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Abstract 

In this paper, a flexibility oriented stochastic scheduling framework is presented to evaluate short-term reliability and economic of islanded 

microgrids (MGs) under different incentive-based DR (IBDR) programs. A multi-period islanding constraint is considered to prepare the MG 

for a resilient response once a disturbance occurs in the main grid. Also, a multi-segment optimal power flow (OPF) approach is used to model 

the IBDR actions and reserve resources. Moreover, uncertainties associated with electricity prices, loads, renewable generation, calls for reserve 

as well as uncertainties of islanding duration of the MG are considered. The ultimate goal of the MG operator is to maximize its expected profit 

under a certain level of security and reliability in conjunction with the minimization of energy procurement costs of customers. The MG's 

economy and reliability indices are studied considering normal operation and resilient condition based on appliances characteristics, customers’ 

and operator's behaviors. The proposed model can effectively manage MGs operation in both normal and resilient conditions in order to 

improve economic and reliability indices. Numerical results demonstrate that by implementing IBDR, in cases of normal and resilient operation, 

the expected profit of the MG operator increases about 4% and 2.7% and reliability indicator improved 60% and 56%, respectively. 
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Nomenclature 

Indices and sets 
t, h

 
Index of time slot, t = 1, 2,…, NT. 

s
 

Index of scenario, s = 1, 2,…, NS. 

g  Index of DG units, g = 1, 2,…, NG. 

w Index of wind turbines, w = 1, 2,…, NW. 

k Index of energy storage system, k = 1, 2,…, NK. 

j Index of load groups, k = 1, 2,…, NJ. 

 n, r Indices of buses 

t,1 , t,2  Cost coefficients of DG unit g. 
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(.) ,t, s At time t in scenario s. 

max(.) , min(.)  Upper and lower limits of variable (.) . 

Parameters and constants 

S
tjD , , ( stjD ,, ) Scheduled demand (power consumption) of the j-th group of customer (kW). 

S
tgP , , ( stgP ,, ) Scheduled power (power generation) of DG unit g (kW). 

DA
tPr ( 

RT
st ,Pr )

 

Day-ahead (real-time) market prices ($/kWh). 

tj,
 

Total rate of electricity ($/kWh). 

β Risk-aversion parameter. 

 

  

 

Per unit confidence level. 

up
tg ,Pr (

dn
tg ,Pr ) 

Bid of up (down)-spinning reserve submitted by DG unit g at time t ($/kWh). 

up
tj,Pr (

dn
tj,Pr ) 

Bid of up (down)-spinning reserve submitted by the j-th group of customer at time t ($/kWh). 

non
tg ,Pr  

Bid of non-spinning reserve submitted by DG unit g at time t ($/kWh). 

tjinc , ,( tjpen , ) 
Incentive (penalty) rate considered in IBDR program ($/kWh). 

Voll
tj,Pr  

Value of lost load ($/kWh). 

ttjE ,, , ( htjE ,, ) 
Self (cross) demand elasticity. 

SU
tg , ,(

SD
tg , )

 
Start-up (Shut-down) cost of DG unit g at time t ($). 

gRU ,(
gRD ) Ramp-up (ramp-down) rates of DG unit g. 

UTg, (DTg)
 

Minimum up (down) time of DG unit g. 

lG ,(
lB ) 

Conductance (Susceptance) of line l. 

s  Probability of scenario s. 

Variables 

DA
stp ,  

Exchange power between the MG and the main grid in the DA market (kW). 

shed

stj
p

,,
(

shed

stj
q

,,
)
 

Active (reactive) power of load shedding of customers in group j (kW). 

up
tgR , (

dn
tgR , ) 

Reserve up/down service provided by DG unit g (kW). 
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up
tjR , (

dn
tjR , )

 

Reserve up/down service provided by customers in group j (kW). 

non
tgR ,  

Non-spinning reserve provided by DG unit g (kW). 

up
stgr ,, (

dn
stgr ,, ) 

Up- and down spinning reserves deployed by DG g (kW). 

up
stjr ,, (

dn
stjr ,, )

 

Up- and down spinning reserves deployed by customers in group j (kW). 

st,  ( stV , )
 

Voltage angle and amplitude. 

s  Auxiliary variable for calculating the CVaR ($). 

  Value-at-risk ($). 

stgu ,,  Commitment status of DG unit g, {0, 1}. 

stgy ,, ( stgz ,, ) Start-up (shutdown) indicator of DG g, {0, 1}. 

)( ,tjDINC   
Total incentive payment for load reduction of customer j participated in IBDR program ($) 

)( ,tjDPEN   
Total penalty charge of customer j ($) 

)( ,tjDB  Income of customer j when participate in IDBR program during t-th hour ($) 

c
tjS ,  Benefit of customer j when participate in IDBR program ($) 

stjLOL ,,  Loss of load of customer j at time t and scenario s (kW). 

tEIR  Energy index of reliability. 

tEDNS
 

Expected demand not served at time t.
 

VLR (IVLR) Value of voluntary (involuntary) load reduction. 

