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Abstract: The forecast of wind speed is prerequisite for wind power prediction, which is one 

of the most effective means of promoting wind power absorption. However, when modeling 

for wind speed sequences with different fluctuations, most existing researches ignore the 

influence of time scale of wind speed fluctuation period, let alone the low compatibility 

between training and testing samples that severely limit the training performance of 

forecasting model. To improve the accuracy of wind speed and wind power forecasting, an 

ultra-short-term wind speed forecasting model based on time scale recognition and dynamic 

adaptive modeling is proposed in this paper. First, a series of wind processes are divided from 

the historical wind speed sequence according to the natural variation characteristics of wind 

speed. Second, we divide all the wind processes into two patterns based on their time scale, 

and an SVC model with input features extracted from meteorological data is built to identify 

the time scale of the current wind process. Third, for a specifically identified wind process, 

the complex network algorithm is applied in data screening to select high compatible training 

samples to train the forecast model dynamically for current input. Simulation indicates that 

the proposed approach presents higher accuracy than benchmark models using the same 

forecasting algorithms but without considering the time scale and data screening. 

Keywords: Wind Speed Forecast; Wind Process; Time Scale Distribution Function; Pattern 

Recognition; Complex Network 

 

1. Introduction 

Wind power, solar photovoltaic power, and hydropower account for the majority of 

renewable energy generation [1]-[4]. Among which, wind power has developed rapidly in 

recent years. According to the data released by the Global Wind Energy Council (GWEC), the 

total installed capacity of wind power in the world has reached 591GW by 2018, nearly doubled 

compared with 6 years ago, and increased by 6 times compared with ten years ago [5]. 

However, with the increase of wind power penetration, its intermittency, randomness, 

and volatility bring significant challenges to the power quality of the power system [6], which 
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caused voltage fluctuations, frequency fluctuations, harmonics, and other issues [7-9]. It also 

affects the stability and reliability of the power system, which is the primary concern in the 

planning activities [10-12]. 

Wind power prediction can not only solve the above problems but also facilitate the 

implementation of demand response program [13,14], microgrid operation [15,16], 

coordinating power generation side and load side [17,18] and improving the competitiveness 

of new energy generators in the electricity market [19,20]. Irregular wind speed is the leading 

cause of fluctuations in wind power output, and its changes are affected by multiple 

meteorological factors and geographical locations. Wind speed forecasting is the basis of wind 

power prediction, whose accuracy has impacts on the efficiency of wind energy utilization. 

Improving the accuracy of wind speed forecasting is of great significance for power system 

dispatching [21-23]. 

According to the prediction time scale, wind speed forecasting can be classified into the 

ultra-short-term forecast, short-term forecast, medium-term forecast, and long-term forecast. 

Ultra-short-term forecasting refers to forecasts within the next four hours [24,25]. The time scale 

of short-term forecasting can be up to several days [26,27]. At present, the forecasting models 

mostly belong to statistical models. 

Statistical models establish the mapping relationship between input data and output data 

based on historical data. Examples are Autoregressive Integrated Moving Average (ARIMA) 

[28], artificial neural network (ANN) [29,30], Support Vector Machines (SVM) [31,32], least-

squares support vector machines (LSSVM) [33,34], and Extreme Learning Machine (ELM) 

[35,36]. Due to the limitations of a single model, a large amount of literature uses hybrid models 

combining multiple methods to improve forecasting accuracy [37-39]. 

For statistical models, the instability and dependence on data are an obvious limitation 

that needs to be addressed. Due to the multiple wind speed fluctuation patterns, the selection 

of training data has a significant influence on forecasting performance. Therefore, the 

classification of the data and the similarity screening of the training data for current model 

input can be adapted to reduce the redundancy of the training data and improve the forecasting 

accuracy. In [40], k-means is used to cluster the annual wind speeds by different time scales: 

one day and half a month. Based on the classified data, the SVM model is established, 

respectively. 

The experimental results show that the forecasting accuracy is improved. In [41], the 

clustering similar measure function combines the Euclidean distance and Angle Cosine aiming 

to identify similar wind speed days to the predicting days which are treated as training 

samples. In [42], based on the classification of weather types, the forecasting accuracy of day-

ahead photovoltaic power generation has been significantly improved. 
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Figure 1. The detailed framework of the proposed approach. 



It can be seen that wind power or wind speed forecast researches have acquired several 

achievements and successes. However, there are still problems and challenges to be considered.  

First, the wind speed variation of wind processes with different durations usually has 

certain regularity, e.g. the wind speed of wind processes with short duration is likely to show 

a downward trend within the forecasted time, and that with long duration is likely to show a 

continuous fluctuation trend within the forecasted time. But most researches haven’t 

considered the influence of wind process duration on wind speed fluctuation law. 

Second, when choosing the training data for established forecast model, only the similarity 

between the actual forecast input and the training set input is considered, which does not 

guarantee the similarity of the corresponding outputs and the accuracy of mapping 

relationship. Therefore, in this paper, a novel ultra-short-term wind speed forecasting model is 

proposed to deal with the above two issues. The detailed framework of the proposed model is 

shown in Figure 1. 

Compared with the existing researches, the contributions of this paper are summarized as 

follows: 

• Explore the relationship between wind speed fluctuation characteristics and the time 

scale of current wind processes. 

