The simulation is 
done in an area in California on a typical summer day. According to the 
statistics and growth rate in the tested area, the number of people in 
each household is considered 6 [13]. The temperature, wind speed, and 
solar radiation are shown in Fig. 4, Fig. 5, and Fig. 5, respectively 
(Fig. 6). 

It was assumed that the air conditioning system was determined as 
the first rank of the consumers’ priority list based on the fact that the 
simulation was run for a typical summer day. Then, the PHEV and 
washing-drying machine were chosen as the second and third ranks of 
the list. Finally, the last priorities were the lighting system and the 
entertainment system. Therefore, the coefficients used in gross surplus 
functions of consumers’ household appliances are shown in Table 3. 

The consumers can adjust these parameters according to their 
desired comfort level and preferences to reach the optimal balance be-
tween cost, gross surplus, and comfort level. Table 4 shows the infor-
mation related to the simulation of household appliances and HESSs. 
The desired times of using the entertainment devices of the consumers 
are shown in Table 5. Table 6 shows PEntComf(i, t) for each category of 
consumers. Table 7 shows the maximum charge and discharge power of 
ESSs, constant step size in DRPHESSs, and the coefficients of the 

maximum reactive power produced by WTs and MTs. 
The coefficients of the maximum reactive power produced are the 

tangent of the inverse cosine of the power factor. The power factor is 
considered 0.835 for WT and 0.8 for MT. Table 8 shows the set of times 
that the first and second categories of households want to use their home 
appliances. 

The parameters used in determining the spinning reserve of the 
system are shown in Table 9. Table 10 shows the coefficients and fixed 
numbers used in the utility cost function. 

The parameters in the cost function are determined so that the en-
ergy price in the wholesale market and the price of selling energy to 
household consumers in this simulation will be the same as the prices 
reported in reality in the simulation area [32–34]. Table 11 shows the 
price of active and reactive power purchased from microturbines. The 
parameters used in the generation of the wind and solar resources sce-
narios are shown in Table 12. 

3.2. Simulation results 

The simulation in this paper is implemented in two general modes: 1. 
without the application of DRPHESSs; and 2. with the application of 
DRPHESSs. Then, in each of the two general modes, the simulation has 
been implemented in 1. Normal operation mode and 2. Emergency 
operation mode. The simulation was carried out using GAMS optimi-
zation software version 25.1.3 and MATLAB on a computer system with 
Intel Core i7-5500 U CPU @ 2.40 GHz 2.40 GHz processor and 8 GB of 
memory. The simulation time for normal operation mode was about 
9.5 s, and the average simulation time for emergency operation mode 
was about 1.313 s. 

Table 5 
The Consumers’ Desired Time of Using ENT.   

Household category Active hours Standby hours Off hours 

TV 1 10 → 12, 18 → 20, 21 → 24 8 → 10, 12 → 18, 20 → 21 0 → 8 
2 19 → 20, 21 → 24 18 → 19, 20 → 21 0 → 18 

Home Theater 1 10 → 12, 18 → 20, 21 → 24 8 → 10, 12 → 18, 20 → 21 0 → 8 
2 19 → 20, 21 → 24 18 → 19, 20 → 21 0 → 18 

Game Console 1 18 → 20 8 → 18, 20 → 24 0 → 8 
2 19 → 20 18 → 19, 20 → 24 0 → 18 

Personal Computer 1 8 → 12, 13 → 15 – 0 → 8, 12 → 13, 15 → 24 
2 18 → 19 – 0 → 18, 19 → 24  

Table 6 
The Consumers’ Desired Power Consumption of ENT.  

First category t: 9, 10, 14, 15 t: 22, 23, 24 t: 13, 16, 17, 18, 21 t: 19, 20 t: 11, 12 
0.1859 (kW) 0.5302 (kW) 0.0009 (kW) 0.6882 (kW) 0.7152 (kW) 

Second category t: 19 t: 22, 23, 24 t: 21 t: 20  
0.1859 (kW) 0.5302 (kW) 0.0009 (kW) 0.6882 (kW)  

Table 7 
Parameters in Simulation.  

maxCES(b) = maxDES(b) = 0.5× CapES(b) ζ = 1× 10− 14 

maxQWT(b) = 0.659 maxQMT(b) = 0.75  

Table 8 
The Desired Set of Times for Consumers’ Appliances.  

Household Category 1 2 

Tm(i,′AC′) {8,9, ...,24} {17,18, ...,24}

Tm(i,′PHEV′) {1,2, ...,8,20,21, ...,24} {1,2, ...,8,20,21, ...,24}

Tm(i,′W′) {8,9, ...,24} {18,19, ...,24}

Tm(i,′L′) {19,20, ...,24} {19,20, ...,24}

Tm(i,′Ent′) {8,9, ...,24} {18,19, ...,24}

Table 9 
The Parameters in Spinning Reserve.  