VLR
tEDNS

 
Expected demand not served stemmed from VLR. 

IVLR
tEDNS

 
Expected demand not served stemmed from IVLR. 

1. Introduction 

Over the past years and as a response to climate changes and energy crisis, utilization of renewable energy resources (RESs) 

has been widely increased around the world [1]. In a power system with a high penetration of renewable generation, power 

mismatch between supply and demand increases due to the intermittent nature of such uncertain resources. In traditional power 

systems, some solutions such as backup generation, energy storage systems (ESSs), or curtailment (in part) of wind and solar 

power have been employed to mitigate supply-demand imbalance [1], [2]. 
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However, in smart modern power systems, in addition to conventional solutions for power mismatch compensation, demand 

side management (DSM) techniques are frequently used as they can provide a great opportunity for power/energy regulation and 

relieve risks associated with operation of renewable-based energy systems[3], [4]. DSM provides several financial and technical 

benefits for power system operators by improving the operation of RESs and enabling cost saving for end-use customers [5]. In 

this regard, demand response (DR) as a main option of DSM strategy is recognized to mitigate the imbalance by stimulating 

consumers to modify their demand profile through varying electricity prices or incentive payments in order to reduce their 

electricity bills [6], [7].  

Implementing of DR programs can also play an important role in reliable operation of microgrids (MGs) where the 

uncertainties of RESs and stochastic behaviors of customers have a significant impact on the reliability and security, especially 

when MGs enter to islanded operation [8]. This subject has been investigated in several literatures and the results have confirm 

that the implementation of DR programs not only brings great profits to MGs, but also enhance their reliability through mitigating 

peak demand and proper management of renewable generation units [8]-[10]. Therefore, DR is known as a system reliability 

resource that can procure spinning reserve for system reliability enhancement [11].  

Some studies have attempted to model the effects of DR participants on network reliability. DR participants and dynamic line 

ratings (DLR) for optimum power network reliability and ageing have been addressed in [12]. When expected energy not 

supplied (EENS) and expected total network ageing (ETNA) are considered together, the reliability model is more cost-effective 

[12]. In [13], the effects of network ageing towards its reliability have been modelled considering wind integration plants. These 

studies modelled the effects of network ageing towards its reliability and mainly applied for real-time operation management of 

overhead lines at transmission level. 

The ability to operate in islanded mode is the most salient feature of MGs when a disturbance occurs in the upstream grid. 

The impact of prevailing uncertainty of islanding events on optimal scheduling of MGs has been studied in a significant number 

of literatures [14]-[16]. In [14], a resiliency-oriented MG optimal scheduling model has been presented aiming to minimize the 

MG load curtailment by efficiently scheduling available resources when supply of power from the main grid is interrupted for 

an extended period of time. Prevailing operational uncertainties in load, RESs power, and the main grid supply interruption time 

and duration are considered and captured using a robust optimization method. In [15], a two-stage stochastic problem has been 

modeled for optimal scheduling of resilient MGs. In that model, the operation cost of MGs is minimized while taking into account 

the prevailing uncertainties associated with wind power, electric vehicles (EVs), and real-time market prices are also taken into 

account in that work. A two-stage adaptive robust optimization model has been proposed in [16] for scheduling of MGs 

considering islanding operation mode. In that model, operating cost of MG is minimized under the worst-case scenarios 

associated with RESs generation and islanding durations. In [17], a resiliency-oriented stochastic framework has been presented 

for MG scheduling to minimize the operation cost and reduce the mandatory load shedding under the weather-related incidents. 
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In the mentioned studies, reliability issues are not considered when islanding events occur. Moreover, the impact of uncertain 

factors such as islanding events and DR participants on system reliability are not addressed. 

This paper presents a flexibility-oriented stochastic framework for joint energy and reserve scheduling of resilient MGs 

considering incentive-based DR (IBDR) programs. Risk constraints are added to the mathematical scheduling formulation to 

control the uncertainties associated with electricity prices, loads, renewable generation, calls for reserve and islanding duration 

of the MG. The impacts of the operator behavior and also incentive price factor are studied on short-term reliability of the MG 

in different cases. The existing reliability evaluation techniques are more focused on steady-state (time-independent) reliability 

evaluation and have been successfully applied in power system planning and expansion [18], [19]. In this paper, short-term 

reliability of resilient MGs is studied considering islanding duration of the MG in the short term scheduling. The proposed 

method provides an accurate model for the MG operator to evaluate the reliability and arrange reserve for maintaining secure 

operation of MG considering islanding duration in the short terms. The proposed method can provide some references for short-

term dispatching and operation of resilient MG and the effect of DR programs for its reliability improvement. To evaluate the 

true effects of IBDR programs on the MG reliability, optimal power flow (OPF) approach is employed to the problem 

formulation. The careful evaluation of reliability and economic indices of MGs considering emergency conditions is very 

important. In this way, the MG operator can effectively check the status of reliability indicators in different situations and make 

necessary decisions. 