• An ultra-short-term wind speed forecasting approach which utilizes the time scale 

information of current wind process is proposed. 

• The complex network is adopted to deeply mining the morphological characteristics of 

wind speed sequence, thus the optimal compatible training data according to current 

forecast input is dynamically screened out. 

The structure of the paper is as follows: Section 2 introduces the definition of the wind 

processes and establishes the time scale distribution function of the wind processes. Section 3 

describes the extracted wind speed features and the SVC algorithm. The data screening method 

based on the complex network is introduced in Section 4. Section 5 verifies the performance of 

the proposed method. Section 6 concludes this paper. 

2. Definition and time scale distribution function of wind process 

2.1. Definition and division of wind process 

The formation of wind is the result of horizontal airflow, which is caused by solar radiant 

heat. The magnitude of the wind is the wind speed [43]. Because the surface wind is affected by 

solar radiation, geostrophic force, ocean and topography, the spatial and temporal distribution 

of wind speed is more complicated [44], and the variation law of wind speed is weak, unlike most 

daily irradiances which are from minimum values begin to increase, increases to the maximum 

value, and then decreases, and finally decreases to the minimum value, and the variation law is 

obvious, which is conducive to speculating the variation trend of the future. Inspired by the 

variation law of daily irradiance, this paper finds the internal law from the wind speed sequence 

itself and finds that the wind speed contains many processes of wind rising and falling. The 

variation trend of each process is similar to that of daily irradiance. 

The change of wind speed reflects a very complex atmospheric physical process, to identify 

the wind fluctuation pattern, wind process division is very necessary as it can transform the 

original study of wind speed into the study of wind process sequence [45, 46]. At present, the 

definition of wind process can be mainly divided into three categories. The first is based on 

mathematical methods, such as references [47] using extreme points to define, that is, the wind 

speed "wave" between two adjacent minimum points is a wind process. And in [48], the swinging 

door algorithm based on mathematical methods is used. The second is based on wind speed time 

series with a fixed duration. Reference [49] proposes that the wind speed time series data are 

separated into different segments with each representing a period of 24-hours. Similarly, 

reference [50] selects wind speed series based on a 10min sliding window from historical data as 



wind processes. The third is based on physical meaning. The research in [51] considers the 

physical significance of wind speed changing. The wind processes are divided and modeled 

based on the correlation between wind mast data and numerical weather prediction data. 

In many papers, the purpose of wind process division and pattern recognition is to apply in 

wind speed and power prediction. Establishing different prediction models according to 

different pattern recognition results to improve the prediction accuracy, such as studies in [49-

51]. In addition, reference [48] uses the divided wind processes to identify wind speed ramp 

events. 

Defining and dividing the wind processes according to the time axis, it is necessary to 

consider the time scale parameters. Typical time scale parameters include two types: zero scale 

parameter and extreme point scale parameter. For any sequence, the zero-scale parameter refers 

to the span of two adjacent zeros in time, and the extreme-point scale parameter refers to the span 

of two adjacent extreme points in time. For the wind speed sequence, there may be no zero-

crossing points. Therefore, in this paper, wind processes are extracted from wind speed sequence 

by using the extreme point scale parameter. From a minimum value below the threshold (which 

is derived from local years of historical wind speed data statistics) to another adjacent minimum 

value below the threshold, the change between these two minimum values is defined as a wind 

process (Figure. 2). The formula of the specific mathematical model of wind process is given as: 
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where  w
is the wind speed sequence,  minw

is the local minimum sequence of wind speed, 

maxw is the maximum of wind speed,  is the threshold. 

2.2. Wind process time scale distribution 

Due to the influence of meteorological factors, the duration of each wind processes is 

different. Wind processes with different durations have different variation trends. Figure 3 

shows the fluctuations of two wind processes with different durations. The one on the left is a 

small scale wind process with a duration of about 90 minutes, and the one on the right is a large 

scale wind process with a duration of about 3 hours. 

The part circled by the red line in the two figures represents the variation of wind speed 

from 30 minutes after the beginning of the wind process to the next hour. It can be seen that 

the variation of wind speed in the small scale wind process presents a downward trend, while 

the variation of wind speed in the large scale wind process presents a continuous fluctuation 

and upward trend, indicating that the variation trends of wind speed are different in different 

durations. Therefore, we need to study the time scale distribution of the wind processes which 

is used to determine appropriate classification criteria. 

By classifying wind processes according to the duration scale, wind processes with similar 

variation trend can be classified into one category, which can reduce the redundancy of training 

data for forecasting and improve the accuracy of mapping relationship and the forecasting. 



  

Figure 2. Wind process partitioning results. 

 

Figure 3. Wind processes of different scales. 

The wind speed data of the SXF meteorological station (Sioux Falls, South Dakota, USA), 

the DRA meteorological station (Desert Rock, Nevada, USA) and the PSU meteorological 

station (Penn State, Pennsylvania, USA) are selected to analyze the time scale distribution of 

the wind processes. The time resolution is 1 minute. 

Based on the definition in section II-A, all the wind processes are extracted from the wind 

speed sequence of the three meteorological stations, and the time scale distribution diagrams 

of the SXF, DRA and PSU meteorological stations with a time interval of 15 minutes are shown 

in Figure. 4(a), Figure. 4(b), and Figure. 4(c), respectively. 