λ = 3(Failure per year) 
Time to start up micro turbines = 10min 
Acceptable system’s risk = 0.001  

Table 10 
The Parameters in the Utility Company’s Cost Function.  

k = 3 
cc11 = 0.000200($/(kWh)2

) cc12 = 0.2($/kWh) cc13 = 130000($)

cc21 = 0.000200($/(kWh)2
) cc22 = 0.5($/kWh) cc23 = 150000($)

cc31 = 0.000202($/(kWh)2
) cc32 = 0.2($/kWh) cc33 = 170000($)

X1 = 733.3(kWh) X2 = 1133.3(kWh) X3 = 1666.6(kWh)
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3.2.1. The mode without applying DRPHESSs 
In this stage of the simulation, the objective function of SHEMSs is to 

maximize the gross surplus of each consumer, and the DRP algorithm 
(40), (41), and (42) are not applied. All of the constraints related to 
HESSs are also omitted. In other words, every consumer maximizes their 
net surplus regardless of the prices set by the utility company and 
without using their HESS. The simulation of this stage takes 9.422 s. 
Fig. 7 and Fig. 8 show the household appliances’ energy consumption of 

a typical consumer of the first and second categories, respectively. Fig. 9 
also shows the energy consumption of all consumers for each hour. 

As shown in Fig. 7, since the simulation is on a typical day in the 
summer, a massive share of the demand belongs to the AC. In addition, 
although the consumer is at home all day, the car is not charged during 
the day hours. It makes the car available during the day and thus in-
creases the consumer’s convenience. 

As mentioned, consumers of the second category are not at home 
during the day. Therefore, according to Fig. 8, the energy consumption 
of this consumer is zero between 8:00 and 16:00. The consumer is not at 
home until 18:00. However, the AC of this consumer is turned on 2 h 
before the consumer enters the house. Hence, the inside temperature of 
the house is pleasant when the consumer enters, which increases the 
consumer’s comfort level. 

According to Fig. 9, the energy consumption diagram of all 

Table 11 
The Energy Price of MTs.  

MTP(t) = 174.35($/MWh),∀t = {1,2,3, ...,24}[35] 

MTQ(t) = 2.40($/MVArh),∀t = {1,2,3, ...,24}[36,37]  

Table 12 
The Parameters in Scenario Generation.  

r1 = 0.1 r2 = 0.38 r3 = 0.02 vci = 2(m/s) v1 = 4(m/s)
v2 =

6(m/s)
vr =

8(m/s)
vco =

10(m/s)
Rc =

10(kW/m2)

Ra1 =

5.5(kW/m2)

Fig. 7. The energy consumption of a typical consumer of the first category without applying DRPHESSs.  

Fig. 8. The energy consumption of a typical consumer of the second category without applying DRPHESSs.  
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consumers has a peak load between 10 and 11 and a peak load between 
21 and 22. Considering that, the simulation is on a typical summer day, 
we can expect that the energy consumption of the system is higher 
during the noon peak than the night peak. However, since half of the 
households are not at home from 8:00 to 18:00, the most energy con-
sumption is related to the night peak. 

According to the demand, energy prices in the wholesale and retail 
markets are shown in Tables 13 and 14, respectively. The prices ob-
tained from the SHEMSs optimization program are placed in the 
objective function of the SHSRID in the parameters UPBP(t), UPSP(t), 
and CP(t). 

3.2.1.1. Normal operation mode. As explained in the system model 
section, ISO optimizes the active and reactive output power of the sys-
tem’s resources and equipment according to the information about the 

Fig. 9. The energy consumption of all consumers without applying DRPHESSs.  

Table 13 
The Energy Prices in the Wholesale Market without Applying DRPHESSs.  

UPBP(t) = UPSP(t)($/MWh)
t1: 75.771 t2: 75.596 t3: 75.594 t4: 75.589 t5: 75.585 t6: 75.580 t7: 75.575 t8: 75.702 
t9: 75.914 t10: 76.142 t11: 89.095 t12: 76.391 t13: 76.297 t14: 88.736 t15: 76.292 t16: 76.014 
t17: 89.683 t18: 89.057 t19: 89.854 t20: 122.547 t21: 89.844 t22: 122.672 t23: 90.558 t24: 89.163  

Table 14 
The Energy Prices in The Retail Market without Applying DRPHESSs.  

CP(t)(¢/kWh)
t1: 11.761 t2: 9.139 t3: 9.113 t4: 9.030 t5: 8.968 t6: 8.906 t7: 8.819 t8: 10.725 

t9: 13.905 t10: 17.328 t11: 25.068 t12: 21.064 t13: 19.654 t14: 22.914 t15: 19.578 t16: 15.415 
t17: 28.598 t18: 24.841 t19: 29.623 t20: 38.778 t21: 29.562 t22: 40.676 t23: 33.849 t24: 25.475  

Table 15 
Simulation Results in Normal Operation Mode without Applying DRPHESSs.  