       Various sensitivity analyses on the risk parameters and incentive factors in both normal and resiliency conditions are carried 

out to validate the short-term reliability of the MG in different states. The results of this research demonstrate that the proposed 

scheduling and pricing schemes can effectively manage opportunistic demand and enhance system reliability, thus have the 

potential to improve the penetration of wind generation. Also, the results confirm that the proposed stochastic strategy can help 

to the operators to effectively manage the MGs operation in the unscheduled island mode. 

The novel contributions of this paper are threefold: 

 A flexibility-oriented stochastic framework is proposed for joint energy and reserve scheduling of resilient MGs. The proposed 

model handles the prevailing uncertainties of islanding duration, component contingency as well as prediction errors of loads, 

day-ahead (DA) and real time (RT) market prices, renewable power generation and reserve provision. 

 To assess the effect of DR on the reliability, two new reliability-based indices are defined to compare the MG operation in 

normal operation and resilient condition.  

 The impacts of the operator behavior and incentive price factor on economy and reliability indices are investigated via a 

sensitivity analysis. 
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The rest of the paper is organized as follows. Section 2 describes the proposed stochastic scheduling framework. In section 

3, mathematical formulations are presented. Numerical analysis and results are given in section 4 and section 5 concludes the 

paper. 

2. Flexibility-oriented stochastic scheduling framework     

In this study, a flexibility-oriented stochastic framework is presented for MG scheduling, in which, the main objective is 

maximizing the expected profit of the MG operator by optimal scheduling of both demand and supply side resources. The MG 

includes a few dispatchable DGs and RESs that supply number of local customers. It is assumed that the MG has the capability 

of communicating with the end-users and controlling their responsive loads when it is needed. Each customer has a number of 

electrical devices which some of them are essential and some others are flexible and manageable. The MG operates normally in 

grid-connected mode and goes to islanding mode when a disturbance occurs in the upstream. A reconnection to the main grid is 

established once the disturbance is cleared.  

However, the disturbance occurring time and period are not predetermined for the MG operator. During islanding duration, 

the MG’s resources should be scheduled in such a way that the loads be supplied with minimum interruption. Therefore, a 

realistic islanding constraint should be implemented in scheduling problem to consider all probable disturbances in any time. In 

other words, a resilient operation with adequate online generation resources would be performed for all 24 hours of a scheduling 

horizon. Moreover, the operator should try to anticipate unbalanced power of the MG by implementing IBDR program and 

providing required balancing power during all time periods. Based on this program, when the MG reliability encounters high-

risk operation or in the periods with higher energy prices, the proposed method relies on providing incentive prices to the 

customers in order to reduce their energy procurement costs. Meanwhile, the customers participate in IBDR programs and 

reduced their consumption to achieve more incentives or energy credits.   

In this study, the customers can participate in two different IBDR plans including interruptible/curtailable (I/C) programs and 

capacity market programs (CAP). In I/C programs, customers receive a rate discount or bill credit to reduce their demand when 

contingencies are triggered. Also, the customers will be penalized if they do not commit themselves to the agreement. Moreover, 

in CAP, customers should supply pre-determined load reductions on demand and are subjected to penalties if they do not respond 

properly to load reduction commands. 

 In smart grids, in addition to DG units, responsive loads can provide spinning reserve to improve the system reliability. 

Customers’ energy bills decrease when they provide reserve services, because reserve generation would be freed up to supply 

energy. When responsive loads allocate reserve, they should be able to rapidly curtail a part of their demand in response to an 

event or contingency. This option requires responsive loads with storage and control capability, a communication system that 

tells the loads when to respond, and monitoring to ensure that the load response is obtained.  
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The MG operator clears DA, RT and spinning reserve (SR) markets using a market-clearing procedure to obtain the share of 

providing balancing power of each customer and the reserve services in each time slot. In the decision-making process, the 

operator may face sources of uncertainty including RESs power generation, load demand, availability of responsive loads, calls 

for reserve, DA, RT and SR market prices and also the MG islanding durations. An optimal power flow (OPF) model is 

implemented in the market clearing program to consider network constraints, properly, to determine energy credit earned by 

customers, values of voluntary load reductions (VLR), involuntary load reductions (IVLR), EENS and other economy and 

reliability indicators. After determining the incentive prices of the MG, the optimal balancing power of consumers in response 

to these prices and their reserve provision capacity are also determined such a way that to maximize benefits of consumers.  

3. Mathematical Formulation 

3.1. Uncertainties Characterization and Modeling Procedure  

Two major classes of uncertainties are considered in this study. The first class that is called normal operation uncertainty 

including uncertainties associated with prediction errors of loads, electricity price, renewable power generation and call for 

reserve. The values of stochastic variables at each hour would be equal to the forecasted value at that hour plus an error that is 

randomly generated based on the distributions obtained from historical data [20]. At first, normal probability distribution 

functions (PDFs) are used to model prediction errors of the first class uncertainties, and then Monte-Carlo simulation (MCS) 

[20] is applied to generate numerous scenarios based on random sampling from related PDFs.  