From Figure. 4, it can be seen that the wind process time scale distributions of three 

meteorological stations are similar. The largest number of wind processes occurs within the 

range of 30~45 minutes for all the three meteorological stations, and when the time scale is less 

than 45 minutes, the number of wind processes of the three stations increases with the increase 

of the scale. 

When the time scale is greater than 45 minutes, the number of wind processes decreases 

with the increase of the scale. Through further observation, it is found that the wind processes 

distributions of the three stations are all similar to the Gamma distribution, which is a standard 

asymmetric distribution with probability density function shown below: 
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where  is the shape parameter,   is the scale parameter. 
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The expressions of mean value and variance of Gamma distribution are shown in equation 

(3) and equation (4) respectively 

 
                                         (3) 

2 2=                                          (4) 

where   represents mean value, 
2  represents variance. 

The k-s test is used to test whether a single sample obeys a pre-assumed specific 

distribution, and the quantitative test problem is transformed into a hypothesis testing problem 

[52]. That is: 

Null hypothesis 0 : ( ) ( )nH F x F x  

Opposite hypothesis 1 : ( ) ( )nH F x F x  

where: ( )nF x is pre-assumed particular distribution; ( )F x  is the cumulative probability 

(frequency) function of the sample, and n is the sample size. Take a significant level 0.05= ,

,nD  is the k-s statistical critical value of whether the null hypothesis is accepted under the 

confidence interval, D is the actual statistical value of k-s, P is the probability for accepting the 

null hypothesis. If ,nD D 
, accept 0H , that is 0H= , which implies that the time scale 

distribution of wind process obeys Gamma distribution. Conversely, reject 0H , that is 1H= . 

In this paper, it is first assumed that the time scale distribution of wind process obeys the 

Gamma distribution, and then use the k-s test to verify whether the hypothesis is true. If the 

hypothesis is true, we use the curve fitting method to obtain three new gamma curves 

approximating the real values. 

 

      (a)SXF                          (b)DRA                          (c)PSU 

Figure 4. The wind process time scale distribution of three meteorological stations. 

Table 1 is the K-S test results of time scale distribution of wind process. From Table 1, the 
D  values of the three meteorological stations are 0.20, 0.21, and 0.22, respectively, all less than 

the corresponding values of ,n aD
. Therefore, all the H  values of the three meteorological 

stations are 0, which quantitatively verifies that the time scale distributions of the three 

meteorological stations can be effectively modeled as the Gamma distribution. Then, the 

gamma curves of the three meteorological stations are fitted by curve fitting, and the result is 

shown in Figure. 5. 



The solid yellow lines in Figure. 5(a), Figure. 5(b), and Figure. 5(c) are the fitted gamma 

curves of SXF weather station, DRA weather station, and PSU weather station, respectively, 

and the parameters of three fitting gamma curves are shown in Table 2. The red dotted lines in 

Figure. 5(a), Figure. 5(b), and Figure. 5(c) represent the corresponding actual curves. It could 

be seen that the trend of these two kinds of curves is basically the same. 

According to the parameters of the fitted gamma curves in Table 2, the cumulative 

probability distribution diagrams of SXF, DRA, and PSU weather stations are obtained, as 

shown in Figure. 6(a), Figure. 6(b), and Figure. 6(c), respectively. 

When the cumulative probability of the three weather stations reaches 0.8, the 

corresponding time scales are respectively 117.56, 124.47 and 119.20, all located in around 120 

minutes, which indicates that the duration of wind processes is mostly less than 120 minutes, 

and only a few (about 20%) are more than 120 minutes. 

Here, considering the general duration of wind processes, this paper divides wind 

processes into two patterns with a boundary of 120 minutes. One is the common short-duration 

wind pattern whose duration is less than 120 minutes, labeled as A; the other is the uncommon 

long-duration wind pattern whose duration is more than 120 minutes, labeled as B. 

 

      (a)SXF                          (b)DRA                          (c)PSU 

Figure 5. The wind process time scale distribution function of three meteorological stations. 
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      (a)SXF                          (b)DRA                          (c)PSU 

Figure 6. The Cumulative probability distribution of three meteorological stations. 

Table 1. K-S test results. 

Parameter H P Dn,a D 

SXF 0 0.16 0.242 0.20 

DRA 0 0.07 0.224 0.21 

PSU 0 0.10 0.250 0.22 

Table 2. The parameters of the fitted gamma curves. 

Name      


 
2  

SXF 1.45 52.53 76.17 4001.13 

DRA 1.44 55.62 80.09 4454.76 

PSU 1.40 54.62 76.47 4176.68 

3. Wind pattern identification 

In this section, it is applied the feature extraction process and the support vector 

classification (SVC) model to realize the time scale identification of wind patterns. 

3.1. Feature extraction 

According to the time scale distribution of wind processes and considering the 

equilibrium of samples, this paper divides the wind processes into two patterns based on their 

durations. The time scale of one category is less than 2 hours, labeled as A, and the time scale 

of the other is greater than 2 hours, labeled as B. For different classification cases, there is no 

universal solution for feature extraction. 

Most researches generally calculate and analyze the statistical features of data itself of 

different categories and extract statistical features with large differences for pattern recognition 

[53-55]. In addition to the calculation and analysis of the statistical features of the wind speed 

of different categories, this paper also considers the influence of historical meteorological 

factors on the duration of the wind process. Therefore, five features describing wind speed 

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Time scale range/min

T
h
e
 c

u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

117.56

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Time scale range/min

T
h
e
 c

u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

124.47

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Time scale range/min

T
h
e
 c

u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

119.20



variation and nine features describing meteorological changes are extracted for recognition in 

this paper. 

