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Abstract—A significant advancement regarding the 
electrification of transportation has occurred in recent years due 
to technological developments, environmental concerns, and 
geopolitical issues in the energy areas all over the world. In this 
study, a new concept for the integration of rail-based public 
transportation systems with electric vehicle (EV) parking lots 
operated by a “park and ride” strategy is propounded, including 
also renewable resources based energy production. In the 
proposed structure, the charging power demand of the EV parking 
lot is supplied by different charging strategies considering the 
existing unused energy infrastructure capacity and the 
regenerative braking energy of the railway system, altogether. 
Here, the design of a photovoltaic (PV) based carport type 
renewable energy production unit is also realized in the existing 
local parking area. The development of an optimal energy 
management system to effectively manage these inputs is realized 
and the uncertainties pertaining to EVs' demand are also taken 
into account. To demonstrate its efficacy, the concept is tested 
considering a bench of case studies and comprehensive results are 
obtained. Conclusions are duly drawn. 

Index Terms—Charging stations, electric vehicles, energy 
management, railway systems, regenerative braking energy, 
renewable energy resources.  

NOMENCLATURE 
The used nomenclature in this study is alphabetically ordered 

and properly classified into groups, as follows.  

Abbreviations 
ESS Energy storage system. 
EV Electric vehicle. 
PV Photovoltaic. 
RBE Regenerative breaking energy. 

    Sets and Indices 
ℎ Set of EVs. 
݈ Set of day-ahead market price scenarios.  
 .Set of EV behavior scenarios ݏ
 .Set of time ݐ

Parameters 
 .௧௦௘௥௩ Capacity of service transformer during period t [kW]݌ܽܥ
 .௧௧௥௔௖ Capacity of traction transformer during period t [kW]݌ܽܥ
݊஻௨௦,௖௛,஽஼ Number of DC bus charger. 
݊஼௔௥,௖ℎ,஺஼ Number of AC electric car charger. 
݊஼௔௥,௖ℎ,஽஼ Number of DC electric car charger. 

௧ܲ
௕௥௞ Total regenerative braking power available during period 

 .[kW] ݐ
௧ܲ
௉௏ Total PV power production during period ݐ [kW]. 
௧ܲ
௦௧௔௧ Total station power demand during period ݐ [kW].  
௧ܲ
௧௥௔௖ Total traction power demand during period ݐ [kW]. 
௛ܲ
ா௏,஺஼,௠௔௫ Maximum AC charging power capacity for EV ℎ. 
௛ܲ
ா௏,஽஼,௠௔௫ Maximum DC charging power capacity for EV ℎ. 

 .௟ Probability of day-ahead market price scenario l݌
 .௦ Probability of EV behavior scenario s݌
ܴாௌௌ,௖௛ Maximum charging power capacity for ESS [kW]. 
ܴாௌௌ,ௗ௜௦௖௛ Maximum discharging power capacity for ESS [kW]. 
௧,௟ܧ݋ܵ

ாௌௌ,௜௡௜ Initial state of energy of ESS [kWh]. 
 .ாௌௌ,௠௔௫ Maximum state of energy of ESS [kWh]ܧ݋ܵ
 .ாௌௌ,௠௜௡ Minimum state of energy of ESS [kWh]ܧ݋ܵ
௛ܧ݋ܵ

ா௏,௜௡௜ Initial state of energy of EV ℎ [kWh]. 
௛ܧ݋ܵ

ா௏,௠௔௫ Maximum state of energy of EV ℎ [kWh]. 
௛ܧ݋ܵ

ா௏,ௗ௘௦ Desired state of energy of EV ℎ at departure time [kWh]. 
௛ܶ
௔ Arrival time period of EV ℎ. 
௛ܶ
ௗ Departure time period of EV ℎ. 

௛,௦ݑ
ா௏,௔௩௔௜௟ Binary parameter for the availability of EV h in scenario 

s: 1, if EV is available; else 0. 
 .Time granularity ܶ߂

௧ߣ
௕௨௬ Price of buying energy from the day-ahead market during 

period ݐ [$/kWh]. 
ƞ௖௛ாௌௌ Charging efficiency for ESS. 
ƞௗ௦௖௛ாௌௌ  Discharging efficiency for ESS. 
ƞ௛
ா௏,௖௛ Charging efficiency for EV h. 
ƞ஽஼→஽஼ Efficiency of DC-DC conversion unit. 
ƞ୅େ→஺஼ Efficiency of AC-AC conversion unit. 

Variables 

௧ܲ,௟,௦
஺஼,௖௛,௧௢௧ Total AC charging power demand during period ݐ for 

scenario l and s [kW]. 

௧ܲ,௟,௦
௕௥௞ଶாௌௌ The portion of regenerative braking power assigned for 

ESS charging during period ݐ for scenario l and s [kW]. 

௧ܲ,௟,௦
௕௥௞ଶா௏ 

The portion of regenerative braking power assigned 
directly for EV charging during period ݐ for scenario l 
and s [kW]. 

௧ܲ,௟,௦
஽஼,௖௛,௧௢௧ Total DC charging power demand during period ݐ for 

scenario l and s [kW]. 

௧ܲ,௟,௦
ாௌௌ,ௗ௦௖௛ Discharging power of ESS during period ݐ for scenario l 

and s [kW]. 
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௛ܲ,௦,௧
ா௏,௖௛,஺஼ AC charging power of EV ℎ during period ݐ for scenario 

s [kW]. 

௛ܲ,௦,௧
ா௏,௖௛,஽஼ DC charging power of EV ℎ during period ݐ for scenario 

s [kW]. 

௧ܲ,௦
௉௏,஺஼ 

The portion of PV power production assigned  
for assisting AC charging during period ݐ in scenario s 
[kW]. 

௧ܲ,௦
௉௏,஽஼ 

The portion of PV power production assigned  
for assisting DC charging during period ݐ in scenario s 
[kW]. 