In this study, DG units and DR can provide reserve services to the MG operator. Such reserve services are traded by purchasing 

options to buy reserves at predetermined prices by paying premiums. These reserves include call and deploy options to address 

underproduction and overproduction. To estimate the possible call for reserve, normal distribution function is considered in this 

study. Forecasting errors of this stochastic variable is modeled with PDF for each interval (in this case 24 PDF) with a zero-

mean normal distribution and different standard deviations. The MG operator may call the responsive loads and DG units for 

providing reserve, when it required reserve services. If the MG operator accepts the bid of reserves submitted by each of the 

units and DR, the mentioned units and DR receive a capacity payment for being on stand-by. If that unit or DR is called to deploy 

their services, they will receive in payment in real time. This behavior of unit and DR is uncertain and its distribution are modelled 

with normal PDF as shown in Fig. 1 that each PDF is divided into seven discrete intervals with different probability levels. As 

observe, the mean values are equivalent to the forecasted values of the reserve provided by reserve resources in each time period. 

MCS method is used to generate a large number of scenarios indicating the uncertain parameters based on hourly PDFs of call 

for reserve. 
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Fig. 1. Discretization of the probability distribution of the call for reserves 

 

The second class of uncertainties, which deemed as contingency-based uncertainties, include two groups: uncertainty of 

islanding duration events and contingency of the MG's components, such as DG units. Islanding duration is unknown in case of 

unscheduled islanding events and may not be determined with certainty. However, the associated probability distribution can be 

estimated from historical data, Monte Carlo simulations or any credible source of information [9]. The uncertainties of islanding 

duration are represented via an appropriate scenario set that are extracted from historical data. This scenario set has different 

possibilities of unscheduled islanding duration and the estimated probability of occurrence. In this study, normal PDF is 

considered to model the associated randomness of unscheduled islanding durations. For example, normal PDF for modeling 

forecasting errors of unscheduled islanding durations with mean of 12:00 hours and standard deviation of one hour [9]. 

The second group of the contingency-based uncertainties is considered with a two state reliability model. In this model random 

forced outages of DG units as contingency of the MG's components is considered based on the 2-state Markov model {0, 1}, in 

which 0 represents the working state and 1 shows the fault state. Assuming that λ (fault rate) and the μ (repair rate) of the two 

state components are constant, and then the working time and fault repairing time of the components are exponentially distributed 

[21]. Assuming also that the component is in the working state initially (t=0), the component probability of each state at time t,

ρ(t), is [21]: 

)]1(,[],1[ )()( tt
hhh ee(t)π(t)π 











  





(t)π  (1) 

where 1- (t)πh is the working condition probability of the component at t, (t)πh is the probability of fault state of the component 

at t. 

Based on the above discussion, a set of NA scenarios is created for normal operation uncertainties (i.e. uncertainties of RESs 

generation, demand load, call for reserve and energy prices) and a set of NB scenarios is created for contingency-based 

uncertainties (i.e, uncertainties of islanding duration events and random forced outages of DG units). These two groups of 

scenarios are combined based on the scenario tree [22]. The probability of the corresponding combined scenario would be 

determined based on the multiplication of the probability related to the scenario of the two groups assuming that the two 
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uncertainties are independent. The total number of scenarios considering all uncertain parameters would equal to N=NA×NB with 

occurrence probability of connors πππ . , where, norπ and conπ are occurrence probability of normal scenario s and occurrence 

probability of contingency-based, respectively. 

3.2. Model of IBDR programs 

Participation of responsive loads in IBDR programs is modeled based on the incentives and penalties imposed to the 

customers. When customer j participates in IBDR program, its hourly demand changes from initial value (
int
,tjD ) to a modified 

level ( tjD , ), as:  

tjtjtj DDD ,
int
,,   (2) 

     In this case, the total revenue of customer j participated in IBDR based on the hourly incentive rate, tjinc , , is calculated as:  

)()( ,
int
,,, tjtjtjtj DDincDINC   (3) 

     Also, the penalty payments of customer j who (that) do not respond or satisfy its pre-defined contract is obtained as follows: 

)]([)( ,
int
,,,, tjtj

c
tjtjtj DDLpenDPEN   (4) 

where, 
c

tjL , and tjpen ,  are respectively predetermined level of contract of customer j and penalty factor at time period t. As 

mentioned before, customer j changes demand to maximize its total benefits which are difference between incomes from 

consuming electricity and incurred costs. By assuming )( ,tjDB be the income of customer j during t-th 

hour, the benefit of customer j, 
c

tjS , , at time t will be as follows:   

)()(Pr)( ,,,,,, tjtjtjtjtj
c

tj DPENDINCDDBS   (5) 

    To maximize the benefit of customer j, 
tj

c
tj

D

S

,

,




 should be equal to zero, therefore: 

By replacing the (3) and (4) into (6) and differentiating the equation and moving the last three terms to the right side of the 

equality, equation (7) is obtained. 

tjtjtj
tj

tj
peninc

D

DB
,,,

,

,
Pr

)(





 (7) 

The customer marginal benefit from the use of tjD , kWh of electrical energy can be calculated as follows [23]: 