3.1.1. Maximum of wind speed 

The maximum wind speed is different for wind processes with different durations. For 

wind processes in category A, the duration is short and the maximum wind speed is generally 

small. However, for wind processes in category B, the duration is long and the maximum wind 

speed is generally large. Feature one is the maximum of several points at the beginning of wind 

processes which is expressed as maxv , defined in formula (5): 

 max
1, ,k

1 max i
i

F v v


 
                                    (5) 

where iv  represents the ith value of the current wind process. 

3.1.2. Average wind speed 

In some cases, the last feature is invalid. For example, the wind process lasts for a short 

time, but its maximum value is large. Therefore, in order to further improve the accuracy of 

recognition, feature two is extracted, i.e. the average of several points at the beginning of wind 

processes which is expressed as avev , defined in formula (6). For wind processes with short 

duration, the average value is generally low, while for wind processes with long duration, the 

average value is high. 
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i
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3.1.3. The variance of wind speed 

The wind speed fluctuation is different for wind processes with different durations. The 

variance can reflect the fluctuation level to a certain extent. For the wind process in category A, 

the duration is short, the wind speed fluctuation is small, and the variance is small. However, 

for the wind process in category B, the duration is long, the wind speed fluctuates greatly, and 

the variance is large. Feature three is the variance of several points at the beginning of wind 

processes which is expressed as sv , defined in formula (7): 

 
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3.1.4. The ramp rate of wind speed 

For a wind process with short duration, the time from the beginning to the first local 

maximum wind speed is shorter and the ramp rate is higher, while for a wind process with 

long duration, the time from the beginning to the first local maximum wind speed is longer 

and the ramp rate is lower. Feature four is the ramp rate of several points at the beginning of 

wind processes which is denoted by rv , defined in formula (8): 

max 1

max 1

4 r

v v
F v

t t


 


                                 (8) 

where maxt  represents the time when the maximum wind speed occurs and 1t  represents the 

initial time instant. 

3.1.5. Tail variation of wind speed 



Within the same and relatively long time window, the wind process with short duration, 

from the maximum wind speed to the end of the time window, the wind speed value drops 

more, and the absolute value is bigger. While the wind process with long duration, from the 

maximum wind speed to the end of the time window, the wind speed value drops less, the 

absolute value is smaller. Feature five is the tail variation of several points at the beginning of 

wind processes, which is denoted by rev , defined in formula (9): 
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                               (9) 

3.1.6. Features of meteorological change 

Considering the influence of temperature, humidity, and pressure on the time scale of 

wind processes, this paper extracts the statistical features of these three meteorological factors 

as feature six (F6) to describe historical meteorological variation. The average of historical 

temperature is denoted by aveT , defined in formula (10). The variation trend of historical 

temperature is denoted by rT , defined in formula (11). The variance of historical temperature 

is denoted by sT , defined in formula (12). 
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The average of historical humidity is denoted by aveH , defined in formula (13). The 

variation trend of historical humidity is denoted by rH , defined in formula (14). The variance 

of historical humidity is denoted by sH , defined in formula (15). 
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The average of historical air pressure is denoted by aveP , defined in formula (16). The 

variation trend of historical air pressure is denoted by rP
, defined in formula (17). The variance 

of historical air pressure is denoted by sP
, defined in formula (18): 
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where n is the number of samples, jT
, jH

, jP
 represent the temperature, humidity, and air 

pressure of the jth  point respectively. 

3.2. Support vector classification (SVC) 

Given its excellent performance in many applications, SVC is adopted in this paper [56,57]. 

The traditional SVC is a two-classifier that divides objects into two categories that result in the 

minimum of generalization errors. SVC consists of two types of models: linear separable SVC, 

and nonlinear separable SVC. Figure. 7 illustrates linear separable SVC, where 0wx b   is a 

hyperplane, x  is the input, and w , b  are two parameters of the hyperplane. 

SVC could be converted into the corresponding dual form by Lagrangian function. 

Suppose that 
* * * *

1 2= , , , ma a a    is the solution to the dual form, then, the separation functions 

of linear separable SVC and nonlinear separable SVC can be expressed by formula (19) and 

(20), respectively. 
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where iy  is the output of training data, m is the dimension of the input vector and 
*b is the 

optimal value. 

Then, using the extracted features as model input, and the actual wind pattern labels as 

output, the SVC based wind pattern identification model can be built and trained. 
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Figure 7. The schematic diagram of SVC. 

3.3. Evaluation index of classification model 

M  is defined in equation (21) and includes all results produced by a classification model. 
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where ijm
 means that the actual label of the object is i but the identified label is

j
, n is the 

number of total categories. 

The product’s accuracy (PA), the user’s accuracy (UA) and the overall accuracy (OA) are 

three kinds evaluation indexes commonly used to evaluate the performance of classification 

model, defined in formula (22) to (24). 
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where iPA , iUA  and iOA  indicate respectively PA, UA and OA of i category. 