௧ܲ,௟,௦
௦௘௥௩ଶா௏ Power drawn from the service transformer for EV 

charging during period ݐ in scenario l and s [kW]. 

௧ܲ,௟,௦
௦௘௥௩,௧௢௧௔௟ Total power drawn from the service transformer during 

period ݐ in scenario l and s [kW]. 

௧ܲ,௟,௦
௧௥௔௖ଶா௏ Power drawn from the traction transformer for EV 

charging during period ݐ in scenario l and s [kW]. 

௧ܲ,௟,௦
௧௥௔௖,௧௢௧௔௟ Total power drawn from the traction transformer during 

period ݐ in scenario l and s [kW]. 

௧,௟,௦ܧ݋ܵ
ாௌௌ State of energy of ESS during period ݐ in scenario l and s 

[kWh]. 
௛,௦,௧ܧ݋ܵ

ா௏  State of energy of EV ℎ during period ݐ [kWh]. 

௛,௦ݑ
஻௨௦,௖௛,஽஼ DC charging decision for electric bus h among EVs in 

scenario s. 

௛,௦ݑ
஼௔௥,௖௛,஺஼ AC charging decision variable for electric car ℎ among 

EVs in scenario s. 

௛,௦ݑ
஼௔௥,௖௛,஽஼ DC charging decision variable for electric car ℎ among 

EVs in scenario s. 

௧,௟,௦ݑ
ாௌௌ Binary variable for ESS power transaction during period 

 .in scenario l and s ݐ

I. INTRODUCTION 

A. Motivation 
Among energy users, approximately 20 percent of universal 

energy consumption and greenhouse gas emissions are 
originated from the transportation sector [1], [2]. In order to 
tackle these issues, the widespread adoption of electric vehicles 
(EVs) has been promoted by a broad spectrum of actors all over 
the world, driven by the raising awareness of air contamination 
and a sustainable transportation system. In this sense, electric 
mobility has been growing exponentially and the global electric 
car fleet is expected to reach 35 million and 130 million 
worldwide in 2022 and 2030, respectively [3],[4]. 

However, despite all the aforementioned advantages of EVs,  
uncoordinated charging poses great challenges onto the power 
system, depending strongly on uncertain charging and driving 
behaviours [5]. The current status of the power system could 
not host a large volume of unmanaged EV charging, which 
could possibly result in “peak-to-peak” phenomena, 
overloading problems, line congestions and stability issues, i.e. 
all of them bring about significant performance degradation in 
a critical infrastructure system [6]. As an example, it has been 
deduced from the study performed in [7] that, under an 
uncontrolled charging scenario, the daily peak demand has 
increased by 35.8% with a 20% EVs penetration at a home 
charging platform on a standard network. 

In order to reduce the installation cost of large-scale charging 
stations, as well as providing a sustainable transportation 
system, increasing energy efficiency and decreasing carbon 
footprint, integrated railway stations with EV charging carpots 
have attracted great attention in the last decade from the 
academic community and industrial stakeholders. Railway 
infrastructures are large-scale electricity consumers that meet 
their respective electrical energy demands with a separate 
connection directly from the transmission line level [8].  

One of the significant benefits of such a design is that the 
transfer of the EV load to the operational weakest part of the 
power system, such as the distribution level, is relatively 
reduced. Moreover, adjacent substations installed for 
emergency conditions such as failure and maintenance can be 
utilized for feeding charging stations under normal operating 
periods. 

Moreover, transforming mechanical braking of the train into 
electrical energy (called regenerative braking) increases energy 
efficiency of railway systems and decreases energy 
consumption, significantly. However, it is not always possible 
to inject this recovered energy to the catenary line if there is not 
a nearby train [9]. The regenerated electricity can either be 
stored in energy storage systems or may be dissipated in banks 
of variable resistors [10], [11].  

Seemingly, there is an excellent opportunity for taking full 
advantage of existing railway electrical infrastructures in 
supplying the demand of charging stations by DC reference 
node and/or recoverable train braking energy.  

Furthermore, local energy production such as photovoltaic 
(PV) panels can be integrated to the charging stations if it is 
established as an outdoor parking lot instead of multistorey car 
parks.  

The power demand of EVs could be supplied with clean 
energy resources while grid dependences and power losses can 
be reduced in a substantial fashion. As a consequence, a smart 
energy management framework that incorporates the 
aforementioned concepts and approaches will provide a wise 
operation of both transportation and electrical grid systems. 

B. Literature Review 
During braking operation in a railway vehicle, a great heat 

occurs. This heat is defined as the lost energy and also causes a 
decrease in system efficiency. For this reason, the method of 
recovering lost energy of regenerative braking has been a topic 
recently emphasized by several researchers and operators.  

Lu et al. [12] proposed a method to increase the regenerative 
braking energy (RBE) obtained in both electrical and 
mechanical braking modes. In their study, they applied the 
Bellman-Ford algorithm to determine the brake speed curve of 
the train. By doing so, an increase of 17.23% was provided in 
the RBE. Kumagai et al. [13] suggested a structure in which 
RBE generated in one train is transferred to another train. The 
authors tested this system on the Chuo train line in Tokyo and 
performed simultaneous measurements at the Chuo train line 
and at the nearby transformer center. Liu et al. [14] presented a 
model in which the time schedule for using RBE in a metro line 
is determined.  

However, in references [12]-[14], the subjects of renewable 
energy sources (RESs), energy storage systems (ESSs), and 
EVs were not addressed.  

Wu et al. [15] presented a model of optimal sizing of onboard 
ESSs to minimize catenary energy consumption. The authors 
also examined the ESS consisting of supercapacitors, Li-ion 
batteries, and flywheels in the Beijing Changing line.  
Yang et al. [16] suggested an optimum energy management 
strategy for supercapacitors in the urban rail system, adjusting 
the control parameters. Eziani et al. [17] suggested a new 
method based on a neural network to estimate the state of 
charge of supercapacitors used for RBE recovery in railways. 
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Khodaparastan et al. [18] examined in detail the methods that 
can be used to recover the RBE. The authors stated that there 
are three methods for achieving this energy: optimizing train 
operating hours, using ESSs, and using reverse traction 
transformers.  

