
1949-3053 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2022.3155438, IEEE
Transactions on Smart Grid

 1

 
Abstract—In order to enhance the restoration capability of the 

distribution system during emergency conditions, a resiliency-

driven critical load restoration strategy is propounded in this 

paper. Electric vehicles (EVs) are considered for the grid-support 

services to deal with challenges on such occasions, in order to 

maintain the power supply continuity of critical loads by reducing 

the number of outage periods. The collaboration between fleet 

operator and distribution system operator is considered in the 

proposed scheme, making it possible to direct available EVs to the 

damaged areas. The random characteristic of the seismic event is 

captured by generating numerous hazard scenarios using a 

probabilistic approach with the Monte Carlo Simulation (MCS) 

technique. Afterwards, the unavailability of overhead distribution 

branches is determined within the fragility curve concept. Besides, 

the uncertainties caused by EV mobility are considered by 

performing learning-based analyses for forecasting the location 

and amount of EVs in the related zone. The obtained data is 

processed as input parameters in a mixed-integer linear 

programming (MILP) framework-based stochastic model. Besides, 

the conceptually developed interfaces for all stakeholders in the 

proposed scheme are described in detail for bridging the gap 

between the theoretical background of the concept and practical 

real-world implementation.  

Index Terms—Electric vehicles, forecasting, mixed-integer 

linear programming, optimization, resiliency, restoration strategy. 

NOMENCLATURE 
A.  Sets and Indices 

��� Subset of substation buses. � ∈ � Set of load types. � ∈ � Set of electric vehicles. 	 ∈ 
 Set of buses. 	� ∈ 
 Subset of buses. � ∈ 
 Set of branches. � ∈ � Set of points. � ∈ � Set of time periods. 
s ∈ S Set of damaged locations. 
v ∈ V Set of extreme event occurrence time. 
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B.  Parameters ��,� Rated power demand of load type � during period � [kW]. �� Discharging efficiency of EV �. �� Socket number of bus 	. ��,� Binary parameter; 1 if EV � is available for bus 	 during 

an event, else 0. ��� Discharging rate of EV � [kW]. ����  Power flow capacity of branch � [kW]. ℎ�,�  Binary parameter: 1 if load � exists in bus 	, else 0. ���,��  Maximum power injection capacity of substation bus [kW]. "#��,� State-of-energy of EV � at ��$�%� [kWh]. "#���&'' State-of-energy losses of EV � [kWh]. ()���% Minimum state-of-energy level of EV [kWh]. ��**�$�� Arrival time of EV.  ���+�*�,*� Departure time of EV.  ��$�%� Event time.  -+ The . coordinate point of point �. /+ The 0 coordinate point of point �. 1 Very small number. 

C.  Variables 2�,�,',$,� Binary variable: 1 if EV � is connected to candidate bus 
during period � in scenario " and 3, else 0. 4�,�,',$,� Binary variable; 1 if 2�,�,� is 0 in scenario " and 3, else 0. 5�,',$,�      Square of the flow through branch � during period � in scenario " and 3 [kWA]. ��,',$,� Active power flow of branch � during period � in scenario " and 3 [kW]. ��,�,',$,���'  Discharge power of EV � at bus 	 during period � in in 
scenario " and 3 [kW]. ��,',$,��  Total active power provided by substation at bus 	 during 
period � in scenario " and 3 [kW]. ��,',$,������ Total discharge power of EVs connected to bus 	 during 
period � in scenario " and 3 [kW]. ��,',$,��,�&�� Active power provided by substation at bus 	 during period � to cover the related demand in scenario " and 3 [kW]. ��,',$,�����%� Total power demand at bus 	 during period � in scenario " 
and 3 [kW]. ��,',$,��&''  Power losses of branch � during period � in scenario " and 3 [kW]. ()��,�,',$,� State-of-energy of EV � at period � in scenario " and 3 
[kWh]. B�,',$,��  Binary variable: 1 if the load � is fed by bus 	 in scenario " 
and 3, else 0. C�,',$,�,+ SOS2 variable for linearization. 

I.  INTRODUCTION 

Power system is one of the most critical infrastructures that 
need to be hedged against threats for ensuring resilient and 
secure operation in our modern era. However, the highly 
infrequent events such as earthquakes, hurricanes and floods 
have significant impacts on power grid which bring great 
amount of losses also with putting millions of end-users into 
darkness. Transmission towers, switchyards and overhead lines 
are particularly vulnerable places which may be partially or fully 
damaged due primarily to earthquakes [1]. As an example, end-
users suffered from power outages in Texas for approximately 
14 days due to Hurricane Harvey [2].  
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Furthermore, the increased probability of wide-area electrical 
blackouts provoked by HILP (high impact-low probable) events 
has been expected to increase in today’s world as a direct impact 
of global warming [3]. Hence, combatting with rare but 
destructive events is a major task for utility decision-makers 
from the concept of resiliency. In order to boost power grid 
resiliency in emergency conditions, broad number of smart 
solutions have been considered to deal with potential 
consequences in the literature.  