4. Data screening method based on complex network 

Based on the identification of the duration of the current wind process, the screening 

processing of the training data is further carried out. The selection of training data and the 

establishment of its mapping relationship determine the accuracy of the forecasting. Assuming 

that the screened training data are completely consistent with the test data, the mapping 

relationship established will be very accurate and the forecasting accuracy will be very high. 

However, in the actual prediction, the case where the training data are the same as the test 

data does not exist, but the training data matching with the test data can be selected as much 

as possible by the data screening method to improve the forecasting accuracy. 

Commonly used data screening methods include Euclidean distance (ED), Pearson 

correlation coefficient (PCC), Cosine similarity (CS) and so on, but all of them have defects. 

Taking Euclidean distance as an example, there are two curves A and B in Figure. 8, it can be 

seen that the variation trends of curves A and B are the same, but the Euclidean distance is 

large. 

Suppose A is the input of the test set, B is the output of the test set, and the output of the 

training set screened by A based on Euclidean distance may be significantly different from B, 

resulting in inaccurate mapping relationship and poor forecasting accuracy. Similarly, the same 

problems exist in other data screening methods. 

0 1 2 3 4

2

4 A

B

 



Figure 8. An example of data screening. 

In recent years, time series analysis methods based on complex networks have been 

widely used. Complex network (CN) is an abstract description of a complex system, which can 

map nonlinear time series to network and mine the correlation between data by analyzing its 

topology. 

In this paper, in order to mine the fluctuation characteristics of wind speed series and 

select the training data with the same fluctuation as the data to be predicted, the phase space 

coarse granulation algorithm is adopted to map the wind speed into the corresponding 

fluctuation network [58]. Suppose there is a time series , its fluctuation sequence 

is shown in equation (25). 

( ) ( ) ( 1)f t x t x t                                    (25) 

Further symbolizing , the formula is (26): 
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where, r  indicates the rising state, s  indicates the steady state, d  indicates the falling state. 

Through the above process, time series  is transformed into a symbol 

series . The symbol sequence is segmented by a time window of length , 

and each segment represents the fluctuation characteristics of the network node. Then the 

network nodes are connected in order of time, and the weight of the edge is the number of 

conversions. In this paper, the length of the time window is set to the first k minutes of the 

current wind process. 

Based on the establishment of wind speed fluctuation network, the training data with 

similar fluctuation and morphological characteristics as the current wind process can be 

screened out. In order to evaluate the performance of four data screening methods: Complex 

network, Euclidean distance, Pearson correlation coefficient, and Cosine similarity, Relative 

matching rate is defined here.  

Each data screening method screens out the training data respectively according to the 

input and output of test set, and the ratio of the number of matching samples in the selected 

training data to the total number of matching samples selected by the four methods is the 

Relative matching rate (RMR). The formula is as shown in equation (27). The higher the RMR 

means that compared with other methods, the more samples matching the test set selected by 

this method. 
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where, ( )len  represents the function finding the number, ( )inter   represents the function 

finding the intersection. 
,ik ijN N

 are the training samples screened by ith method according to 

the input and output of the test data separately. 

5. Case study and simulation 

5.1. Data source 
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In this paper, meteorological data from DRA meteorological station (Desert Rock, Nevada, 

USA) are employed for the case study. The dataset consists of three years’ data from January 

1st, 2011 to December 31th, 2013 with 1 observation value every minute. All the simulations 

are implemented on MATLAB (version R2014a). 

5.2. Evaluation index 

Three metrics are used to evaluate the forecasting accuracy of the proposed method: the 

mean absolute percentage error (MAPE), the root mean square error (RMSE), and the mean 

absolute error (MAE). Their definitions are as follows: 
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where N is the number of test samples, ( )*y t  and ( )y t  represent the predicted and actual 

wind speeds at time t, respectively. 

5.3. Simulation design 

First, the recognition accuracy of the time scale of wind processes needs to be tested. 

Obviously, the recognition result of the time scale of wind processes is affected by input data’s 

time range (denoted as k) and different input feature dimensions (IFD). The k value is small, 

the information contained is small, and the recognition accuracy is poor, which is not conducive 

to subsequent research. The k value is large, the information contained is large, but this needs 

to consider the classification boundary (120 min), so the k value should not be too small or too 

large. 

The input feature dimension is high, and there may be redundancy, resulting in poor 

recognition accuracy. Here, different recognition models are constructed to analyze the 

influence of k and IFD. Second, the data is screened out and the performance of the data 

screening method is evaluated. The test set (including input and output) is selected from the 

historical data. 

Taking the complex network as an example, the complex network is used to extract the 

morphological characteristics of the input of test set, and the training data whose input has the 

similar morphological characteristics are screened from the historical data by the extracted 

characteristics, which is the data screening process. 

When performing the evaluation, the fluctuation characteristics of the output of test sets 

need to be extracted on the basis of the previous process, and the training data whose output 

has the same fluctuation characteristics are selected from the historical data according to the 

extracted characteristics. 

The number of intersecting samples in these two training data sets, namely this method 

selects the number of samples matching the test set. For the other three methods mentioned in 

the paper: Euclidean distance, Pearson coefficient, and Cosine similarity, the simulation 

process is the same. When evaluating, the same amount of training data is selected according 

to the input and output of the test set respectively, and then the number of intersecting samples 

is calculated. Finally, the relative matching ratio is calculated according to the formula (22) to 

evaluate the four methods. 