Load factor 0.494 

Peak demand (kWh) 1335.859 
Total demand (kWh) 15836.211 
Minimum voltage in the network (p.u.) 0.958 
Maximum voltage in the network (p.u.) 1.033 
Maximum line load (kW) 10.000 
Consumer’s payment ($) 3928.204 
Cost of buying energy from the upstream network ($) 659.959 
Cost of buying energy from MTs ($) 0 
Income from selling energy to the upstream network ($) 307.342 
The revenue of utility company ($) 4235.546 
The profit of utility company ($) 3575.587 
Consumers’ gross surplus ($) 27030.153 
Consumers’ net surplus ($) 23101.949 
Social welfare ($) 26677.536 
Simulation time (seconds) 2.328  

Table 16 
Location of Faulted Resources and Equipment in each Emergency Case without 
Applying DRPHESSs.   

Faulted 
MT on 
[bus] 

Faulted Line 
between 
buses [bus, 
bus] 

Faulted 
WT on 
[bus] 

Faulted 
PV on 
[bus] 

Faulted 
ESS on 
[bus] 

Faulted 
SVC on 
[bus] 

EC1 – [60,67] – – – – 
EC2 [67], 

[101] 
[60,67], 
[101,105] 

– – – – 

EC3 – [18,35], 
[60,67] 

– – – – 

EC4 [48], 
[67], 
[101] 

[18,35], 
[35,40], 
[60,67], 
[101,105] 

– – – – 

EC5 [48], 
[67], 
[76], 
[87] 

[18,35], 
[35,40], 
[60,67], 
[101,105] 

[39], 
[46] 

[75], 
[95] 

[38], 
[70], 
[84], 
[1 0 9] 

[44], 
[81], 
[87], 
[89] 

EC6 [48], 
[67], 
[76], 
[81], 
[87], 
[93], 
[101] 

[18,35], 
[35,40], 
[60,67], 
[101,105], 
[103,104] 

[39], 
[46], 
[82], 
[86], 
[112] 

[75], 
[95], 
[106] 

[38], 
[70], 
[84], 
[90], 
[1 0 9] 

[44], 
[81], 
[87], 
[89], n  
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consumers, equipment, and resources. Table 15 shows the results of the 
simulation in the normal operation mode. 

3.2.1.2. Emergency operation mode. In this stage, faults have occurred in 
the network, which causes the outage of resources, equipment, lines, or 
all three. According to the U.S. Energy Information Administration 
(EIA), the SAIDI for the simulation area in 2021 is estimated to be 

between 2 and 3 h. In this paper, the interruption hours for reconnecting 
the isolated part to the upstream network are 3 h, considering the worst 
scenarios [38]. According to Fig. 9, the highest energy consumption of 
the network is between 19:00 and 22:00. The emergency occurs in these 
three hours to model the most destructive modes in the simulation. Six 
emergency cases simulate the emergency operation mode: 1. EC1, 2. 
EC2, 3. EC3, 4. EC4, 5. EC5, and 6. EC6. Table 16 shows faulted re-
sources, equipment, and lines in each case. 

Fig. 15A shows microgrid formation in the DN topology for each 
emergency case without applying DRPHESSs. Table 17 indicates the 
technical information related to the emergency cases. 

Clearly, without applying the SHSRDE, 41.42 % of the network loads 
in EC1 and EC2 and 63.31 % of the network loads in cases EC3, EC4, 
EC5, and EC6 are interrupted. Therefore, the restored load of the system 
is equal to zero in all cases. As a result, system resiliency is zero. Table 17 
shows that using the SHSRDE in EC1 to EC4, despite the faults, prevents 
the interruption of network loads in the isolated part of the network by 
converting the DN into several self-sufficient microgrids. 

However, major destructive disasters have devastating effects on a 
DN. Interrupted loads caused by them are much more difficult to restore 
than a typical outage. Therefore, to consider these destructive disasters 
in the simulation of this paper, the proposed model has been evaluated 
in EC5 and EC6. In EC5 and EC6, the shortage of resources and equip-
ment and the weak DN caused the interruption in a large number of 
consumers. After applying the SHSRDE, the amount of system load 
restored by converting the network into several self-sufficient micro-
grids is 100 % in EC1 to EC4, 98.02 % in case EC5, and 98.02 % in EC6. 
Therefore, the resiliency of the system reaches 0.9533. This number 
shows that the application of the SHSRDE successfully restores the 

Table 17 
Technical Information in each Emergency Case without Applying DRPHESSs.  

Emergency Cases EC1 EC2 EC3 EC4 EC5 EC6 

Number of microgrids 11 9 16 14 9 4 
Number of faults 1 4 2 7 20 30 
Number of consumers in faulted area 140 140 214 214 214 214 
Percentage of interrupted loads 41.42 41.42 63.31 63.31 63.31 63.31 
Percentage of active power loss 0 12.74 0 11.35 42.22 58.91 
Percentage of reactive power loss 0 14.34 0 12.71 38.15 57.86 
Number of interrupted consumers 0 0 0 0 12 94 
Percentage of interrupted consumers 0 0 0 0 5.61 43.93 
Active demand not supplied (kWh) 0 0 0 0 44.972 344.398 
Total active demand 1482.001 1482.001 2265.337 2265.337 2265.337 2265.337 
Percentage of active demand not supplied 0 0 0 0 1.99 15.20 
Reactive demand not supplied (kVArh) 0 0 0 0 26.983 206.639 
Total reactive demand 889.201 889.201 1359.202 1359.202 1359.202 1359.202 
Percentage of reactive demand not supplied 0 0 0 0 1.99 15.20 
Generators for regulating Voltage and controlling frequency in each isolated part of 

the faulted area 
(Slack Bus) 

67 76, 108 35, 67 35, 44, 76, 
108 

35, 49, 101, 
108 

35, 44, 78, 
108  

Table 18 
Economic and Security Information in each Emergency Case without Applying DRPHESSs.  