However, in [15]-[18], while RBE and ESS are considered, 
EVs and RESs were not included in the model. 

Aguado et al. [19] presented a model for the optimal 
operation of a railway power system, which includes a PV 
system, wind turbines, RBE option, and a supercapacitor-
battery hybrid system. The authors applied a scenario-based 
approach to the uncertainty of RESs and integrated the whole 
model into an AC optimum power flow problem. They also 
analyzed the practice carried out on a high-speed train in Spain. 
They achieved an improvement of 33.22% and 9.63% in costs 
and energy savings, respectively, with the use of renewable 
energy and ESSs together. Şengör et al. [20] suggested a mixed-
integer linear programming model of the energy management 
problem of a railway station with an ESS, RBE, PV system, and 
a separate grid line.  

However, in references [19] and [20], while ESSs and RESs 
are included in addition to RBE, EVs were not addressed.  

Calvillo et al. [21] modeled a region with metro, EV, and 
distributed generation facilities using linear programming. The 
aim of their study was the optimum use of RBE obtained from 
the metro in other trains or EVs. However, operation over 
nominal power of traction transformer, AC and DC charging 
units, electric buses, short-term economic operation problem, 
and purchasing energy from the day-ahead market are all 
neglected in [21].  

Perez et al. [22] proposed a model for the integration of a 
train line for RBE into a DC micro-grid consisting of a PV 
system, a hybrid supercapacitor-battery system, and a DC local 
load. However, this study did not include EVs.  

Mohamed et al. [23] presented a real-time energy 
management algorithm for a grid-connected EV charging park 
in a commercial workplace. However, they did not include the 
arrival and departure times of EVs in the model.  

Hoarau and Perez [24] and Alghoul et al. [25] conducted 
virtual micro-grid research in which smart parking management 
systems were combined with RESs and EVs. It is to be 
highlighted that the studies presented in [24] and [25] are only 
review studies, not research paper. 

Tulpule et al. [26] investigated the suitability of installing a 
PV generation system for parking lots in workplaces. They 
considered the annual solar radiation and financial structure of 
the Columbus and Los Angeles regions with different scenarios. 
The analysis showed an increased parking rate for access to the 
charging station. They also examined the contribution to the 
economy by using the most appropriate planning strategy. 
Sedighizadeh et al. [27] proposed a two-stage optimization 
system based on approximate dynamic programming and an 
hybrid algorithm, which takes into account an artificial neural 
network to design the most suitable energy management 
systems. Besides, they paid attention to the EV charging usage 
time in order to reduce the costs of the EV parking lot owner in 
the proposed energy management strategy. 

It should be underlined that there are some studies in the 
existing literature including the combinations of the evaluated 
components in this study. However, none of them took into 
consideration the idle power capacity of the railway traction 
substation. Besides, none of the abovementioned studies 
considered the electric buses, AC and DC charging of EVs, and 
operation overrated power of traction transformer.  

A detailed comparison of the studies in the specified 
literature and the presented study is given in Table I. It enables 
to better understand the motivation behind this study and the 
gaps in the existing literature.  

C. Contributions and Organization 
In this study, an optimal energy management strategy is 

presented where the existing installed capacity for service and 
transportation purposes on the rail systems side, potential RBE, 
and ESS are used together with a local renewable energy 
generation unit located in the parking area in order to meet the 
demand for the EV parking zone.  

TABLE I 
TAXONOMY OF THE PROPOSED METHODOLOGY COMPARED TO THE RESEARCH PAPERS IN THE LITERATURE 

Case 
Studies RES RBE ESS EV Electric 

Buses 
EV Parking 

Lot 
EV Behavior 

Scenarios 
AC and DC 

Charge of EVs 
Operation Over Nominal Power of 

Traction Transformer 
[12] − ✓ − − − − − − − 
[13] − ✓ − − − − − − − 
[14] − ✓ − − − − − − − 
[15] − ✓ ✓ − − − − − − 
[16] − ✓ ✓ − − − − − − 
[17] − ✓ ✓ − − − − − − 
[18] − ✓ ✓ − − − − − − 
[19] ✓ ✓ ✓ − − − − − − 
[20] ✓ ✓ ✓ − − − − − − 
[21] ✓ ✓ ✓ ✓ − ✓ ✓ − − 
[22] ✓ ✓ ✓ − − − − − − 
[23] ✓ − − ✓ − ✓ − − − 
[26] ✓ − − ✓ − ✓ − − − 
[27] − − − ✓ − − ✓ − − 
This 
Study ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
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To the best of the authors' knowledge, this concept has not yet 
been addressed in any study in the literature. Hence, the 
novelties of this study are twofold: 
 A framework is presented in which service and traction 

transformers provide energy to the rail system and RBE, ESS, 
and PV system are aimed to be utilized in charging for both EVs 
and electric busses in the parking lot. The uncertain nature of 
EV behaviors as well as electricity market prices are modeled 
in a stochastic-based approach. AC and DC fast charging units 
are also considered in the proposed model. DC energy from the 
railway to the EVPL comes from the railway system's catenary 
via a DC-DC converter. It should be highlighted that this is the 
first study in the literature in which the idle power of the  
traction transformer is evaluated for charging EVs. Moreover, 
the energy needs of EVs are matched by the power bought by 
the traction and service transformers from the day-ahead 
market. 
 Due to the well-known redundancy-oriented design in 

railway systems, service and traction transformers are typically 
lightly loaded. Traction transformers can also provide 150% 
power for two hours, according to the EN50329 standard for 
railway systems. It is the first time that the extra capacity in 
lightly loaded railway transformers, which can even be 
overloaded for some times to match the charging demand of 
parking lots, is analyzed in the literature. 