Distributed energy resources consisting of distributed 
generation (DG), energy storage systems (ESSs) and demand 
response (DR) strategies, microgrid (MG) architectures and 
electric vehicles (EVs) are the most promising approaches that 
contribute to improve optimal hardening strategies in such HILP 
occasions. Deploying modular DG resources, ESSs and MGs 
have been employed for maintaining the power supply 
continuity to local end-users; however, they are in fixed areas 
and serve local loads in restricted islanded places, but surely not 
further-away. On the other hand, mobile sources can serve 
prioritized critical loads with creating multiple islands within the 
network. The concept of utilizing EVs and other mobile power 
sources in service restoration strategies have been shown great 
interest. Sun et al. [4] developed a MILP-based bottom-up 
system restoration plan for utilizing the capabilities of hybrid 
EVs to recover entire system with maximizing restored energy. 
In [5], routing and scheduling of EVs were taken under study for 
utilizing their storage capacities in serving critical loads during 
emergencies as well as taking the advantage of price arbitrage 
opportunities for EV owners.  

Rahimi and Davoudi et al. [6] presented an investigation 
whether utilizing hybrid and battery EVs in vehicle-to-home 
(V2H) mode of operation would be a feasible solution or not in 
terms of increasing resiliency during widespread damage 
occurrence in distribution system side in a hurricane event. 
Similarly, the study in [7] proposed a home energy management 
framework with managing EVs in V2H mode for the purpose of 
increasing self-healing capability in case of any failure. Shin et 
al. [8] proposed a novel algorithm for optimizing V2H operation 
with the objective of minimizing load curtailment of residential 
end-users in islanded mode when a grid failure occurs.  

In order to pre-position and route mobile energy generators 
in real-time for recovering critical loads in case of a natural 
disaster by forming multiple MGs, the study in [9] proposed a 
two-stage dispatch framework with also considering traffic 
issues. Yang et al. [10] proposed a two-stage distribution system 
restoration framework in which optimal routing and scheduling 
of mobile power sources consisting of mobile emergency 
generators, mobile ESSs and EVs also coordinating with 
distribution system dynamic network reconfiguration were 
performed to increase critical load restoration. Gao et al. [11] 
focused on the resource allocation problem of distribution 
system which mainly aimed to supply critical loads in post-
hurricane restoration periods with deploying diesel oil, electric 
buses and transportable batteries. However, the installation of 
large-scale mobile ESSs with great amount of capacity requires 
higher installation and maintenance costs.  

In order to dispatch mobile power sources and repair crews 
in the transportation system after a major outage to maximize 
the cumulated service time to critical loads, a MILP-based 
critical load restoration problem was developed in [12].  

The dynamic traffic state and traffic congestion were considered 
after an event. Similarly, Lei et al. [13] formulated the co-
optimization problem of distribution restoration with 
dispatching and routing the repair crews and mobile power 
sources in the transportation network to increase resiliency. The 
work proposed in [14] aimed to utilize mobile energy generators 
in reliability enhancement strategies in case of unintentional 
islanding and unplanned outages occurring in MG. The study 
presented in [15] aimed to take advantages of mobile ESSs in 
resiliency enhancement strategies of power distribution system 
for both performing an economical decision in investment and 
emergency operational phases. The consequences of 
unintentional islanding due to natural disasters were aimed to be 
mitigated in [16] with optimal scheduling of emergency 
resources which were DR strategies, ESS, DERs as well as 
minimizing the expected social cost. From the similar point of 
view, EVs, DGs, DR implementations, ESS were considered in 
[17] as supplemental resources for minimizing load shedding of 
critical-loads in islanded mode of operation of an MG.  

Even though many more studies provided contributions in the 
field of using EV as a mobile supplemental resource, it is to be 
highlighted that the availability conditions of EVs was neglected 
in the presented studies [4]-[8], [10]-[11], [15]. On the other 
hand, the models devised in [4]-[9], [12]-[15] ignored the 
stochasticity regarding the damaged location based on the 
seismic intensity characterization, while the studies presented in 
[4]-[9], [11]-[17] did not consider the developing interfaces for 
communication. This study has some important differences from 
the existing literature, especially considering the stochasticity 
handling method, optimal power flow and objective function, 
determining the availability conditions of EVs together with 
developing user-friendly interfaces. The major contributions of 
the study are as follows: 
• In order to characterize the inherent uncertainties due 

primarily to EV mobility and to determine the input 
parameters of the optimization algorithm in an accurate and 
reasonable fashion, learning-based analyses are performed in 
the first step. The real yearly data of yellow taxis is used to 
forecast the available V2G capacity for enabling efficient and 
realistic operational strategies. 

• The stochasticity regarding the event occurrence time and 
damaged location is handled by a scenario-based stochastic 
approach for capturing the dynamic characteristics of the 
uncertainties. The potential scenarios are created based on the 
seismic intensity characterization by calculating the peak 
ground acceleration (PGA) in the location of interest, due to 
the attenuation relationship (AR) with generating a high 
amount of earthquake scenarios via the Monte Carlo 
Simulation (MCS) method. Afterwards, the failure 
probability of overhead branches is determined within the 
fragility curve concept. 