Emergency Cases EC1 EC2 EC3 EC4 EC5 EC6 

Peak demand (kWh)  553.501  553.501  845.692  845.692  814.030  719.125 
Total demand (kWh)  1482.001  1482.001  2265.337  2265.337  2220.446  1920.939 
Load factor  0.89  0.89  0.89  0.89  0.88  0.89 
Minimum voltage in the network (p.u.)  0.998  0.999  0.998  0.999  0.998  0.996 
Maximum voltage in the network (p.u.)  1.001  1.001  1.001  1.001  1.001  1.003 
Maximum line load (kW)  0.475  0.475  0.552  0.790  1.185  1.646 
Consumer’s payment ($)  548.086  548.086  837.803  837.803  820.294  710.866 
Cost of buying energy from MTs ($)  166.780  155.728  263.350  220.824  295.449  246.715 
The revenue of utility company ($)  548.086  548.086  837.803  837.803  820.294  710.866 
The profit of utility company ($)  381.306  392.358  574.453  616.979  524.845  464.151 
Consumers’ gross surplus ($)  4923.240  4923.240  7525.524  7525.524  7103.532  4219.920 
Consumers’ net surplus ($)  4375.154  4375.154  6687.721  6687.721  6283.238  3509.054 
Social welfare ($)  4756.460  4767.512  7262.174  7304.700  6808.083  3973.205 
Simulation time (seconds)  0.812  1.047  1.218  1.078  1.360  0.422  

Table 19 
Economic and Security Information in the Connected Part of the DN to the 
Upstream Network without Applying DRPHESSs.  

Emergency Cases EC1, EC2 EC3, EC4, EC5, 
EC6 

Peak demand (kWh) 782.358  490.167 
Total demand (kWh) 2096.262  1312.926 
Load factor 0.89  0.89 
Minimum Voltage in the network (p.u.) 0.982  0.989 
Maximum Voltage in the network (p.u.) 1.006  1.002 
Maximum line load (kW) 1.897  2.101 
Consumer’s payment ($) 775.265  485.549 
Cost of buying energy from the upstream network 

($) 
93.678  64.789 

Cost of buying energy from MTs ($) 0  15.677 
Income from selling energy to the upstream 

network ($) 
4.098  0.534 

The revenue of utility company ($) 779.363  486.083 
The profit of utility company ($) 685.685  405.617 
Consumers’ gross surplus ($) 6962.868  4360.584 
Consumers’ net surplus ($) 6187.603  3875.035 
Social welfare ($) 6873.288  4280.652 
Simulation time (seconds) 0.375  0.328  
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system loads 95.33 % of the time immediately during emergency oper-
ation conditions and continues to supply these loads for 3 h. Table 18 
shows the economic and security information in each of the six 

emergency cases in the isolated part of the network. 
Since the destructive event in EC2 is more severe than in EC1, the 

cost of purchasing energy from MTs in EC2 is expected to be higher. 

Fig. 10. The energy consumption of a typical consumer of the first category with applying DRPHESSs.  

Fig. 11. The energy consumption of a typical consumer of the second category with applying DRPHESSs.  

Fig. 12. The energy consumption of all consumers with applying DRPHESSs.  
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However, with a detailed examination, we find that despite the equal 
load, the energy produced by the MTs in EC1 is 949.813 kWh, and in 
EC2 is 889.188 kWh. As a result, the share of power generation by MTs 
compared to ESSs, WTs, and PVs in EC1 is higher than in EC2. Conse-
quently, the security and resiliency of the DN are higher in EC1 than in 
EC2. $11,052 difference in the cost of energy generation in these two 
cases is the cost of achieving more network resiliency and security. 
Similarly, despite the more destructive event in EC4 and equal load in 
these two cases, the power generation of MTs in EC3 is 1501.010 kWh, 
and in EC4 is 1262.355 kWh. As a result, the energy generation cost in 

EC3 is higher than in EC4 by $42,526. By comparing the optimal 
response in these two cases, we find that the number of microgrids in 
EC3 is more, which increases security and resiliency, and this amount of 
additional cost is the cost of providing more security and resiliency. 

In contrast to EC1 to EC4, the power supply is interrupted to 12 
consumers in EC5. This causes a decrease of 5.61 % in the gross surplus 
of consumers and 6.80 % in social welfare. However, in EC6, because the 
power supply is interrupted to 94 consumers, consumers’ gross surplus is 
reduced by 43.93 % compared to EC4. Social welfare also decreased by 
45.61 %. 