Third, the forecasting of wind speed is performed. According to the recognition results of 

the time scale and the data screening results, the optimal compatible training data used for 

prediction in the proposed model is obtained, and then corresponding mapping relationships 

are established based on SVM to forecast the future wind speed. In order to verify the 

effectiveness of the proposed model, the other three prediction models are established. 

In the first model, only the identification of wind patterns is performed, and the historical 

wind processes with the same label are selected as the training data for prediction according to 

the identified label of the time scale of the current wind process. In the second model, only CN-

based data screening is performed, and the historical data with the same fluctuation 

characteristics are selected as the training data for prediction according to the fluctuation 

characteristics of the current wind process in the first k minutes. 

In the third model, historical data is directly used as training data for prediction without 

any processing. The forecasting process of these three models is the same as the proposed 

model. Finally, we evaluate the performance of these four models by calculating evaluation 

indexes and then analyze the advantages, disadvantages, and applicable scope of the proposed 

model. 

Fourth, the performance of the proposed model is further verified. The data screening 

method in the proposed model is respectively changed into Euclidean distance, Pearson 

correlation coefficient, and Cosine similarity, and the rest simulation process remains 

unchanged to forecast the future wind speed. Finally, evaluation indexes are calculated to 

evaluate the performance. 

Due to the different test purposes of different simulations, the corresponding benchmark 

selection is also different. For time-scale pattern recognition simulation, the benchmark models 

are those with different feature groups. For the data screening, the benchmark methods are 

commonly used methods include Euclidean distance, Pearson correlation coefficient, and 

Cosine similarity. For the testing of the complete proposed forecasting model, we choose the 

three prediction models as benchmarks: model only have identification without data screening, 

model only have data screening without identification, and model have no identification and 

no data screening. 

5.4. Results of time-scale pattern recognition 

According to the cumulative probability distribution of wind process time scales, the wind 

processes are divided into two patterns. The time scale of one pattern is shorter than 2 hours, 

which is denoted as A, and the other pattern is longer than 2 hours, which is denoted as B. 

Table 3 shows the time scale classification results of the three-year historical wind processes of 

the DRA weather station. In Table 3, it can be seen that pattern A contains 5878 samples and 

pattern B contains 2176 samples, which indicates the time scale of history wind patterns mostly 

is less than 2 hours. 

In order to analyze the influence caused by input data’s time range (denoted as k) and 

different input feature dimensions (IFD) on classification accuracy, different classification 

models are constructed and tested. For input data’s time range k, the higher the value of k, the 

more information it contains, the better corresponding classification results should be, but 

considering the classification boundary (120 min), k value should not be too large.  

Here, only k equaling to 30min, 45min, 60min, and 75min is discussed. For IFD, four 

groups models denoted by 6F to 3F which means IFD vary from 6 to 3 are discussed. In 6F 

group, there is only one model with all features defined in section III. In group 5F to 3F, there 

are too many models with the same dimension but different input feature combinations. 

Table 3. Results of time scale classification. 

Type Pattern A Pattern B Total 

Number of wind patterns 5878 2176 8054 



Percentage/% 72.98 27.02 100 

In order to analyze the influence caused by different input features (IF) on classification 

accuracy, this paper select two representative models’ results (the best OA and the worst OA) 

from each group for display. 

Table 4 shows the classification results corresponding to different k when all defined 

features as input. From Table 4, it can be seen that UA1, PA2, UA2, and OA all show an upward 

tendency with the increase of k, and the maximum values are 78.72, 93.66, 89.26, and 86.77 

respectively. But PA1’s overall tendency is downward with the increase of k, and the maximum 

value is 90.74. The results above revealed the classification performance is relevant to input 

data’s time range, the higher the value of k, the greater the OA. Considering the best 

classification accuracy, it was considered k to be 75min. 

Next, the influence of different input feature dimensions on classification accuracy with k 

equaling to 75 is discussed. The classification results of all representative models in group 6F 

to 3F are shown in Table 5 In group 6F, there is only one model, i.e. IF=[F1, F2, F3, F4, F5, F6]. 

In group 5F, the best model (IF=[F1, F2, F3, F4, F6]), and the worst model (IF=[F1, F3, F4, F5, 

F6]) of 5-D models whose input features are included in group 6F are selected as the 

representative models of this group.  

In group 4F, the best model (IF=[F1, F2, F4, F5]), and the worst model (IF=[F1, F3, F5, F6]) 

of 4-D models whose input features are included in group 6F are selected as the representative 

models of this group. In group 3F, the best model (IF=[F1, F2, F5]), and the worst model (IF=[F3, 

F4, F5]) of 3-D models whose input features are included in group 6F is selected as the 

representative models of this group. 

The classification model of group 6F gets better results where OA is 86.77%, the 

classification model of group 5F obtains the promising results where the lowest OA is 81%, and 

the results of the classification model of group 4F are general, with the lowest OA equaling to 

76%. In group 3F, there are cases where a certain category cannot be identified. Such as model 

[F3, F4, F5], whose PA1= UA1=0, means the model cannot identify A at all. 

From Table 5, it can be seen that the lowest OA in group 6F, 5F, 4F, and 3F are 86.77%, 

81%, 76%, and 74.67%. The results indicate the OA in each group shows a downward tendency 

with the decrease of input feature dimension, which represents the classification accuracy is 

related to IFD. The larger the IFD is, and the higher the accuracy is. 