• A user-friendly interface platform that does not require an 
advanced communication infrastructure is developed in the 
scope of the study considering possible disruptions on the 
existing communication system. The proposed interface does 
not have a theoretical contribution but has an applicability-
oriented contribution to the possible real-world consideration 
of the theoretical concept. The relevant industry will need 
such easy-to-use interfaces for non-experts end-users in order 
to obtain more effective performance for such strategies. 

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on March 02,2022 at 11:24:01 UTC from IEEE Xplore.  Restrictions apply. 



1949-3053 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2022.3155438, IEEE
Transactions on Smart Grid

 3

The organization of the article as follows: Section II 
describes the learning-based analyses for EV dispatch together 
with seismic intensity characterization and developed interfaces 
for each stakeholder. MILP-based mathematical formulation for 
critical load restoration concept is described in Section III. The 
numerical results are discussed on the IEEE-33 bus test systems 
in Section IV. Concluding remarks are presented in Section V.  

II.  METHODOLOGY 

In the proposed system, it is assumed that there are critical 
and non-critical loads connected to several low voltage buses in 
the distribution system that should be supplied by the feeder and 
EVs during normal and emergency conditions, respectively. 
When disruptions occur in any part of the network due to an 
extreme event, EVs under the fleet operator framework are 
considered as grid-support services with operating ability of 
V2G mode. In order to prevent prolonged outages, EVs play a 
vital role in service restoration processes by travelling from the 
staging locations to damaged areas. The optimal load restoration 
strategy is performed thanks to the effective cooperation with 
fleet operator and distribution system operator with two-way 
information flow. The fleet operator has responsibility to 
determine availability matrices of EVs with extracting the 
location, battery SoE levels, minimum and maximum SoE and 
maximum discharging rate of EVs via the developed interface.  

On the other hand, the distribution system operator sends a 
signal to fleet operator from cloud to server for announcing 
damaged locations, possible connection points and their socket 
numbers for picking up critical loads during an emergency 
condition. The related data transfers from main server to the fleet 
operator. Also, the fleet operator interface is designed via the 
object-oriented development method Python pyqt5 and Kivy 
frameworks. The general framework of proposed concept is 
illustrated in Fig. 1. 

A.  Assessment of Seismic Intensity  

The overall framework of the post-event resiliency-driven 
strategy consisting of three main stages is demonstrated in  
Fig. 2. In the first stage, PGA used in defining ground shaking 
at the location of overhead distribution branches is estimated. 
PGA is a very important ground motion parameter, and it can be 
determined by AR in the literature [18]. To model the 
attenuation of released seismic energy of an earthquake at the 
location of interest, several factors should be determined as an 
initial step. The geological and topographical effects of the site, 
source specification, the properties of the soil and sediments, 
fault type, seismic potential of the faults, potential earthquake 
magnitudes as well as the distance from the hypocenter are 
processed in algorithmic procedures to obtain probabilistic 
derivations of AR [19].  

 
Fig. 1. Proposed critical load restoration framework. 

A general analytical formulation to quantify AR is following 
according to the [20]:   

lnDEF = H + �DJF + �D�F + �DKF + 1 (1) 

The random characteristics of the seismic event are the major 
challenge [21] for the system operators while they are preparing 
a management strategy. Since the earthquake dynamics cannot 
be estimated accurately, generating a great number of hazard 
scenarios using a probabilistic approach with the MCS 
technique becomes a promising solution in this manner. 
Considering the stochastic nature of a seismic event in terms of 
bringing about uncertainties in both spatial and temporal 
aspects, the distribution system of interest is divided into several 
zones in this study. After, 100,000 earthquake scenarios are 
created based on the ground motion parameters such as moment 
magnitude, hypocenter distance and soil type of the studied area.  

Accordingly, the damage level of overhead distribution 
branches is determined in the concept of fragility curve which 
represents the relationship between the failure probability of the 
specific component and seismic intensity (e.g., PGA) [22]. To 
assess the availability and/or unavailability of distribution line 
sections in the network, five damage states are introduced 
considering that not all branches have the same response to the 
extreme shocks as shown in Fig. 3 [23]. Complete damage, 
extensive, moderate, slight, and none are defined as among the 
inputs contributing to the optimization-based restoration 
strategy. According to [24], each fragility curve is described by 
a median value of the PGA parameter and log-normal standard 
deviation (4) corresponding to the damage state thresholds and 
their variability. The probability of being in or exceeding a 
damaged state is modeled as a cumulative lognormal 
distribution as follows: 

�LM|(�O = PL 14R ln D (�(�,RTTTTTFO (2) 

Herein, spectral displacement and its median value are 
indicated as (� and (�,RTTTTT, respectively. Also, 4R  states the 
standard deviation of the natural logarithm of spectral 
displacement for damage state, M, and P is the standard normal 
cumulative distribution function.     

Integration of fragility curves is pursued in this study to 
diagnose the status of distribution branches when subjected to 
an extreme seismic event. The individual failure probability of 
each of five states (as indicated above) of damage is calculated 
corresponding to being exposed PGA parameter as follows: 

�U% = 1 − �LWX|YO (3) 

�Z = �L(|YO − �L�0|YO (4) 

�[� = �LJ�|YO − �L�0|YO (5) 

�\ = �L�0|YO − �L]^|YO (6) 

Herein, Cm, Ex, Md, S, Nn indicate the damage status of the 
electrical component of interest as complete, extensive, 
moderate, slight, none, respectively. After calculating each 
damage state probability, the state of the overhead distribution 
line section is obtained from the following equations.   