Another significant point obtained from Table 18 is that with the 
increase in the number of interrupted consumers, in addition to the gross 
surplus of consumers and social welfare, the revenue and profit of the 
utility company also decrease. One of the advantages of the proposed 
model is that the interests of consumers and ISO, who seek to increase 
their surplus and comfort and increase the security and resilience of the 
system, respectively, are aligned with the interests of the utility com-
pany, which is a private organization, seeks to maximize its profit. In 
other words, none of the players (from an economic point of view) in this 
system will benefit from the loss of another. 

Table 19 shows the economic and security information related to the 
connected part of the DN to the upstream network in emergency oper-
ation mode without applying DRPHESSs. 

In confirmation of the previous point, as it is clear from Tables 18 and 
19, as the number of faults increases and more consumers are inter-
rupted in the faulted area, the total profit of the utility company and the 
net surplus of all consumers (from both the faulted area and the area 
connected to the upstream network) are decreased. As a result, social 
welfare (resulting from both of the areas) also decreases. 

Table 20 
The Energy Prices in The Wholesale Market by Applying DRPHESSs.  

UPBP(t) = UPSP(t)($/MWh)
t1: 76.028 t2: 76.028 t3: 76.028 t4: 76.028 t5: 76.028 t6: 76.028 t7: 76.028 t8: 76.028 

t9: 76.028 t10: 76.085 t11: 76.085 t12: 76.028 t13: 76.028 t14: 76.028 t15: 76.028 t16: 76.028 
t17: 76.133 t18: 76.028 t19: 76.143 t20: 76.143 t21: 76.028 t22: 76.143 t23: 76.143 t24: 76.143  

Table 21 
The Energy Prices in The Retail Market by Applying DRPHESSs.  

CP(t)(¢/kWh)
t1: 15.608 t2: 15.608 t3: 15.608 t4: 15.608 t5: 15.608 t6: 15.608 t7: 15.608 t8: 15.608 

t9: 15.608 t10: 16.467 t11: 16.467 t12: 15.609 t13: 15.608 t14: 15.609 t15: 15.608 t16: 15.607 
t17: 17.179 t18: 15.609 t19: 17.334 t20: 17.334 t21: 15.609 t22: 17.334 t23: 17.334 t24: 17.334  

Table 22 
Simulation Results in Normal Operation Mode by Applying DRPHESSs.  

Load factor 0.926 

Peak demand (kWh) 572.374 
Total demand (kWh) 12714.608 
Minimum voltage in the network (p.u.) 0.966 
Maximum voltage in the network (p.u.) 1.032 
Maximum line load (kW) 5.553 
Consumer’s payment ($) 2051.903 
Cost of buying energy from the upstream network ($) 528.716 
Cost of buying energy from MTs ($) 0 
Income from selling energy to the upstream network ($) 446.997 
The revenue of utility company ($) 2411.094 
The profit of utility company ($) 1970.184 
Consumers’ gross surplus ($)* 27029.942 
Consumers’ net surplus ($) 24978.039 
Social welfare ($) 26948.223 
Simulation time (seconds) 2.360  

* In the mode of applying DRPHESSs, in all the tables related to the economic 
results, the operating cost of HESSs is also included in the consumers’ gross 
surplus. 

Table 23 
Technical Information in each Emergency Case by Applying DRPHESSs.  

Emergency Cases EC1 EC2 EC3 EC4 EC5 EC6 

Number of microgrids 11 10 16 14 10 7 
Number of faults 1 4 2 7 20 30 
Number of consumers in faulted area 140 140 214 214 214 214 
Percentage of interrupted loads 41.42 41.42 63.31 63.31 63.31 63.31 
Percentage of active power loss 0 12.74 0 11.35 42.22 58.91 
Percentage of reactive power loss 0 14.34 0 12.71 38.15 57.86 
Number of interrupted consumers 0 0 0 0 0 4 
Percentage of interrupted consumers 0 0 0 0 0 1.87 
Active demand not supplied (kWh) 0 0 0 0 0 19.714 
Total active demand 687.409 687.409 1049.604 1049.604 1049.604 1049.604 
Percentage of active demand not supplied 0 0 0 0 0 1.88 
Reactive demand not supplied (kVArh) 0 0 0 0 0 11.828 
Total reactive demand 412.445 412.445 629.762 629.762 629.762 629.762 
Percentage of reactive demand not supplied 0 0 0 0 0 1.88 
Generators for regulating Voltage and controlling frequency in each isolated part of the 

faulted area 
(Slack Bus) 

67 76, 108 35, 67 35, 44, 76, 
108 

35, 49, 101, 
108 

35, 44, 78, 
108  
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3.2.2. The mode with applying DRPHESSs 
The objective function of DRPIHESSs is to maximize the net surplus 

of each consumer in this stage. The DRP uses an RTP algorithm and 
HESSs to optimize consumers’ power consumption. The simulation of 
this stage takes 7.218 s. Fig. 10 shows the energy consumption of 
household appliances of a typical consumer of the first category. 