The rest of the paper is organized as follows.  
The mathematical model is given in Section II. In Section III, 
the evaluated case studies are defined, and related results 
obtained from comprehensive simulations are examined. 
Finally, the concluding remarks are evaluated in Section IV.  

II. METHODOLOGY 
The general structure of the proposed model is given in Fig. 1. 

Herein, RBE from trains, PV production, ESS, traction 
transformer, and service transformer are used to charge the 
EVs, which consist of electric cars and electric buses in the 
parking lot in an economic manner.  

It should be noted that electric buses and EVs can be charged 
in both AC and DC charging units in this scheme. The idle part 
of the traction and service transformer is also used to charge the 
EVs in the parking lot for the first time in the literature, even 
exceeding the traction transformer's rated power.  

At train stations, service transformers are commonly used for 
supplying the demand of passenger information boards, station 
lighting, station offices, and other areas. A traction transformer, 
on the other hand, is the instrument that enables the train to 
move. The common bus distributes the parking lot's AC/DC 
charging power to the AC/DC charging units. 

Firstly, a mathematical model of motion for the metro line is 
needed to determine the potential of RBE. In this respect, the 
mathematical model of the metro movement in [20] was used 
to determine the RBE. Herein, metro motion is based on 
Newton's one-dimensional laws.  

A. Objective Function 
In the study, the objective function aimed at minimizing the 

cost of energy bought from the day-ahead electricity market 
through service and traction transformers to charge the EVs is 
given by (1).  

Fig. 1.  A general structure of the proposed model. 

Namely, it is aimed to minimize the cost of purchasing energy 
used to charge EVs, except for train station energy use, through 
the service transformer, and the cost of energy purchased 
through the traction transformer used directly for train 
movement during the day, except for train operation cost.  

It is worth underlining that the cost of RBE is not considered 
in the cost function since the energy regenerated by the braking 
during the normal operation of the evaluated metro line is being 
wasted via the resistances on the train. Here, regenerative 
braking power, PV system, ESS and EV charging optimization 
are evaluated as well, thus reducing the total cost. Besides,  
day-ahead market price and EV driving behavior scenarios are 
also taken into account, since the stochastic structure is 
considered. 

B. Power Limitations 
It is expressed in (2) that the energy provided by the service 

transformer is used for the energy requirement of the station and 
charging of EVs. Inequality (3) defines the power limit that the 
service transformer can provide for each time interval t. 
Equation (4) defines how the energy supplied by the traction 
transformer is used for metro energy consumption and charging 
of EVs, while the power limit that this transformer can provide 
for each time interval t is determined by (5). 

௧ܲ,௟,௦
௦௘௥௩,௧௢௧ = ௧ܲ

௦௧௔௧ + ௧ܲ,௟,௦
௦௘௥௩ଶா௏,   ∀ݐ, ݈, (2) ݏ

௧ܲ,௟,௦
௦௘௥௩,௧௢௧ ≤ ,ݐ∀   ,௧௦௘௥௩݌ܽܥ ݈, (3) ݏ

min(ݐݏ݋ܥ) =෍෍෍൫ ௧ܲ,௟,௦
௦௘௥௩ଶா௏ + ௧ܲ,௟,௦

௧௥௔௖ଶா௏൯
௦

∙ ௟݌ ∙ ௦݌
௟௧
∙ ௧,௟ߣ

௕௨௬ ∙ ∆ܶ 
(1)
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௧ܲ,௟,௦
௧௥௔௖,௧௢௧ = ௧ܲ

௧௥௔௖ + ௧ܲ,௟,௦
௧௥௔௖ଶா௏ ,ݐ∀   , ݈, (4) ݏ

௧ܲ,௟,௦
௧௥௔௖,௧௢௧ ≤ ,ݐ∀   ,௧௧௥௔௖݌ܽܥ (5) ݏ

C. Power Balance Constraints 
The total DC charging power of EVs consists of the power 

provided by the traction transformer, the regenerative braking 
power, and the power provided by the ESS, which is expressed 
in (6). The efficiency of the DC-DC converter is also taken into 
account here. In (7), it is stated that the AC charging power for 
EVs is provided from the service transformer. Besides, the 
efficiency of the AC-AC converter is also taken into account. 
In other words, if the EVs are charged at the AC charging unit, 
the AC charging energy is only provided from the service 
transformer. In (8), it is stated that the sum of the charging 
power provided by regenerative braking, ESS, and traction 
transformer for EVs is obtained by subtracting the power 
generated in the PV system for DC charging from the sum of 
the DC charging power of all EVs. It is indicated in (9) that the 
total AC charging power provided by the service transformer 
for EVs is obtained by subtracting the power generated in the 
PV system for AC charging from the total of AC charging 
power of all EVs. 

௧ܲ,௟,௦
஽஼,௖௛,௧௢௧ = ൫ ௧ܲ,௟,௦

௧௥௔௖ଶா௏ + ௧ܲ,௟,௦
௕௥௞ଶா௏ + ௧ܲ,௟,௦

ாௌௌ,ௗ௦௖௛൯
∙ ƞ஽஼→஽஼ ,ݐ∀   , ݈,  ݏ

(6)