  
�&��� =  ∑ ��X`�ℎ%%  (7) 

a%�' = ��X`�ℎ%
�&��� × L�Z5Z + �[�5[� + �\ 5\ + �c�5c�O (8) 
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Fig. 2. Big picture of the proposed multi-step optimal decision-making model. 

 
Fig. 3. Fragility curve of the overhead distribution branches [23]. 

 
where a%�' denotes the unavaliability of line section X when 
exposed to direct effect of a seismic shock. On the other hand, 5c�, 5\ , 5[�, 5Z indicates the failure of 80%, 50%, 12% and 
4% of all distribution branches [24].    

B.  Learning-based Analyses for EV Dispatch in Response to 

Extreme Event 

The uncertainties caused by EV mobility bring significant 
problems for providing grid-support services in case of large-
scale outages. In order to capture this impact and create more 
accurate availability matrices, forecasting systems are presented 
as realistic and cost-effective strategies in determining location 
and the amount of EVs in any zone. Time series-based historical 
data of yellow taxis between 01/11/2018 to 01/12/2019, 
obtained from the New York City Taxi and Limousine 
Commission (TLC) website [25] in minute scale, is used in this 
study. Two neighborhoods in Manhattan which are Alphabet 
City and Two Bridges/Seward Park are selected for forecasting 
the number of yellow taxis and their locations in case of large-
scale failure at nearby damaged zones for IEEE-33 bus test 
system. A flow chart given in Fig. 4 helps to understand the 
overall operation of learning-based analysis in better way.    

PROPHET developed by Facebook Core Data Science Team 
which is an open-source software and available for Python is 
popular in terms of forecasting time series data where non-linear 
trends are fit with daily seasonality including holiday effects, 
weekly and annually [26].  

PROPHET uses a decomposable time series model consisting 
of three fundamental components: trend, seasonality, and 
holidays which are also indicated by [27]: .D�F = `D�F +"D�F + ℎD�F +∈�. The algorithm is durable to missing data, 
capable of capturing shifts in the trend as well as handling large 
outliers. It makes possible to obtain reasonable estimations of 
mixed data without spending manual effort and presents an 
environment for predicting desired values with high quality but 
in an easy way [28]. 

C.  Developed Interface  

In this subsection, the conceptually developed interfaces 
considering simultaneously the key players such as the EV 
users, fleet operator and distribution system operator are 
presented comprehensively. The major motivation of the 
proposed architecture is to facilitate the participation of EV 
users in the emergency response actions and to improve grid 
post-event restoration capability. Collaborated operation 
between mentioned stakeholders creates a notable ecosystem in 
which bi-directional information exchange is provided by the 
main server through an internet connection. To describe the 
operation procedure of the proposed framework in a better way, 
Fig. 5 is illustrated including the main steps of the concept. It 
should be underlined that smartphones are preferred rather than 
specific commercial devices for keeping in touch with the end-
users in the platform. While considering the impacts of extreme 
events on the communication infrastructure, mobile phone-
based applications can be probably evaluated as one of the most 
effective and economic ways to tackle the challenges in terms of 
implementing the theoretical background of the study to the 
real-world application. 

The proposed interface is shown in Fig. 6 (a) and (b) is created 
as a web-based application in Google COLAB platform for 
distribution system operator and then converted to mobile-based 
application in Python Kivy framework. As can be seen in the 
related figure that the system operator can monitor the whole 
network status such as connections and disconnections of the 
loads. Damaged overhead lines are marked in red while those 
which remain in operation are marked in green. 

The system operator conveys the need for grid-support 
resources to the fleet operator via the internet by sharing 
information about the network. 
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Fig. 4. Flow chart of the overall operation of multi-step critical load restoration 
strategy.  

 
Fig. 5. Flow chart of the overall scheme consisting of multi-parties. 

Besides, the operator can check the status of a specific bus by 
monitoring the number of connected vehicles, daily load curve 
in percentage, directed EVs as well as total restored demand 
after the optimal decision-making algorithm in the other tab. In 
this tab, the types and technical features of dispatched EVs can 
also be monitored by the operator. 

 

 

Fig. 6. The developed interface for distribution system operator (a) first tab and 
(b) second tab. 

 

Fig. 7. The developed interface for fleet operator. 
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Fig. 8. EV user interfaces with the tabs of register, profile information, historical data, entering information. 

 

Fig. 7 presents the fleet operator interface developed in the 
web-based platform in Google COLAB and then converted to a 
mobile application via Python Kivy framework. On the main 
page, the fleet operator can monitor the EVs within the 
ecosystem on a map. Also, it is possible to observe the technical 
specifications of the EVs and the locations thanks to bi-
directional information exchange between parties. After, the 
arrival time of EVs from their current location to the damaged 
zones is calculated. EVs that can dispatch to the related area 
within 15 minutes or before are marked in green and those that 
will exceed 15 minutes are marked in red. Accordingly, the 
operator can determine available and non-available EVs in the 
other tab. Optimal dispatch plan depending on availability 
ma1trice is performed to increase system resiliency integrating 
on-call EV services. Information flow is carried out via mobile 
applications as stated in the previous section considering the 
potential hazards in communication infrastructure due to an 
event. 