0
)()(

Pr
)(

,

,

,

,
,

,

,
















tj

tj

tj

tj
tj

tj

tj

D

DPEN

D

DINC

D

DB
 (6) 
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 

tjD

tjtj dDB

,

0

,, )(   (8) 

where, tj, is the total rate of electricity. By comparing (7) and (8), the below equality should be satisfied:  

tjtjtjtj peninc ,,,, Pr   (9) 

Based on economics theory, the demand-rate elasticity at time t is defined as the demand sensitivity with respect to the price at 

time [24]. 

tj

tj

tj

tj
ttj

D

D
E

,

,

int
,

int
,

,,







  (10) 

where ttE ,  is self-elasticity coefficient, which shows the effect of price change in time period t on demand change at the same 

time. For time varying loads, cross-time elasticity relates the effect of price change at one point in time to consumptions at other 

time periods and it defined by following relation [24]: 

hj

tj

tj

hj
htj

D

D
E

,

,

int
,

int
,

,,







  (11) 

By substituting (9) to (10) and (11), the following relation is obtained based on self and cross elasticity coefficients. 

hjhjhj

hjhjhj
htj

tj

tj

peninc

peninc
E

D

D

,,,

,,,
,,int

,

,

Pr

Pr







 (12) 

     By integrating of (12) over the scheduling horizon, the following equations are obtained as: 

  


















hjhj
T

tj

tj

tj

tj

pen

hjhjhj

hj

inc

hjhjhj

hj
N

h hjhjhj

hj
htj

D

D tj

tj

peninc

pen

peninc

inc

peninc
E

D

D
,,,

int
,

,

int
, 0 ,,,

,

0 ,,,

,

1

Pr

Pr ,,,

,
,,

,

,
]

PrPrPr

Pr
[  (13) 

)]
Pr

Pr
ln()

Pr

Pr
ln()

Pr

Pr
[ln()ln(

,,

,,,

,,

,,,

1 ,,
int
,

,,,
,,int

,

,

hjhj

hjhjhj

hjhj

hjhjhj
N

h hjhjhj

hjhjhj
htj

tj

tj

pen

peninc

inc

peninc

peninc

peninc
E

D

D T


















 (14) 

     By simplification of (10), the level of responsive loads after participating in IBDR programs is calculated as follow: 

}]
))(Pr)(Pr(Pr

)(Pr
[{

1 ,,,,,,
int
,

3
,,,int

,,
,,

 




T

htj

N

h

E

hjhjhjhjhjhjhj

hjhjhj
tjtj

penincpeninc

peninc
DD  (15) 

3.3. Short-term Reliability Evaluation Procedures 

     To evaluate short-term operating reliability of the MG, the indices of expected demand not served at time t ( tEDNS ) and the 

energy index of reliability ( tEIR ) are implemented that are defined as follow: 
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
 


J SN

j

N

s

stjst LOLEDNS

1 1

,,  (16) 

)/(1

1 1

,,
 


J SN

j

N

s

stjtt DEDNSEIR  (17) 

    Here, the index of tEDNS is redefined as expected demand not served stemmed from VLR ( VLR
tEDNS ) and as expected 

demand not served stemmed from IVLR ( IVLR
tEDNS ). These two indices are defined as follow: 


 


J SN

j

N

s

stjs
VLR
t VLREDNS

1 1

,,  (18) 


 


J SN

j

N

s

stjs
IVLR
t IVLREDNS

1 1

,,  (19) 

     To get more insight into the MG reliability, indices of DR are defined to improve VLR ( VLR
tDRS ) and IVLR ( IVLR

tDRS ) as 

follows: 


 

 
J SN

j

N

s

stj
DRVLR

t
DRNoVLR

t
VLR
t DEDNSEDNSDRS

1 1

,,
,, /)(  (20) 


 

 
J SN

j

N

s

stj
DRIVLR

t
DRNoIVLR

t
IVLR
t DEDNSEDNSDRS

1 1

,,
,, /)(  (21) 

Superscripts of DR and No-DR in tEDNS denote the state of with and without applying DR programs, respectively. These indices 

can give a clear picture of the share of DR participants to provide ancillary services and assess the ability of applying DR on the 

MG reliability improvement. Higher values of VLR
tDRS  and IVLR

tDRS shows a significant impact of DR participant on the 

decrement of voluntary and involuntary load reduction, and as the result, causes more improvement of the system reliability 

operation.  

3.4. Objective Function (OF) 

     The objective is maximizing expected profit of the MG operator (EP) considering the conditional value at risk (CVaR) under 

different levels of risk aversion as follow: 

CVaREPOFMax :  (22) 
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    The first term of (22) represents the revenue by selling energy to local customers, the second term represents the revenue of 

the bids in the electricity market, the third term denotes the operation costs of conventional DG units and their start-up and shut 

down costs, the fourth and the fifth terms represent the spinning reserve costs of DGs and DR, respectively.  Finally, the sixth 

term denotes the expected cost of voluntary and involuntary load shedding during time scheduling. The VLR and IVLR are valued 

at VLR

tj,Pr and IVLR

tj,Pr that are dependent on the general load type and the point of connection.  It should be noted that, in the second 

term of (22) when DA
tP is positive/negative, the MG is selling/buying power to/from the DA market, and DA

st

DA

tP ,Pr  denotes the 

MG’s revenue/cost by selling/buying electricity to/from the DA market at time t and scenario s. Similarly, when 
DA

t
RT
st PP , is 

positive/negative, the MG is selling/purchasing power to/from the RT market, and 
RT

st

DA

t

RT

st PP ,, Pr)(   shows the MG’s 

revenue/cost by selling/purchasing electricity to/from the RT market at time t and scenario s. Here, auxiliary variable st , is used 

to denote the penalty that occurs when the RT power exchange deviates from the DA power scheduling, i.e. RT

st

RT

st

DA

t PP ,, Pr)(   

[25].  