௧ܲ,௟,௦
஺஼,௖௛,௧௢௧ = ௧ܲ,௟,௦

௦௘௥௩ଶா௏ ∙ ƞ஺஼→஺஼ ,ݐ∀   , ݈, (7) ݏ

௧ܲ,௟,௦
஽஼,௖௛,௧௢௧ = ෍ ௛ܲ,௦,௧

ா௏,௖௛,஽஼

௛

− ௧ܲ,௦
௉௏,஽஼ ,ݐ∀   , ݈, (8) ݏ

௧ܲ,௟,௦
஺஼,௖௛,௧௢௧ = ෍ ௛ܲ,௦,௧

ா௏,௖௛,஺஼

௛

− ௧ܲ,௦
௉௏,஺஼ ∙ ƞ஽஼→஺஼ ,ݐ∀   , ݈, (9) ݏ

D. Charging/Discharging and SoE Constraints of the ESS 
In (10), it is stated that the regenerative braking power is used 

in charging EVs or stored in the ESS for later use.  
The state-of-energy (SoE) expression of the ESS in period t is 
obtained by (11), where SoE is calculated by adding the energy 
at time period (t-1) and the stored RBE at time period t, or 
subtracting the energy discharged at time period ݐ. The SoE 
level of the ESS at the beginning of the time period is 
determined in (12). Besides, the minimum and maximum 
energy limits for the charge and discharge conditions of the ESS 
are determined by (13). Because ESSs technically have a 
maximum capacity and it is generally desired that the energy 
level should not go below a certain level for an efficient use, a 
minimum limit is considered. The inequalities (14) and (15) 
prevent the ESS from charging and discharging in the same 
period, while also determining the maximum charge and 
discharge power. The simultaneous charging and discharging 
events are prevented by the binary decision variable ݑ௧,௟

ாௌௌ.  
The maximum charging power of the ESS is given on the  
device label and catalog, which is determined by the 
manufacturer. 

௧ܲ
௕௥௞ = ௧ܲ,௟,௦

௕௥௞ଶாௌௌ + ௧ܲ,௟,௦
௕௥௞ଶா௏ ,ݐ∀   , ݈, (10) ݏ

௧,௟,௦ܧ݋ܵ
ாௌௌ = ௟,௦,(௧ିଵ)ܧ݋ܵ

ாௌௌ + ௧ܲ,௟,௦
௕௥௞ଶாௌௌ ∙ ƞ௖௛ாௌௌ ∙ ∆ܶ

− ௧ܲ,௟
ாௌௌ,ௗ௦௖௛

ƞௗ௦௖௛ாௌௌ ∙ ݐ ݂݅   ,ܶ∆ > 1, ∀݈,  ݏ
(11)

௧,௟,௦ܧ݋ܵ
ாௌௌ = ௧,௟ܧ݋ܵ

ாௌௌ,௜௡௜ ݐ ݂݅   , = 1, ∀݈, (12) ݏ

ாௌௌ,௠௜௡ܧ݋ܵ ≤ ௧,௟,௦ܧ݋ܵ
ாௌௌ ≤ ,ݐ∀   ,ாௌௌ,௠௔௫ܧ݋ܵ ݈, (13) ݏ

௧ܲ,௟,௦
௕௥௞ଶாௌௌ ≤ ܴாௌௌ,௖௛ ∙ ௧,௟ݑ

ாௌௌ,   ∀ݐ, ݈, (14) ݏ

௧ܲ,௟,௦
ாௌௌ,ௗ௦௖௛ ≤ ܴாௌௌ,ௗ௜௦௖௛ ∙ ൫1 − ௧,௟ݑ

ாௌௌ൯,   ∀ݐ, ݈, (15) ݏ

E. Mathematical Model of Charging Operation 
The SoE expression for EVs is given in (16). Herein, the 

energy state in period t is the sum of the energy in period (t-1) 
and the determined DC or AC charge energy in period t. While 
the SoE level at the beginning of the time period for EVs is 
determined by (17), the desired energy state for EV batteries 
when leaving the parking lot is determined by (18). Besides, the 
maximum energy level for EV batteries is determined by (19). 
The maximum DC and AC charging power limit of electric cars 
is determined by inequalities (20) and (21), respectively, while 
the maximum DC charging power limit for electric buses is 
determined by (22). The binary decision variable ݑ௛,௦

ா௏,௔௩௔௜௟ 
refers to whether the EV arrives at the EV parking lot in the day. 
The value of this variable is 1 if the EV is coming to the EV 
parking lot, and 0 if it is not. In other words, if it is 0, no 
transaction is realized for that EV. ݑ௛,௦

஼௔௥,௖௛,஺஼ and ݑ௛,௦
஼௔௥,௖௛,஽஼ are 

binary decision variables for the DC and AC charging status of 
electric cars, while ݑ௛,௦

஻௨௦,௖௛,஽஼ is the binary decision variable for 
the DC charging status of electric buses. It is assumed that the 
DC charging unit of electric buses is different from the electric 
car DC charging unit. Considering that each electric car can be 
charged by either AC charge unit or DC charge unit and electric 
buses can be charged by only the DC charge unit, it is defined 
in (23) where the sum of the related binary decision variables is 
1 for each EV. While the number of electric cars charged with 
the AC or DC charge unit can be equal to the number of AC or 
DC charge units in the EV parking lot is defined in (24) and 
(25), a similar situation for electric buses is expressed in (26). 

௛,௦,௧ܧ݋ܵ
ா௏ = ௛,௦,(௧ିଵ)ܧ݋ܵ

ா௏ + ൫ ௛ܲ,௦,௧
ா௏,௖௛,஽஼ + ௛ܲ,௦,௧

ா௏,௖௛,஺஼൯
∙ ƞ௛

ா௏,௖௛ ∙ ∆ܶ, ∀ℎ, ,ݏ ݐ ∈ ൣ ௛ܶ
௔, ௛ܶ

ௗ൧ 
(16)

௛,௦,௧ܧ݋ܵ
ா௏ = ௛ܧ݋ܵ

ா௏,௜௡௜ ∙ ௛,௦ݑ
ா௏,௔௩௔௜௟ , ∀ℎ, ,ݏ ݐ = ௛ܶ

௔ (17)

௛,௦,௧ܧ݋ܵ
ா௏ = ௛ܧ݋ܵ

ா௏,ௗ௘௦ ∙ ௛,௦ݑ
ா௏,௔௩௔௜௟ , ∀ℎ, ,ݏ ݐ = ௛ܶ

ௗ (18)