On the other hand, a mobile application for EV users enabling 
them to receive grid support requests from the fleet operator 
based on their location and technical specifications is a built-in 
Kivy Python framework. The developed interfaces depicted in 
Fig. 8 make it possible to respond to the invitation of becoming 
a resiliency resource in an emergency in one of the simplest yet 
most effective ways. For having permission to use the mobile 
application, EV users should be affiliated with the platform as 
an initial step and then become a member of the ecosystem. As 
it can be seen from the interfaces that EV users in the fleet 
convey the current/maximum/minimum SOE levels and 
maximum discharging rate of the vehicle with the data entry 
option.  

The prepared interface enables it to receive and respond to 
signals through mobile internet. According to the data gathered 
from the distribution system operator containing the status of the 
power grid, the best possible EVs are directed from their service 
area to the damaged zones. EVs receive incentives due to 
becoming a participant for boosting resiliency. A contractual 
program is mandatory, i.e., it is strongly known that participants 
will face penalties in case they fail to receive a negative 
response. Feedbacks from the users are transmitted quickly to 
the interface for informing the operator.  

Accordingly, an optimal decision-making algorithm is 
performed via integrating the input parameters into the scheme. 
On the other hand, the member can also view his/her history 
containing participation programs from the past. It is to highlight 
that the navigation subpart is not considered within the proposed 
concept; however, it could be developed with the aid of Google 
Maps API to manage emergency on-call EV services. 

III.  MATHEMATICAL BACKGROUND OF THE RESILIENCY-
DRIVEN STRATEGY 

A.  Objective Function 

In the objective function, the first term is the total served 
demand considering priority of the loads during simulation 
period. The second term is added for minimizing total losses in 
the branches. Since there are various EVs which have different 
specifications in the fleet, the third term is added to dispatch best 
possible vehicles for load restoration. Thus, it was aimed to 
optimize the decision-making process with dispatching 
minimum number of EV considering the available socket at the 
buses in order to avoid waste of resources. 

The main aim of the propounded model is set to provide 
100% restoration with optimally decreasing outage duration. On 
the other hand, redundant travels as well as losses due to causing 
extra costs are both targeted to reduce with determining 
appropriate weights. Assigning very small value to 1 paved the 
way for evaluating second term insignificantly during 
simulation. In order to calculate objective function during whole 
simulation period in a stochastic manner, the related terms 
should be multiplied with equal probabilities of damaged 
location and event occurrence time scenarios (d', d$F. 
Maximize  

f f d" ∙
$'

d3 hf f fij� . B�,',$,�� k
�

−    1
��

∙ f f ��,',$,��&''
��

+  f f f 4�,�,',$,�
���

l  
(9) 

B.  Electric Vehicle Connection Constraints 

Following an event, the fleet operator aims to dispatch best 
possible EVs to the damaged areas for serving critical loads. 
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However, any EV taking 1 in the availability matrix can 
participate in the resiliency enhancement strategy. Therefore, 
the decision variable (2�,�,',$,�) can only be 1 if � vehicle is at a 
feasible zone in scenario " and 3, as enforced in Eq. (10). 

Available socket number is one of the most restrictive 
constraints while scheduling EVs in the connection points. Eq. 
(11) states that total number of directed EVs should be less than 
the capacity of related bus (��). Constraint (12) is added to 
determine whether the EV is at transportation or connection 
phase. If the vehicle connects any available bus (2�,�,',$,� = 1F, 
then transportation variable (4�,�,',$,�) will get zero which is also 
used in objective function. Lastly, 2�,�,',$,� should not take any 
value in the periods except arrival and departure periods as 
indicated in (13).    

2�,�,',$,� ≤ ��,�      ,       	 ∈ 	�, ∀� ∈ �, ∀", ∀3, � = ��$�%�     
(10) 

f 2�,�,',$,�
o

<  ��      ,     	 ∈ 	� , � = ��$�%�    
(11) 

4�,�,',$,� = 1 − 2�,�,',$,�     ,    ∀	 ∈ 
, ∀� ∈ �, ∀� ∈ �, ∀", ∀3    
(12) 

2�,�,',$,� = 0     ,     ∀	 ∈ 
, ∀� ∈ �, ∀ � ∉L��**�$�� , ���+�*�,*�O     
(13) 