    As presented in (22), risk-averse parameter β is introduced to construct risk aversion model to minimize the uncertainty 

influence on the decision-making problem. The mathematical definition of CVaR for a discrete distribution and at a certain 

confidence level )1,0( , is given as [22]: 

s

N

s

s

S

CVaR 


 





1
1

1
  (24) 

sEPtoSubject s  ;:    (25) 

      CVaR represents the expected cost of a predetermined portion of the worst (in our case most costly) possible scenarios. On 

these bases, CVaR is applied to measure the risk of different candidate schedules in this paper. Based on the behavior of the MG 
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operator, parameter β is chosen that allows it to make a balance between the expected cost and CVaR, and made optimal decision 

making strategy under different conditions. When β=0 (risk-neutral case), the expected cost is minimized ignoring the risk of 

cost. As the value of β increases, the operator becomes more risk-averse, in the sense that it minimizes both the expected cost 

and CVaR. 

3.5. Network and Market Constraints 

     The presented optimization problem is subject to the following network and market constraints: 

1) Constraints of active and reactive power balance: Equations (26) and (27) present respectively limits of active and reactive 

power balance in node n at time t and scenario s.

  

 

 




BN

r strstnstrstn
L

rn

strstnstrstnstn
L

rnn
stj

n
stj

n
stj

n
stw

n
stg

VVB

VVVG
IVLRVLRDPP

1 ,,,,,,,,,

,,,,,,,,
2

,,,

,,,,,,,,,,
)}sin(

)cos({




 (26) 

 

 




BN

r strstnstrstn
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rnn
stj

n
stj

n
stj

n
stw

n
stg

VVG

VVVB
IVQRVQRQQQ

1 ,,,,,,,,,

,,,,,,,,
2

,,,

,,,,,,,,,,
)}sin(

)cos({




 (27) 

2) Constraints of responsive loads: These constraints include limits of scheduled demand (28), scheduled upward spinning 

reserve (29) and scheduled downward spinning reserve (30), actual demand loads (31), as well as limits of deployed upward 

reserve (32) and deployed downward reserve (33). 

max
,,

min
, tj

S
tjtj DDD   (28) 

min
,,,0 tj

S
tj

up
tj DDR   (29) 

S
tjtj

dn
tj DDR ,

max
,,0   (30) 

up
tj

up
stj Rr ,,,0   (31) 

dn
tj

dn
stj Rr ,,,0   (32) 

dn
stj

up
stjstj

S
tj rrDD ,,,,,,,   (33) 

3) Constraints of operating of dispatchable DG units: These constraints include limits of power capacity of DG g (34), start-up 

cost limit (35), shut-down cost limit (36) as well as ramping up limit (37) and ramping down limit (38), [26] , [27]. 

stggstgstgg uPPuP ,,
max

,,,,
min   (34) 

)( ,1,,,,,, stgstg
SU

tgstg uuSUC  
 

(35) 

)( ,,,1,,,, stgstg
SD

tgstg uuSDC  
 (36) 
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stggstggstgstg yPyRUPP ,,
min

,,,1,,, )1(    (37) 

stggstggstgstg zPzRDPP ,,
min

,,,,,1, )1(   (38) 

Constraint (35) denotes stgSUC ,, is equal to 
SU

tg , if stgu ,, =1 and stgu ,1,  =0, i.e., if unit g is started up in period t, and 0 otherwise. 

Moreover, (36) represents stgSDC ,, is equal to 
SD

tg , if stgu ,1,  =1 and stgu ,, =0, i.e., if unit g is shut-down in period t, and 0 

otherwise. Start-up and shut-down binary variables related to the commitment status of unit g as follows: 

stgstgstgstg uuzy ,1,,,,,,,   (39) 

0,,,,  stgstg zy
 

(40) 

     In addition, up and down services allocated by unit g are limited by (41) and (42), respectively. Also, limits of deployed 

upward and downward reserves are presented by (43) and (44), respectively. Finally, the decomposition of DGs output power is 

determined as (45). 