Table 4. The classification results corresponding to different k. 

6F Accuracy (%) 

Time range 
A B 

OA 
PA1 UA1 PA2 UA2 

30min 90.74 73.13 49.30 77.78 74.30 

45min 76.54 72.94 77.00 80.21 76.80 

60min 62.70 78.72 92.31 84.51 83.07 

75min 65.96 77.50 93.66 89.26 86.77 

Table 5. The classification results of four groups with different IFD and IF. 

k=75min  Accuracy (%) 

Group Feature combinations 
A B 

OA 
PA1 UA1 PA2 UA2 

6F [F1,F2,F3,F4,F5,F6] 65.96 77.50 93.66 89.26 86.77 

5F 
[F1,F2,F3,F4,F6] 45.83 75.86 95.39 84.80 83.50 

[F2,F3,F4,F5,F6] 51.85 70.00 91.78 83.75 81.00 

4F 
[F1,F2,F4,F5] 28.26 76.47 97.40 81.97 81.50 

[F1,F3,F5,F6] 28.57 66.67 94.44 77.27 76.00 

3F [F1,F2,F5] 33.09 62.75 93.38 80.56 78.19 



[F3,F4,F5] 0 0 100 74.67 74.67 

 

From Table 5, it can also be seen that the higher IFD models are not necessarily superior 

to lower IFD models in all cases. For example, the  OAs of model  [F2, F3, F4, F5, F6] in  5F  

and model  [F1, F2, F4, F5] in 4F are 81% and 81.5%, which represents the model [F1, F2, F4, 

F5] in 4F is better than the model [F2, F3, F4, F5, F6] in 5F. The discussion and analysis above 

revealed that the performance of the classification model is related to input data’s time range, 

input feature dimensions, and input feature. 

5.5. Evaluate the performance of data screening methods 

According to the RMR defined in section V, the performance of four data screening 

methods is evaluated. A sample matching the input and output means that the sample is 

selected according to the input of the test data, and the sample is also selected according to the 

output of the test data, which has the same or similar characteristics with the test data. Different 

data screening methods select samples according to different features.  

For example, Complex networks focus on wave and morphological characteristics, 

Euclidean distance focuses on spatial distance, Pearson correlation coefficient focuses on 

correlation, and cosine similarity focuses on the shape. Different features are concerned, the 

samples selected according to the input of test data are different, and the number of samples 

matching the input and output is also different, which is mainly due to different data features 

concerned by different data screening methods. 

Table 6 is the result of RMR of data screening method based on Complex network, 

Euclidean distance, Pearson correlation coefficient, and Cosine similarity. It can be seen from 

Table 5 that the data screening method based on complex network has the highest RMR, 

indicating that compared with other traditional methods, this method can deeply mine the 

morphological characteristics of wind speed sequence, thus screening and obtaining the 

optimal compatible training data, which is helpful to establish more accurate mapping 

relationship. 

5.6. Performance of proposed forecasting method 

The time resolution of the original data is 1 minute, which needs to be compressed to 15 

minutes for the prediction, namely, four wind speed values in one hour. It was used SVR to 

establish four prediction models to evaluate the effectiveness of the proposed model.  

The four prediction models respectively are: both wind pattern identification and CN 

based data screening (Proposed method), only identification without data screening (Only 

classification), only data screening without identification (Only CN based data screening), and 

no identification and no data screening (Direct prediction).  

For the prediction model including identification, the training input is the first 75-minute 

wind speed of the same label wind processes, and the output is the next 1-hour wind speed. 

For the prediction model without classification, the training input is the first 75-minute wind 

speed, and the output is the next 1-hour wind speed. When performing the forecasting, the test 

input is the first 75-minute data of the current wind process. 

Figure. 10 shows the wind speed forecasting results generated by four prediction models 

based on SVM. It shows that the forecasting results generated by the proposed model are closer 

to the actual wind speed than that of the other three models. In other words, the proposed 

model has a better performance than the other models, implying the effectiveness of the 

proposed model. 

According to the formulas defined in V, RMSE, MAE, and MAPE evaluation indexes of 

forecasting results based on four prediction models are calculated under different prediction 

horizons, as shown in Table 7.  



Table 6. Matching rate results. 

Method CN ED PCC CS 

RMR 32.77% 18.20% 22.32% 26.71% 

From Table 7, it can be seen that the three evaluation indexes show an upward trend with 

the forecasting horizon increases, indicating forecasting accuracy gradually decreases, and the 

15-minute scale accuracy is highest, 60-minute scale accuracy is worst. By comparing the 

prediction model containing only classification and the prediction model containing only data 

screening, it is found that the accuracy of the former is better than that of the latter, verifying 

the effectiveness of classifying the wind processes according to time scale.  

Among the four prediction models, the evaluation indexes of the proposed model are the 

smallest, the evaluation indexes of the direct prediction model are the largest, and the 

evaluation indexes of the other two models are between them, which proves the excellent 

performance of the proposed model. 

The comparison of MAPE among the four prediction models for four different time scales 

is shown in Figure. 11. It can be observed that as the time scales increases, the value of MAPE 

gradually increases, and the accuracy decreases. Only at the 30-minute scale, the MAPE of the 

proposed model is slightly higher than that of the prediction model containing the only 

classification. At other time scales, the MAPE of the proposed model is always lower than that 

of the other three models, which verifies the superiority of the proposed model. 