C.   Modelling of Electric Vehicles 

Discharging power output of EV (��,�,',$,���'  ) is determined 
based on multiplying with discharging rate of EV (��� obtained 
from specifications of battery) and connection variable (2�,�,',$,�) 
for scenario " and 3 as stated in inequality (14). It will be zero 
while considering the periods except from arrival and departure 
times. In case of disruptive event, fleet operator makes a request 
for importing the information of SoE level of available EVs 
which are near the damaged zone. If candidate EV will 
participate in the load restoration strategy, ()��,�,',$,� is 
determined as initial SoE as indicated in Eq. (15). Travelling 
from staging locations to the damaged area causes loss of energy 
level ("#���&'') and therefore, SoE is calculated by subtracting 
loss energy from the current energy for more realistic 
assumptions as stated in (16). While EVs serve the critical loads, 
SoE variation is obtained proportional with the discharging 
power (��,�,',$,�st��' ) divided by battery efficiency (��) as well as 
multiplying with time granularity (Δ�) during the simulation 
period as represented in Eq. (17). For limiting the bound of 
minimum SoE level in order to avoid over-charging and deep-
discharging, Inequality (18) is defined. Finally, discharging 
power output as well as SoE should be zero in the periods when 
EV is not plugged in any bus as denoted in (19).  

��,�,',$,���'  ≤  2�,�,',$,� . ��� ,     	 ∈ 	�, ∀� ∈ �, ∀", ∀3,��**�$�� ≤ � < ���+�*�,*� 
   

(14) 

()��,�,',$,� =  "#��,� . 2�,�,',$,�,∀	 ∈ 
, ∀� ∈ �, ∀", ∀3, � = ��$�%� 
   

(15) 

()��,�,',$,� = i"#��,�st − "#���&''k. 2�,�,',$,� ,∀	 ∈ 
, ∀� ∈ �, ∀", ∀3, � = ��**�$�� 
   

(16) 

()��,�,',$,� =  ()��,�,',$,�st −   v��,�,',$,�st��'
�� w . Δ�     , 

∀	 ∈ 
, ∀� ∈ �, ∀", ∀3, ��**�$�� < � ≤ ���+�*�,*� 

   

(17) 

()��,�,',$,� ≥  ()���% . 2�,�,',$,�     ,      ∀	 ∈ 
, ∀� ∈ �, ∀", ∀3,��**�$�� < � ≤ ���+�*�,*�        
(18) 

()��,�,',$,� = 0, ��,�,',$,���' = 0,∀	 ∈ 
, ∀� ∈ �, ∀ �∉ L��**�$�� , ���+�*�,*�O 
 (19) 

D.   Mathematical Background of EV Motion  

In order to calculate the remaining SoE that belongs to each 
EV when arriving the bus, the mathematical model of EV 
motion is considered in this paper. There are certain forces 
acting on an EV while it drives on the road. These forces are 
obtained on the basis of Newton's one-dimensional law of 
motion [29]. Eq. (20) expresses the sum of all forces acting on 

the vehicle. These forces represent the acceleration force (
�$D�F

�� ), 

aerodynamic force (5�D�F), friction force (5*D�F), gravitational 
force (5yD�F), and other forces (5�D�F), respectively. A detailed 
representation of the aforementioned forces is available in Eqs. 

(21)-(23). The value of 
�$D�F

��  is obtained by dividing the 

difference of speeds in two consecutive seconds by the time 
interval in seconds (z�) as indicated in (24). EV consumes 
power while moving on the road and its value can be calculated 
by (25). Eq. (26) stated the mechanical power multiplying all 
forces acting on the vehicle by the speed in the relevant period. 
Finally, the mechanical power expression (�$D�F) is divided by 
the driving efficiency (��) to calculate the power required for 
the movement of EV in period t. For more detailed explanations, 
Ref. [29] can also be examined. 

5�D�F = ^$ . �3D�F
�� + 5�D�F + 5*D�F +  5yD�F + 5�D�F (20) 

5�D�F = 12 . | . } . ]  . 3D�FA (21) 

5*D�F = ^$ . ]*  . ` . cos D2F (22) 

5yD�F = ^$ . ` . sin D2F (23) 

�3D�F
�� = 3D�F − 3D� − 1Fz�  (24) 

�$D�F = 3D�F . 5�D�F (25) 

�D�F =  �$D�F��  (26) 

E.  Power Flow Equations 

Equation (27) states the general power balance formulation 
for all buses consisting of procured power from the substation 

bus (��,',$,��,�&��), demanded power need of the bus (��,',$,�����%� ), 
actual power provided by EV discharging in the fleet (��,',$,������) 

and the flowing power in the branches (��,',$,�). Total discharging 
power of connected EVs to the candidate buses is equal to fleet 
output power as defined in (28).  
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Different types of critical loads (e.g., 1'�, 2%�, 3*� level) and 
non-critical load can exist at any bus in the distribution system. 
However, which of these loads can be supplied by EVs is 
determined according to the optimal decision-making algorithm.  

Eq. (29) calculates to total restored demand of bus 	 
(��,',$,�����%�) based on rated power demand of � type load (��,�) 

multiplying with binary parameter (ℎ�,�) and variable (B�,',$,�� ). 
Related binary variable can take 1 if and only if the bus has 
related load type as defined in (30).  

Also, flowing power limitation is described by the Eq. (31) 
describing that power flow (��,',$,�) should be less than the 
maximum line capacity (���� ). On the other hand, the load 

demand of buses in scenario " and 3 D��,',$,��,�&��F as well as total 

power losses (∑ ��,',$,��&''�∈� ) should be covered by the upstream 

grid D��,',$,�� F as stated in (32). Lastly, Eq. (33) enforces the fact 

that a range of injected power from upstream grid D��,',$,�� F 

cannot exceed the specified constraint (���,�� F for reliable 
operation. 