S
tgtig

up
tg PuPR ,,

max
,0   (41) 

tig
S

tg
dn

tg uPPR ,
min

,,0   (42) 

Up
tg

Up
stg Rr ,,,0   (43) 

Dn
tg

Dn
stg Rr ,,,0   (44) 

Dn
stg

Up
stg

S
tgstg rrPP ,,,,,,, 

 
(45) 

3.6. Solution Methodology  

Fig. 2 represents the solution methodology of the proposed flexibility-oriented scheduling problem. First of all, historical data 

of loads, market prices, RESs and calls for reserves are collected and a numerous scenarios are generated based on their prediction 

errors. Also, another set of scenarios are generated based on contingencies of DG units and islanding durations of the MG.  In 

this study, MCS is applied to generate the scenarios that represent the mentioned uncertain parameters based on the corresponding 

distribution functions [20].  

 

 



15 

 

Update wind output power, loads, market prices and reserve services 

Contingency-based uncertainties 

Random forced outages of MG's 
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Normal operation uncertainties 
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based on forecasted data

Characterization of Uncertainty  
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and DR, calculate the VLR and IVLR  index and the EDNS index and etc. 

Final Results

 

Fig. 2. Solution methodology of the proposed two-stage flexibility-oriented scheduling problem. 

The obtained scenarios of different parameters are combined to provide the completed set of uncertain inputs. Moreover, some 

certain inputs such as DGs' data, MG's topology and limits of DR and RESs should be determined by the MG operator as an 

input data. These certain and uncertain inputs are simultaneously given to the optimization scheduling problem. Before running 

the scheduling problem, the risk-averse parameter and incentive price factor should be set on the desirable value to manage the 

uncertainties and demand side resources, respectively. Selection of these parameters depends on the operator behavior and the 

customers characteristics. As it can be observed, the scheduling process includes two stages. In the first stage, decisions related 

to the units commitment and reserve capacity and trading energy from the electricity market are made for DA. In the second 

stage, decisions associated with the economic dispatch of DG units, IBDR implementation, deployed reserves of DGs and DR 

as well as VLR and IVLR are determined. 

4. Case Study and Test Results 

4.1.  Case Study Description 

The presented approach is implemented to do the scheduling of the test MG shown in Fig. 3, [28] over a daily time horizon. 

The MG comprises of five controllable DG units including two micro turbines (MT1 and MT2), two fuel cells (FC1 and FC2) 

and one diesel engine (DE) that their technical data are presented in Table 1 [28]. As shown in Fig 2, the MG supplies 200 
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aggregated residential loads within eight groups of customers that are equipped with house energy management and controllers 

(Hex MCs) to enable automated connectivity to end-use customers’ control systems. The forecasted values of total demand of 

eight groups of customers, output power of wind turbines (WTs) as well as DA electricity price is considered as shown in Fig. 

4. The hourly DA electricity price extracted from the Nordpool market [29]. The forecast errors related to load, wind power, 

electricity price and call for reserve are assumed to be 10%, and the positive and the negative balancing prices are assumed to 

be 0.9
DA
st ,Pr and 1.1

DA
st ,Pr , respectively. Furthermore, the price of up/down spinning reserve services of DGs and DR resources 

in time t are considered to be 0.2
DA
st ,Pr and 0.15

DA
st ,Pr , respectively. 

The optimization problem is investigated for two different operation conditions of the MG, namely normal condition (without 

considering islanding contingencies of the MG), and resilient condition (considering islanding contingencies). 

In this paper, each uncertain parameter is modelled with 100 scenarios, and the result total number of combined scenarios is 

108 scenarios. Then, these original scenarios are reduced to 200 scenarios by using K-means algorithm [30] for computational 

tractability. The results are obtained on a PC with 4 GB of RAM and Intel Core i7@2.60 GHz processor with GAMS software 

and CPLEX solver [31]. The relative gap is set to be 10-4. The computation time in different cases is less than 5 minutes. 
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Fig. 3. Structure of the studied MG.  
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Fig. 4. The hourly forecasted values of aggregated loads, wind power and electricity price. 

4.2. Results and Discussions 

This section analyzes the impact of implementing IBDR programs on the normal and resilient MG based on the economy and 

reliability indices.  

 

Table 1. Technical data of dispatchable dg units 

 

 

 

Expected profit, payment cost of customers, reserve costs of DGs and DR as well as reliability indices with and without 

considering resiliency conditions in different incentive factor INC  are presented in Table 2. It is assumed that INC varies from 

0 to 50% of the DA price. In higher incentive prices, the customers’ power consumption profile is better adjusted and the 

expensive DG units are not committed and therefore the operating costs of DGs decrease and then expected profit increases.  