In order to further analyze the advantages, disadvantages and applicable scope of the 

proposed model, different scenarios are set up for simulation, including small scale wind 

process, large scale wind process, correct scale classification, and wrong scale classification. 

The simulation results of various scenarios are shown in Table 8. 

From Table 8, it can be seen that no matter for small scale wind process or large scale wind 

process, when the scale recognition is accurate, data with similar variations to the wind speed 

to be predicted can be selected from the historical data as the training set, which reduces the 

redundancy and improves the forecasting accuracy, and the forecasting results are the best.  

On the contrary, when the scale recognition is wrong, data with dissimilar variations to 

the trend of wind speed to be predicted is selected from the historical data as the training set, 

resulting in incorrect mapping relationship establishment and the worst forecasting results. 

When without classification, the training set is redundancy, and its forecasting results are 

between the best and the worst.  

When the scale recognition of small scale wind process is correct, MAPE, RMSE, and MAE 

increase by 7.2%, 0.2%, and 7.1%, respectively, compared with the non-classification. Except 

for RMSE, the other two indexes have a great improvement. When the scale recognition of large 

scale wind process is correct, MAPE, RMSE, and MAE increase by 3.0%, 5.5% and 3.0% 

respectively compared with the non-classification. The results above revealed compared with 

large scale wind process, this model is more suitable for small scale wind process, and the key 

to improving the forecasting accuracy of this model is to accurately recognize the time scale of 

wind process. 

In order to further verify the effectiveness of the data screening method based on the 

complex network in the proposed model and its influence on forecasting accuracy. Here, the 

data screening method in the proposed model is sequentially changed into Euclidean distance, 

Pearson correlation coefficient and Cosine similarity to forecast the future wind speed, and the 

evaluation indexes of the forecasting results are shown in Table 9.  

It can be seen from the Table 9, when using complex network to screen the data, the 

evaluation indexes are the lowest and the forecasting accuracy is the highest, when using 

Euclidean distance to screen the data, the evaluation indexes are the highest and the forecasting 

accuracy is the worst, and the evaluation indexes of the other two data screening methods are 

between them, which verifies the effectiveness of the data screened by complex network.  



Combining the results of Table 5 and Table 7, it is found that the higher the RMR of the 

data screening method, the lower the corresponding forecasting indexes, indicating that the 

RMR can reflect the forecasting accuracy to some extent. 

 

Figure 10. The classification forecasting and direct forecasting results of three algorithms. 

Table 7. Evaluation indexes of forecasting results based on four models. 

Evaluation 

index 

Forecast 

ahead 

Model 

Proposed 

model 

Only 

classification 

Only CN based data 

screening 

Direct 

prediction 

MAPE 

15min 6.32% 6.30% 6.82% 6.86% 

30min 7.48% 7.68% 7.92% 8.49% 

45min 8.96% 9.05% 8.94% 9.44% 

60min 10.87% 10.96% 10.88% 10.91% 

RMSE 

15min 0.8195 0.8156 0.8722 0.8683 

30min 0.9769 0.9867 1.0217 1.0846 

45min 1.1880 1.2168 1.2079 1.2666 

60min 1.4057 1.4321 1.4154 1.4266 

MAE 

15min 0.6340 0.6321 0.6844 0.6887 

30min 0.7510 0.7712 0.7950 0.8519 

45min 0.8992 0.9090 0.8975 0.9477 

60min 1.0916 1.0999 1.0921 1.0953 
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Figure 11. MAPE comparison among the four prediction models. 

 

Table 8. The simulation results of different scenarios. 

Evaluatio

n index 

Small scale wind process Large scale wind process 

Correct 

classificatio

n 

Wrong 

classificatio

n 

Without 

classificatio

n 

Correct 

classificatio

n 

Wrong 

classificatio

n 

Without 

classificatio

n 

MAPE 16.36% 20.91% 17.62% 9.35% 16.60% 9.64% 

RMSE 0.7930 0.9280 0.7946 1.2499 2.2847 1.3231 

MAE 0.6079 0.7770 0.6546 0.9576 1.7004 0.9876 

Table 9. Evaluation indexes of forecasting results based on different data screening methods. 

Evaluation 

index 

Method 

Classification+ 

CN 

Classification + 

ED 

Classification + 

PCC 
Classification + CS 

MAPE 8.41% 8.81% 8.75% 8.67% 

RMSE 1.1195 1.2195 1.1770 1.1501 

MAE 0.8440 0.8840 0.8786 0.8708 

6. Conclusion 

This paper proposed an ultra-short-term wind speed forecasting model based on time 

scale recognition and dynamic adaptive modeling to improve the accuracy of wind speed and 

wind power forecasting. The proposed approach consists of four main steps: definition and 

division of wind processes, the establishment of time scale distribution functions of wind 

processes, the establishment of pattern recognition model based on feature extraction, and data 

screening based on complex network. 

Through wind process classification based on the time scale distribution information, the 

natural variation law of wind speed can be better analyzed. Then combined with the applied 

data screening method based on the complex network which can select more highly compatible 

training samples that matching with test data, a more accurate wind speed forecasting model 

is achieved. A case study using historical data from DRA meteorological station shows that the 

proposed model has a better forecasting accuracy than the benchmark model in this paper. 
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