��,',$,��,�&�� + ��,',$,������ + f ��,',$,�
∀���:�∈���

− f ��,',$,�
∀���:�∈���=  ��,',$,�����%� ,∀	 ∈ 
, ∀� ∈ �, ∀", ∀3 

  (27) 

��,',$,������ =  f ��,�,',$,���'
o

,     ∀	 ∈ 
, ∀� ∈ �, ∀", ∀3   (28) 

��,',$,�����%� =  f B�,',$,�� . ��,� . ℎ�,�
�

,     ∀	 ∈ 
, ∀� ∈ �, ∀", ∀3   (29) 

B�,',$,��  ≤  ℎ�,�  ,     ∀	 ∈ 
, ∀� ∈ �, � ∈ �, ∀", ∀3   (30) 

0 ≤ ��,',$,� ≤ ����  ,     ∀� ∈ 
, ∀� ∈ �, ∀", ∀3   (31) 

��,',$,�� = ��,',$,��,�&�� +  f ��,',$,��&''
�∈�

, ∀	 ∈ ��� , ∀� ∈ �, ∀", ∀3   (32) 

0 ≤ ��,',$,�� ≤ ���,�� , ∀	 ∈  ��� , ∀� ∈ �, ∀", ∀3   (33) 

F.  Linearization of Power Losses 

Power losses on a branch (��,',$,��&'' ) which is approximated 
using a quadratic function of power flow multiplying with the 
coefficients � and � is denoted in Eq. (34).  

It is evidently clear that this statement cannot be used in 
MILP-based formulation due to its non-linear characteristics. 
Thus, Special Order Sets of Type 2 (SOS2) method is considered 
in linearization process and appropriate functions are obtained. 
SOS2 variables (C�,',$,�,+) in which most two adjacent elements 
can be non-zero are created for every branch, in scenarios " and 3 as represented in (35).  

Afterwards, second-order function and power flow are 
approximated by using generated independent variables and 
constraints as indicated in Eqs. (36)-(37). 

��,',$,��&'' = � ∙ ���,',$,�� + � ∙ ��,',$,�A, ∀� ∈ 
, ∀� ∈ �   (34) 

f C�,',$,�,+
+∈�

= 1, ∀� ∈ 
, ∀� ∈ �   (35) 

��,',$,� =  f /+. C�,',$,�,+
+∈�

,      ∀� ∈ 
, ∀� ∈ �   (36) 

5�,',$,� =  f -+. C�,',$,�,+
+∈�

 ,      ∀� ∈ 
, ∀� ∈ �   (37) 

IV.  NUMERICAL RESULTS AND DISCUSSION 

A.  Input Data 

The MILP-based mathematical formulation is simulated in 
the PuLP 1.6.8 open-source library of the Python 2.7 version 
using the CPLEX solver. A time granularity of 15 min is used in 
all numerical results and total time period is considered as 24 h.  

The learning analyses and second step restoration model have 
been carried out on a personal computer with Intel Core I9, 3.60-
GHz with 128 GB of RAM. The load profiles have been divided 
into 1'�, 2%� and 3*� level critical loads and non-critical loads 
based on data imported from [30]-[32]. It is assumed that there 
are four different types of EVs, i.e., Kia e-Soul, Hyundai Kona 
Electric, Nissan LEAF e+ and Opel Ampera-e, in the fleet and 
their detailed technical specifications can be found in [33]. 

B.  Simulation Results 

In order to illustrate the capabilities of the proposed optimal 
EV routing algorithm for maximizing power system resiliency, 
it is validated on IEEE-33 bus test feeder. Some of the branches 
are assumed to be damaged during an event and the loads after 
these branches cannot be supplied by the upstream grid.  

1)  Step 1: Forecasting Number of Available EVs  

The overall yearly data are integrated into the system for two 
boroughs in Manhattan. Fig. 9 shows the univariate time series 
data of Two Bridges/Seward Park and trend, holidays, weekly 
and daily seasonality graphs are depicted in Figs. 10-13, 
respectively. Fig. 10 shows the trend of the dataset including 
upwards and downwards shift over time. According to the 
results, it is worthy to note that the number of yellow taxis 
usually shows a downward trend in December. Also, there is a 
sharp drop in the number of yellow taxis from April to 
September. Thanks to the trend illustration, underlying pattern 
of time series can be extracted. 

 
Fig. 9. Overall yearly data for Two Bridges/Seward Park in Manhattan. 
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Fig. 10. Trend results for Two Bridges/Seward Park in Manhattan. 

 

Fig. 11. Holidays’ impacts on taxis number for Two Bridges/Seward Park in 
Manhattan. 

 

Fig. 12. Weekly seasonality on yellow taxis number for Two Bridges/Seward 
Park in Manhattan. 

 

Fig. 13. Daily seasonality on yellow taxis number for Two Bridges/Seward Park 
in Manhattan. 