At this stage, by using DRPHESSs, the consumers achieve a trade-off 
between their convenience and net surplus and the amount of money 
they pay for their energy consumption. Considering the trade-off, as 
shown in Fig. 10, significantly reduces the energy consumption of the AC 
compared to Fig. 7. In other words, for example, by accepting a slight 
increase in the temperature inside the house (so that the temperature 

Table 24 
Economic and Security Information in each Emergency Case by Applying DRPHESSs.  

Emergency Cases EC1 EC2 EC3 EC4 EC5 EC6 

Peak demand (kWh)  237.271  237.271  362.193  362.193  362.193  355.386 
Total demand (kWh)  687.409  687.409  1049.604  1049.604  1049.604  1029.890 
Load factor  0.97  0.97  0.97  0.97  0.97  0.97 
Minimum voltage in the network (p.u.)  0.999  1.000  0.999  0.998  0.999  0.999 
Maximum voltage in the network (p.u.)  1.000  1.000  1.000  1.001  1.001  1.001 
Maximum line load (kW)  0.301  0.204  0.204  0.952  0.636  0.880 
Consumer’s payment ($)  115.477  115.477  176.318  176.318  176.318  173.006 
Cost of buying energy from MTs ($)  66.066  59.074  134.980  111.490  139.447  144.757 
The revenue of utility company ($)  115.477  115.477  176.318  176.318  176.318  173.006 
The profit of utility company ($)  49.411  56.403  41.338  64.828  36.871  28.249 
Consumers’ gross surplus ($)  4921.283  4921.283  7518.656  7518.656  7518.656  7308.217 
Consumers’ net surplus ($)  4805.806  4805.806  7342.338  7342.338  7342.338  7135.211 
Social welfare ($)  4855.217  4862.209  7383.676  7407.166  7379.209  7163.460 
Simulation time (seconds)  1.000  1.406  1.656  1.328  1.750  1.422  

Fig. 13. The energy consumption of an interrupted consumer of the first category in EC6 by applying DRPHESSs.  

Fig. 14. The energy consumption of an interrupted consumer of the second category in EC6 with applying DRPHESSs.  
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inside the house is still within the desired range of the consumer) be-
tween 13:00–14:00, the energy consumption of the AC decreases by 
1417.15 Wh. In addition, HESSs integrated with the DRP reduce con-
sumption during peak hours by charging during low-demand hours and 
discharging during high-demand hours. 

Fig. 11 shows the energy consumption of household appliances of a 

typical consumer of the second category. According to Fig. 11, the HESS 
is in charging mode when the consumer is not home. Thus, the HESS 
provides some of the energy needed by the consumer during peak hours 
of the network when the energy price is high. Fig. 12 shows the energy 
consumption of all consumers for each hour. Fig. 12 shows that utilizing 
the RTP program in DRPHESSs flattens the energy consumption graph of 

Fig. 15. Microgrids formation in The DN topology for the mode A. without applying DRPHESSs, and B. with applying DRPHESSs.  
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total consumers compared to Fig. 9. 
According to the demand, energy prices in the wholesale and retail 

markets are shown in Tables 20 and 21, respectively. The prices ob-
tained from the DRPHESSs are placed in the objective function of the 
SHSRDE in the parameters UPBP(t), UPSP(t), and CP(t). 

By comparing Tables 13 and 14 to Tables 20 and 21, the RTP algo-
rithm reflects the energy price in the wholesale market to the retail 
market and home consumers. Therefore, it encourages consumers to 
adjust their consumption according to the wholesale market price. 
Because of the modification of the consumers’ consumption pattern, the 
average wholesale price and the average retail price of energy decreased 
by 9.78 % and 19.94 %, respectively. 

3.2.2.1. Normal operation mode. Table 22 shows the simulation results 
in the normal operation mode. 

By applying DRPHESSs, each consumer saves approximately 5.55$ 
per day. This fact shows that even if there is no cost for operating HESSs, 
the initial cost of purchasing each HESS will break even within an 
approximate period of 4.9 years (the approximate purchase cost of a 
HESS is $10,000 according to Tesla Power Wall). Usually, the producers 
of these HESSs consider ten years of warranty for this product, which 
means that from the fifth year, consumers can use these batteries for five 
years with net profit without paying any costs. Comparing the mode 
without applying DRPHESSs and with DRPHESSs indicates that 
reflecting the wholesale market energy price to the retail market and 
home consumers and utilizing HESSs leads to a 57.15 % reduction in 
peak load, 87.45 % improvement in load factor, 0.84 % increase in 
minimum and 0.1 % reduction in maximum voltage, 47.77 % decrease 
in the consumers’ payment to the utility company, 19.89 % reduction in 
the energy purchase cost and network operation, an increase of 8.12 % 
in net surplus of consumers and 1.01 % in social welfare, and 44.47 % 
reduction in lines load and congestion. 

3.2.2.2. Emergency operation mode. Fig. 15B shows microgrid formation 
in the DN topology for each emergency case by applying DRPHESSs. 
Table 23 shows the technical information related to each case. 