௛,௦,௧ܧ݋ܵ
ா௏ ≤ ௛ܧ݋ܵ

ா௏,௠௔௫ ∙ ௛,௦ݑ
ா௏,௔௩௔௜௟ , ∀ℎ, (19) ݐ∀

௛ܲ,௦,௧
ா௏,௖௛,஽஼ ≤ ௛,௦ݑ

஼௔௥,௖௛,஽஼ ∙ ௛ܲ
ா௏,஽஼,௠௔௫,

,ݏ∀ ,ݐ ℎ ∈  {ݏݎܽܿ ܿ݅ݎݐ݈ܿ݁ܧ}
(20)
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௛ܲ,௦,௧
ா௏,௖௛,஺஼ ≤ ௛,௦ݑ

஼௔௥,௖௛,஺஼ ∙ ௛ܲ
ா௏,஺஼,௠௔௫,

,ݏ∀ ,ݐ ℎ ∈  {ݏݎܽܿ ܿ݅ݎݐ݈ܿ݁ܧ}
(21)

௛ܲ,௦,௧
ா௏,௖௛,஽஼ ≤ ௛,௦ݑ

஻௨௦,௖௛,஽஼ ∙ ௛ܲ
ா௏,஽஼,௠௔௫,

,ݏ∀ ,ݐ ℎ ∈  {ݏ݁ݏݑܾ ܿ݅ݎݐ݈ܿ݁ܧ}
(22)

௛,௦ݑ
஼௔௥,௖௛,஺஼ + ௛,௦ݑ

஼௔௥,௖௛,஽஼ + ௛,௦ݑ
஻௨௦,௖௛,஽஼ ≤ 1, ∀ℎ, (23) ݏ

෍ݑ௛,௦
஼௔௥,௖௛,஺஼ ≤

௛

݊஼௔௥,௖௛,஺஼ , (24) ݏ∀

෍ݑ௛,௦
஼௔௥,௖௛,஽஼

௛

≤ ݊஼௔௥,௖௛,஽஼ , (25) ݏ∀

෍ݑ௛,௦
஻௨௦,௖௛,஽஼

௛

≤ ݊஻௨௦,௖௛,஽஼ , (26) ݏ∀

F. Photovoltaic System Model 
The power generated from the PV system is used as the DC 

and AC charging demand of EVs, which is expressed in (27). 

III. TEST AND RESULTS 
In this study, the problem that aims to charge the EVs in the 

EV parking lot in the most economical way is addressed in a 
Mixed-Integer Linear Programming (MILP) framework.  
The proposed methodology has been tested in GAMS 
environment. The input data and related results from the 
different case studies carried out to demonstrate the 
effectiveness of the proposed methodology will be discussed in 
the following subsections, respectively.  

A. Input Data 
The power capacities of the traction and service transformers 

that can provide energy to the EV parking lot, which is 
considered to be located in the Esenler bus and metro station of 
İstanbul, Turkey, are 6.6 MVA and 1 MVA, respectively.  

According to the EN50329 standard, a traction transformer 
used for train movement can be operated at 150% capacity for 
two consecutive hours, which is 50 percent greater than the 
nominal power specified on the label. Because the study 
discusses the most economical way to charge EVs, this 
operating condition is also taken into account in the optimum 
operating problem. It should be noted that this value was chosen 
to allow the transformer to operate safely without overheating. 

In the study, there are 100 different electricity price scenarios 
within the stochastic approach, and these data are presented in  
Fig. 2. Electricity prices consist of actual data of Turkey's day-
ahead market operated by EXIST [28], which includes data 
from January 1, 2020, to the next 100 days. The 15-minute 
production and consumption data regarding the RBE produced 
from the metros, the power consumption of the metro station 
and metro are given in Fig. 3. While the power consumption of 
the metro and the station is based on real data, regenerative 
braking data is generated through the RailSIM software using 
the real topology of the M1 Metro line in Istanbul. 

The metro station located here is considered as the 
intermediate station so that the related figure includes the 
regenerative braking power of all trains passing here. Traction 
power refers only to the power drawn from the substation, 
excluding the other traction transformers in the rail system. 

Data related to the PV production located in the EV parking 
lot is given in Fig. 4. The relevant data was obtained by using 
simulation software for the EV parking area in the Esenler bus 
and metro station. The month of December as the month in 
which energy generation is the lowest in Istanbul, Turkey, 
looking into the historical data, was chosen because the worst 
case is often taken into account for system design. 

It is considered that there are 4 different types of electric cars 
and one type of electric bus in the EV parking lot. The technical 
specifications for EVs are given in Table II. Four different 
scenarios for EVs driving behavior are considered.  

In these scenarios, the number of EVs arriving at the parking 
lot, the arrival/departure times, and SoE levels of EVs are taken 
into account as a stochastic-based approach. The arrival and 
departure times of EVs are generated via Weibull distribution 
and Kernel estimation, respectively. The detailed information 
about creating the scenarios is given in [29]-[31].  

 
Fig. 2.  Day-ahead market price scenarios (100 scenarios). 
 

 
Fig. 3.  Data of regenerative braking power, station and traction power demand. 
 

 
Fig. 4.  Hourly energy generation of the PV system. 

௧ܲ
௉௏ = ௧ܲ,௦

௉௏,஽஼ + ௧ܲ,௦
௉௏,஺஼ ,ݐ∀   , (27) ݏ
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The real historic data including arrival/departure times 
extracted from the existing parking lot in Istanbul is also 
processed in the Weibull distribution for conducting more 
realistic assumptions. Furthermore, normal distribution 
(µ=0.70, σ=0.15) is evaluated for randomly generating the 
value of the state of charge (SoC) of EVs when they arrive at 
the parking lot. The initial SoE of each EV is obtained by 
multiplying randomly generated SoC and individual battery 
capacity of each EV. The initial SoE used for EVs is given in 
Fig. 5. SoE data of the EVs that do not come to the EV parking 
lot is not shown. 