 

Table 2. Economic indexes of the MG in different incentive prices 

 

INC  Resilience 

condition 
Indexes  

0.5 0.4 0.3 0.2 0.1 0 

1103 1095 1085 1078 1068 1062 No resiliency 
Expected profit ($) 

1050 1047 1042 1037 1032 1022 With resiliency  

1339 1572 1863 2152 2441 2728 No resiliency 
Payment of customers ($) 

1358 1593 1883 2178 2451 2742 With resiliency  

1256 1273 1292 1312 1330 1351 No resiliency 
Cost of DGs ($) 

1380 1393 1405 1421 1437 1461 With resiliency  

122 119 115 109 105 102 No resiliency 
Cost of DGs reserve ($) 

139 134 129 124 119 115 With resiliency  

32 29 27 25 23 21 No resiliency 
Cost of DR reserve ($) 

37 33 30 29 27 25 With resiliency  

738 649 560 471 343 0 No resiliency 
VLR (kW)

 738 649 560 471 343 0 With resiliency  

11.5 12.8 14.1 16.4 18.7 29.2 No resiliency 
EDNS (kW)

 16.4 17.8 19.7 22.2 24.5 37.1 With resiliency  
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When incentive price grows, the customers receive more incentives and so their payment costs as electricity bills decrease, 

substantially. In higher INC , both DGs and DR resources allocate more reserve capacity and so cost of reserve provision 

increases. In fact, when INC increases, generation of DGs reduces and therefore they can allocate more spinning reserve 

capacities. The result of this table shows that when the resiliency is taken into account, the expected profit is decreased mainly 

due to higher operation cost of DG units. Considering the resiliency condition, there is a higher probability of mismatch between 

supply and demand, which in turn necessitates more reserve capacity. 

The efficient frontiers in normal condition and with considering resiliency for cases INC =0 and INC =0.5 are depicted in 

Fig. 5. As it can be observed, when incentive is considered, both the expected profit and the CVaR decrease in all risk-averse 

conditions. When a resilient scheduling according to the credible islanding contingencies is considered (Fig. 5 (b)), the expected 

profit decreases and the CVaR increases in comparison with the normal operations (Fig. 5 (a)).  Comparing the results in different 

risk-aversion parameter β, it is understood that the risk seeking degree of operator has different effects on the profit and the 

CVaR. It means that by applying invective prices in risk-neutral case (i.e. β=0) the profit and the CVaR have less variation rather 

than those of in risk-averse case (i.e. β=20).  

 

 
(a) 

 
(b) 

Fig. 5. Efficient frontier, (a) without resiliency, and (b) with resiliency. 

 

Fig. 6 shows hourly
VLRDRS  and 

IVLRDRS  in different incentive prices. As it can be seen from Fig. 6 (a), with choosing 

higher incentive prices, more customers participate in IBDR program and more voluntary load reductions occurs in peak periods, 

where the reliability of the MG endangers. As shown in Fig. 6 (b), when MG offers higher incentive prices, values of involuntary 
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load reductions decrease, and consequently, the values of 
IVLRDRS decrease and the reliability of the MG improves. Also, for 

almost all cases, 
IVLRDRS experiences less variation during peak periods of the day, where

VLRDRS faces more changes.  

 

 
(a)  

 
(b) 

Fig. 6. Effect of different incentive prices on hourly
VLRDRS and

IVLRDRS . 

 

Fig. 7 shows the role of IVLR  on the IVLR index in both normal and resiliency conditions. Noted that IVLR is defined as 

the average constant cost value that customers will lose due to the loss of one kWh of energy for one hour [32].  

 

 
(a) 

 
(b) 

Fig. 7. Effect of 
IVLR on hourly

IVLR

tDRS index, (a) in normal condition, and (b) in resiliency condition. 
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As it can be seen, almost during all hours of the day, by increasing 
IVLR  much more load reduction occurs. However, during 

peak hours (i.e. 11:00-14:000 and 20:00-22:00) that the customers reduce their demand under incentive prices, values of 
IVLR

tDRS

index has lower values. High IVLR during peak hours imposes extreme costs on the MG operator, who can use IBDR programs 

to mitigate such excessive costs through incentive payments. As observed in resilient condition, values of 
IVLR

tDRS index are less 

than those in normal operation in most periods that the main grid connection is lost. 

5. Conclusions 

In this paper, a flexibility-oriented stochastic model was presented for scheduling of MGs to address the effect of IBDR programs 

on the economy and reliability indices, simultaneously. Uncertainties associated with loads, renewables, electricity prices, calls 

for reserve, as well as uncertainties of islanding duration of the MG were addressed, and their effects were controlled by the 

CVaR tool. The uncertain behavior of the customers on different reliability indices in both normal operation and resiliency 

condition were investigated. The proposed model was applied to a typical MG and various sensitivity analyses on the incentive 

prices and reliability indices were carried out to validate the model in different states. Numerical results showed that by increasing 

incentive rate INC  to 0.5, the expected profit of the MG operator could increase about 4%, and reliability index of EDNS could 

improve 60% in case of no resiliency condition. When the resiliency condition was taken into account, the expected profit and 

EDNS improved 2.7% and 56%, respectively. Improvements in other reliability indices by increasing incentive rate in both 

normal and resilient operation of the MG were also achieved. Also, in most time periods the values of reliability index 
IVLR

tDRS

in normal operation were less than those of in resilient operation. 

      In further research, the presented model will be extended to investigate reliability and resiliency of multi-MGs and will 

focused on the coordination method of different responsive load models with different time scales on resiliency of multi-MGs. 

Also, coordination schemes at transmission and distribution levels will be elaborated in further works, e.g., through leveraging 

DLR mechanism, for better system operation management and facilitating reliable distributed resources integration. 
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