Table 23 shows that the simultaneous use of SHSRDE and DRPHESSs 
successfully prevents the interruption of network loads in the faulted 
area isolated from the upstream network in EC1, EC2, EC3, EC4, and 
EC5. Comparing Tables 23 and 17 indicates that the proposed system 
significantly increases the ability of the system to restore loads so that in 
EC1 to EC5, the restored loads are 100 %, and in EC6 it reaches 98.12 %, 
and as a result, improves the resiliency to 0.9948. In other words, the 
simultaneous use of SHSRDE and DRPHESSs can restore the loads 

99.48 % of the time in case of multiple high-severity faults in emergency 
operation conditions. 

In addition, the proposed model supplies the loads for 3 h until 
resolving technical problems and re-establishing the connection of the 
isolated part to the upstream network. It is done by transforming the 
network into several self-sufficient microgrids and reflecting the energy 
price in the wholesale market to the retail market. Table 24 shows the 
economic and security information related to each of the six emergency 
cases by applying DRPHESSs for the isolated area. 

Unlike EC1 to EC5, the power supply to 4 consumers is interrupted in 
EC6. This reduces 2.80 % of the gross surplus of consumers, as well as 
2.92 % of social welfare. Comparing Table 24 with Table 18 shows that 
the average peak load and total load are reduced by 55.78 % and 
52.28 %, respectively. Because of the demand reduction, the average 
cost of purchasing energy from MTs and the average payment of con-
sumers is reduced by 52.52 % and 78.32 %, respectively. The average 
minimum voltage increased by 0.1 %. The average maximum voltage 
decreased by 0.1 %. The average transfer load of the line with the most 
load and congestion in the peak hour has improved by 38.18 %. 
Consequently, the improvements in the consumers’ consumption 
pattern, the voltage profile, and the load of lines enhance the ability of 
ISO to control and maintain the system’s security. 

The RTP algorithm improves the load curve so that the average 
power factor increases by 9.04 %. The average net surplus and average 
social welfare increased by 26.58 % and 15.97 %, respectively. The in-
crease in these two parameters in EC5 and EC6 is much more impressive 
due to the proposed system’s ability to restore more loads in contrast to 
the mode without applying DRPHESSs. 

Integrating HESSs with DRP enables consumers to use the stored 
energy to supply their electrical energy demand when multiple faults 
occur in the network. They can use their appliances even when the 
power supply from the DN is interrupted. In EC6, the power supply to 4 
consumers is interrupted. The simulation time of emergency DRPHESSs 
for these 4 consumers is 0.172 s. Fig. 13 shows the energy consumed by a 
consumer of the first category of these four consumers during the power 
supply interruption hours. 

Fig. 14 shows the energy consumed by a consumer of the second 
category of these four consumers during the power supply interruption 
hours. 

The proposed system is tested under severe events to evaluate the 
network’s resiliency in this paper. In this regard, the SOCHESS rate of 
each of these four consumers is considered 0.3 at the beginning of the 
power supply interruption. Therefore, the worst possible condition is 
modeled in the simulation to evaluate the proposed system’s efficiency. 
Fig. 13 and Fig. 14 show that HESSs can supply consumers’ energy de-
mand during power supply interruption hours. 

Comparing Fig. 13 and Fig. 14 with Fig. 10 and Fig. 11 shows that the 
proposed system gives considerable importance to the desired conve-
nience of the consumers. In such a way, despite the great disaster in EC6 
and considering the worst cases in the resiliency evaluation, the inter-
rupted consumers use all the devices they used in normal operation 
mode. Also, their energy consumption has not decreased. As a result, 
these two items help consumers achieve their desired level of comfort in 
this dire condition. 

Table 25 shows the economic and security information related to the 
connected part of the DN to the upstream network in emergency oper-
ation mode by applying DRPHESSs. 

Applying DRPHESSs for the area connected to the upstream network 
reduces the average peak load by 57.21 %, decreases the average total 
demand by 53.71 %, improves the average load factor by 8.99 %, re-
duces the average cost of energy purchase and network operation by 
7.67 %, increases the average net surplus of consumers and average 
social welfare by 9.83 % and 1.46 %, respectively. 

Table 25 
Economic and Security Information in the Connected Part of the DN to the 
Upstream Network by Applying DRPHESSs.  

Emergency Cases EC1, EC2 EC3, EC4, EC5, 
EC6 

Peak demand (kWh) 334.732 209.810 
Total demand (kWh) 970.236 608.041 
Load factor 0.97 0.97 
Minimum Voltage in the network (p.u.) 0.989 0.993 
Maximum Voltage in the network (p.u.) 1.012 1.007 
Maximum line load (kW) 3.209 0.946 
Consumer’s payment ($) 162.984 102.143 
Cost of buying energy from the upstream network 

($) 
40.780 20.949 

Cost of buying energy from MTs ($) 0 0 
Income from selling energy to the upstream 

network ($) 
42.469 18.883 

The revenue of utility company ($) 205.453 121.026 
The profit of utility company ($) 164.673 100.077 
Consumers’ gross surplus ($) 6957.413 4359.218 
Consumers’ net surplus ($) 6794.429 4257.075 
Social welfare ($) 6959.102 4357.152 
Simulation time (seconds) 0.343 0.203  
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4. Discussion of main achievements 

In this section, a brief explanation of the main achievements of this 
article is provided to provide more help for qualitative evaluation and 
comparison with other articles.  