It should be stated on the right-hand side of Fig. 5 that those 
with higher energy levels than others are electric buses. The EV 
parking lot is designed to accommodate 50 electric buses and 
450 electric cars, that is, in total 500 EVs. In the scenarios, it is 
assumed that the EV parking lot includes 45 electric buses and 
386 electric cars, at most.  

It is assumed that EVs desire to leave the car park at a full 
charge level. There are 50 electric bus DC charge units with  
120 kW, 350 electric car DC charge units with 50 kW, and  
100 electric car AC charge units with power up to 7.4 kW in the 
EV parking lot. Besides, there is an ESS that can store RBE, 
and the technical specifications are given in Table III.  
Furthermore, the efficiency of DC-DC and AC-AC converters 
at the EV parking lot is taken as 0.95. 

A. Simulation Results 
Five separate case studies demonstrate the feasibility of the 

proposed model, considering the existence of the PV system, 
ESS, RBE, and the operating time period of up to 150% of the 
nominal power of the traction transformer for 2 hours.  

 
Fig. 5.  Initial SoE level of EVs for all scenarios. 

TABLE II 
TECHNICAL CHARACTERISTICS OF EVS 

Features Buses BMW 
i3 

Audi 
e-Tron 

Kia 
Soul EV 

Nissan 
Leaf Plus 

௛ܧ݋ܵ
ா௏,௠௔௫ 230 kWh 42.2 kWh 95 kWh 27 kWh 64 kWh 

௛ܲ
ா௏,஺஼௠௔௫ − 7.4 kW 7.2 kW 6.6 kW 7.2 kW 

௛ܲ
ா௏,஽஼௠௔௫ 120 kW 50 kW 50 kW 50 kW 50 kW 

ƞℎ
 ℎ 0.95 0.95 0.95 0.95 0.95ܿ,ܸܧ

TABLE III 
TECHNICAL CHARACTERISTICS OF ESS 

Maximum battery capacity 500 kWh 
Minimum battery capacity 100 kWh 
Charge rate 500 kW 
Charge efficiency 0.95 
Discharge rate 500 kW 
Discharge efficiency 0.95 
Initial SoE 100 kWh 

B.1 Economic Comparison of the Results 
Table IV contains the details on the case studies. Table V 

gives the results obtained from the case studies. According to 
the simulation results, the cost was the lowest (with 2121.54 
Turkish Liras (TL)) in Case-1 where PV power generation is 
used; when RBE and ESS were also included, the most 
profitable situation is realized. In Case-4, the most expensive 
situation is where PV, RBE, and ESS were not included and the 
traction transformer worked between 13:00-15:00 hours above 
its nominal capacity, as in Case-1.  

In this case, an expense of 3822.54 TL has been incurred for 
charging of EVs. It is seen that the period in which the traction 
transformer is operated above its nominal power is shifted from 
the range 13:00-15:00 to the range 12:00-14:00 in which 
electricity prices are relatively cheaper, in Case-5, so the 
charging cost is slightly reduced. 

Hence, the presence of the PV system, ESS, and RBE had 
positive effects on the total cost because the best result was 
obtained in Case-1, in which they are all included. If Case-2 and 
Case-3 are compared, in order to assess the effects of the PV 
system, ESS and RBE on total charging cost, it can be seen that 
ESS and RBE are more effective in reducing the charging cost 
than a PV system. 

B.2 Utilization of the Regenerative Breaking Energy 
The data showing how the RBE is used and the change of the 

energy state of the ESS in Case-1 for price scenario 39 and EV 
driving scenario 1, is given in Fig. 6. The RBE from the train is 
used in the charging of EVs and ESS. Herein, while RBE is 
mostly used for charging EVs, the ESS is charged in the range 
of 07:00-08:00, 08:30-08:45, and 23:00-00:00.  

Between 12:00-13:00 and 22:00-23:00, there appears to be a 
decrease in the SoE of the ESS, which means that the 
discharged energy is used to charge the EVs. It should be 
highlighted that the ESS is fully charged between 08:45 and 
12:00; It is discharged in the range of 12:00-12:30 and 21:45-
22:45. Besides, after 23:00, the ESS is charged a small amount. 
This is because most of the EVs leave the EV parking lot, thus 
the excess energy generated from the PV system is stored.  

The SoE levels of the Audi e-Tron electric car named 
Audi110 and Bus39 in each EV driving scenario for Case-1 are 
given in Fig. 7. It can be seen that each EV is charged at 
different times in each scenario. 

TABLE IV 
DATA RELATED TO THE CASE STUDIES 

Cases PV Working Time Above Nominal 
Power of Traction Transformer ESS RBE 

Case-1 ✓ 13:00-15:00 ✓ ✓ 
Case-2 ✓ 13:00-15:00 − − 
Case-3 − 13:00-15:00 ✓ ✓ 
Case-4 − 13:00-15:00 − − 
Case-5 − 12:00-14:00 − − 

TABLE V 
RESULTS OBTAINED FROM SIMULATIONS 

Cases PV ESS and 
RBE 

Working Time Above Nominal 
Power of Traction Transformer 

Cost 
[TL] 

Case-1 ✓ ✓ 13:00-15:00 2121.54 
Case-2 ✓ − 13:00-15:00 3409.87 
Case-3 − ✓ 13:00-15:00 2525,85 
Case-4 − − 13:00-15:00 3822.54 
Case-5 − − 12:00-14:00 3811.88 
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Fig. 6.  Distribution of RBE usage and SoE of ESS in Case-1 for EV driving 
scenario 1 and price scenario 39. 

 
Fig. 7.  SoE level of EVs selected in Case-1 for all EV driving scenarios. 