1. The integration of HESSs with the DRP reduces consumption during 
peak hours by charging during low-demand hours and discharging 
during high-demand hours. Applying DRPHESSs leads to a 57.15 % 
reduction in peak load and, an 87.45 % improvement in load factor 
in normal operation mode, which results in a 47.77 % decrease in the 
consumers’ payment.  

2. Utilizing the RTP algorithm reflects the energy price in the wholesale 
market to home consumers. Therefore, it encourages consumers to 
adjust their consumption according to the wholesale market price. 
Because of the modification of the consumers’ consumption pattern, 
the average wholesale price and the average retail price of energy 
decreased by 9.78 % and 19.94 %, respectively.  

3. Without applying the SHSRDE, 41.42 % of the network loads in EC1 
and EC2 and 63.31 % of the network loads in cases EC3, EC4, EC5, 
and EC6 are interrupted. After applying the SHSRDE, the amount of 
system load restored by converting the network into several self- 
sufficient microgrids is 100 % in EC1 to EC4, 98.02 % in case EC5, 
and 98.02 % in EC6. The simultaneous use of SHSRDE and 
DRPHESSs in emergency operation mode significantly increases the 
ability of the system to restore loads so that in EC1 to EC5, the 
restored loads are 100 %, and in EC6, they reach 98.12 %.  

4. In addition to improving network resiliency, the application of the 
proposed framework simultaneously enhances the economic effi-
ciency. In a way that the simultaneous use of SHSRDE and DRPHESSs 
in emergency operation mode the average cost of purchasing energy 
from MTs and the average payment of consumers is reduced by 
52.52 % and 78.32 %, respectively.  

5. In addition to the faulted part of the DN, applying DRPHESSs for the 
area connected to the upstream network reduces the average peak 
load by 57.21 %, decreases the average total demand by 53.71 %, 
improves the average load factor by 8.99 %, reduces the average cost 
of energy purchase and network operation by 7.67 %, increases the 
average net surplus of consumers and average social welfare by 
9.83 % and 1.46 %, respectively.  

6. The proposed system is tested under severe events to evaluate the 
network’s resiliency: 1. The emergency occurs in the times with the 
highest energy consumption of the network. 2. 63.31 % of the 
network loads in EC6 are interrupted. 3. 58.91 % of active power and 
57.86 % of reactive power of the resources are lost in EC6. 4. 30 
faults have occurred in EC6. 5. The SOCHESS rate of each of the four 
not supplied consumers is considered 0.3 at the beginning of the 
power supply interruption.  

7. The DPRHESSs is executed by considering consumers’ comfort and 
priority settings. The proposed model does not implement load 
shedding through direct load control. The results show that the 
proposed system gives considerable importance to the desired con-
venience of the consumers. In such a way, despite the great disaster 
in EC6 and considering the worst cases in the resiliency evaluation, 
the interrupted consumers use all the devices they used in normal 
operation mode. Also, their energy consumption has not decreased. 
As a result, these two items help consumers achieve their desired 
level of comfort in this dire condition. 

5. Conclusion 

In this paper, a comprehensive program to optimize energy in normal 
operating conditions and emergency operating conditions is proposed. 
The energy optimization of household consumers is implemented 
through DEPHESSs. The simulation results show that the RTP algorithm 
in the DRP improves the consumption pattern of household consumers 

according to their convenience and preferences. As a result, the con-
sumption pattern modification reduces the peak load, the total demand, 
and the consumer’s payment and increases the load factor and the net 
surplus of consumers. Moreover, in emergency operation conditions, 
DRPHESSs enable interrupted consumers to use all home appliances 
they used in normal operation conditions by the energy stored in their 
HESSs. The DN energy management is implemented using SHSRDE. The 
results show that the application of this program improves the voltage 
profile, reduces the lines’ transmitted power and costs of the utility 
company, and increases social welfare and system security. In addition, 
in emergency operation conditions, SHSRDE significantly increases the 
ability of the DN to restore interrupted loads by converting the faulted 
part of the DN into several self-sufficient virtual microgrids. Conse-
quently, the system’s resiliency is considerably improved. However, the 
implementation of the proposed model of the article requires smart 
network infrastructure to manage and coordinate various distribution 
network components and smart home appliances. Furthermore, systems 
with high memory and processing power are needed to process and 
implement the proposed algorithms. The basic application of imple-
menting the proposed model in future smart grids is to bring the inter-
ruption hours of electric power supply to consumers as close to zero as 
possible. To continue the work in the future, it is possible to examine and 
evaluate more precisely the behavior of consumers from the perspective 
of the economy of the power system. This would provide valuable in-
formation on how to increase the price elasticity of household con-
sumers’ demand. Furthermore, providing an algorithm for 
implementing the proposed framework through autonomous manage-
ment of the smart grid during emergencies will greatly increase the 
speed of the load restoration process. 
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