The electric car is charged with the DC charging unit in 
Scenario 1, Scenario 3, and Scenario 4, while Bus39 is already 
charged with only the DC charging unit. In Scenario 2, where 
the EV is charged by an AC charge unit, it can be seen that the 
SoE level increases more linearly compared to other scenarios. 
Besides, in Scenario 4, EVs reached the full charge level later. 

B.3 EVs and the Related SoE Variations 
In Case-1, EV driving scenario 1 and price scenario 47, the 

data on the DC and AC charging powers of EVs and where 
these energies are met are given in Fig. 8. PV, ESS, RBE, 
energy from traction and service transformer used to charge the 
EVs in the EV parking lot are shown on the positive side of the 
graph, while the energies consumed in AC and/or DC charging 
units are shown on the negative side. It should be noted that in 
all case studies, the power generated from the PV system is only 
evaluated for DC charging.  

Moreover, although the traction transformer is allowed to 
provide power capacity above its nominal power in the range of 
13:00-15:00, it does not exceed the 100% power limit. It can be 
stated that the traction transformer and RBE have an important 
share in DC charging. However, it should be underlined that the 
traction transformer is not used to charge EVs after 16:00. 

For all case studies, 226 electric cars in Scenario 1, 270 
electric cars in Scenario 2, 240 electric cars in Scenario 3, and 
286 electric cars in Scenario 4 are charged at the DC charging 
stations, while 100 electric cars are charged at the AC charging 
stations. In addition, 45 electric buses are charged with DC 
charging power, which is the only alternative. 

Fig. 9 shows the variation in SoE level of Bus40 for EV 
driving scenario 1 and Bus46 for EV driving scenario 2 in all 
case studies. It can be seen that the charging period of Bus40 is 
greater than Bus46 since it spends more time in the parking lot. 

Therefore, a more flexible planning can be conducted for Bus40 
depends on its departure time. In addition, SoE variation is 
remarkably similar throughout all case studies for each bus.  

Further, for Cases 3, Bus40 and Bus46 reach a fully charged 
battery state relatively near to the time when they depart the 
parking lot. The data of charging powers in Case-1 and Case-4 
for the electric car named Nissan Leaf 87 are given in Fig. 10. 
The EV was charged through the AC unit in Scenario 1 for 
Case-1, and in Scenario 1, Scenario 3, and Scenario 4 for Case-
4, while it was charged through the DC charge unit in other 
scenarios in Case-1 and Case-4. All these results reveal the 
importance of examining different case studies and scenarios.  

B.4 Loading Conditions of Transformers 
Fig. 11 shows how much power is allocated for charging EVs 

from traction and service transformers in Case-1, Case-2, Case-
3, and Case-4.  

 

 
Fig. 8.  Distribution of power transactions in Case-1 for EV driving scenario 1 
and price scenario 47. 

 

Fig. 9.  The SoE variation of Bus40 for EV driving scenario 1 and Bus46 for 
EV driving scenario 2.  

 
Fig. 10.  Charging power of Nissan Leaf 87 in Case-1 and Case-4 for all EV 
driving scenarios. 
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Fig. 11.  Powers supplied from service and traction transformer to EVs in Case-
1, Case-2, Case-3, and Case-4 for EV driving scenario 4 and price scenario 39. 

 
Fig. 12. Total power supplied from service and traction transformer in  
Case-1, Case-4, and Case-5 for EV driving scenario 3 and price scenario 15. 

Herein, between the hours of 12:00-13:00, it is seen that the 
traction transformers provide more power in Case-2 and  
Case-4 than in other cases. An important result is that the 
traction transformer does not give power above its nominal 
power between 13:00 and 15:00.  

The total power provided from the service and traction 
transformers in Case-1, Case-4, and Case-5 are given in Fig. 12. 
In Case-5, where the working hours of the traction transformer 
that can provide 150% power are shifted to the range of  
12:00-14:00, after 12:00, 9.900 kW (full 150% power) was 
provided from the transformer. The cost of charging was 
reduced, as energy was purchased from the grid at relatively 
cheap hours. Besides, in Case-5, there is a 15-minute shift in the 
power provided by the traction transformer in the ranges of 
07:00-08:00 and 12:00-13:00 compared to other cases. 

IV. CONCLUSIONS 
An innovative smart energy management framework was 

proposed in this study for integrated transportation and power 
system with the aim of increasing energy efficiency, decreasing 
carbon emission and reducing footprint of overall installations. 
Within the scope of the presented scheme, EVs were exploited 
as a storage system of the railway electrical infrastructure’s 
braking energy. That is, regenerative braking was aimed to be 
used in the EV charging located at the parking lot located 
nearby the train station. Also, idle capacity of internal service 
and traction transformers was considered as the other source for 
EV charging in normal operating conditions. The inherent 
advantages of the railway system and the renewable energy 
resources have been taken into consideration in developing an 
optimization-based strategy for the first time in the literature. 

According to the results obtained, it was deduced that the use 
of service and traction transformers’ idle power capacity has the 
potential to keep installation costs low for the charging station 
infrastructure. Moreover, a PV equipped parking lot together 
with the RBE from the trains have significant impacts on 
reducing the operational cost of the parking lot. Last but not 
least, it is possible to decrease the operational cost even further 
by considering 150% power capacity for two hours due to the 
EN50329. When PV, ESS, and RBE were not considered in the 
proposed model, e.g. Case-4, the charging cost increased by 
approximately 80% compared to Case-1, which is significant. 
Thus, it can be indicated that the cost became lower in the 
studies that integrated RBE and ESS instead of PV systems. 
Besides, power usage on a rated power for the traction 
transformer resulted in a reliable power system operation. 
Finally, the RBE power can be considered in the cost function 
as well as the purchasing power through the service and traction 
transformers from the day-ahead electricity market in future 
studies. Also, the V2G option could be included into the 
optimal decision-making algorithm. 
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