The impact of holidays is also investigated for providing more 
accurate forecasting tool. New Year, Independence Day, 
Washington's Birthday and Labor Day are one of the considered 
holidays in learning-based analyses. It is seen that holidays have 
negative effect on the population of taxis.  

 

Fig. 14. Weekend prediction results for Two Bridges/Seward Park. 

 

Fig. 15. Weekday prediction results for Two Bridges/Seward Park.    

TABLE I 
COMPARISON OF FORECAST RESULTS OBTAINED FROM DIFFERENT 

METHODOLOGIES 

 MSE RMSE MAE MAPE 

PROPHET 216.93 14.72 10.96 0.199 

Linear 
Regression 

287.78 16.96 12.43 0.278 

ARMA 256.31 16.00 13.49 0.443 

 
Furthermore, the weekend and weekday data are considered, 

separately. The population of taxis on weekends is higher than 
weekdays. From Sunday to Monday, it shows a downward trend 
while upward trend is seen after that time. Furthermore, it tends 
to increase from 5am to 8pm during a day and it is decreasing 
after midnight. 

Figs. 14-15 demonstrate the weekends and weekdays 
predictions by PROPHET for Two Bridges/Seward Park, 
respectively. The black points in the figures are the actual yellow 
taxis data and the blue line is the prediction curve of taxi 
population in related zone. One year data is used in training 
group and last 90 days are predicted. In these graphs, “ds” 
indicate the related date-time while “y” shows the number of 
yellow taxis. 

In this study, linear regression and Autoregressive Moving 
Average (ARMA) models are used as benchmark for evaluating 
the performance of Facebook Prophet Algorithm based on out-
of-sample forecast procedure using error measurements. 
Forecasted values are compared with actual data and standard 
indices which are mean squared error (MSE), root mean square 
error (RMSE), mean absolute error (MAE) and mean absolute 
percentage error (MAPE) are measured as indicated in Table I. 

It is worth underlying that the RMSE and MAE values are 
quite high for all three models due to predicted number of yellow 
taxis. If the model is dealing with big numbers in dataset, then 
these RMSE and MAE prone to become bigger. On the contrary, 
small numbers pave the way for obtaining these mentioned 
indices as small. Since the yearly, monthly and daily seasonality 
as well as holidays are considered in Prophet Algorithm, it gave 
better results against to linear regression and ARMA. 

In order to normalize and make it less impacted by whether the 
actual data is big or small, MAPE is used in this situation. The 
smaller MAPE indicates that forecast methodology gives better 
results. Therefore, it can be indicated that Prophet algorithm is 
advantageous compared to other techniques in forecasting the 
number of vehicles. 
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Fig. 16. The modified version of the IEEE-33 bus test feeder [34].  

1) Step 2: Critical Load Restoration During Emergency 

Conditions 

The number of available sockets is the main constraint of the 
proposed scheme that can certainly affect the number of EVs 
used in on-call service. The great amount of load curtailment can 
be prevented if and only if adequate number of sockets is 
available for directing EVs to the system. 1'� level critical loads 
are firstly supplied in the feeder and after the other loads at 
following feeders in radial distribution system when the line is 
damaged due to a HILP event. After, 2%� and 3*� level loads are 
fed sequentially, and non-critical loads can also be supplied if 
discharging power of arrived EVs is enough.  

To investigate the capability of the developed stochastic 
programming-based algorithm, it is applied to the modified 
version of the IEEE-33 bus radial distribution system [34] as 
demonstrated in Fig. 16. Rated voltage of the related 
architecture is 12.66 kV. Loads with different priorities are 
randomly located into the buses. The main assumption is that the 
buses 	�, 	tt,  	t�, 	A� and 	A� have EV connection points 
including 15, 25, 10, 25 and 35 available sockets, respectively.  

The supplemental resources are dispatched in the distribution 
system an immediate fashion after receiving signal from fleet 
operator from two staging places. These places can 
accommodate 150 and 200 EVs in their normal routine, 
respectively. As can be seen in Fig. 17, the test system is divided 
into three different seismic zones. The degree of ground shaking 
in the studied area during an extreme shock is quantified by the 
applied global AR model proposed in [18]. The generated AR 
equation based on multiple regression analysis is expressed in 
(38) as a function of hypo-central distance in rock site and 
moment magnitude. 

logD��}F = 0.3646 + 0.4215J − 0.0187JA
− 0.9707 logD�F − 0.0008D�F 

(38) 

It is to be highlighted that the presented model can be 
implemented in any region of the world which helps to perform 
seismic hazard analysis especially if an earthquake catalog is not 
available for that region. The vulnerability level of overhead 
distribution line sections due to a direct effect of an earthquake 
is mainly diagnosed with creating a high number of scenarios 
i.e., 100,000 for predefined each zona by MCS technique. 

It is assumed that maximum hypocenter distance intervals for 
Zone #1, Zone #2, and Zone #3 are 220 �^ < �t < 230 �^, 200 �^ < �A < 220 �^ and 170 �^ < �� < 200 �^, 
respectively. On the other hand, the earthquake magnitude is 
specified between 6.0 to 6.5 for all generated scenarios via the 
MCS engine. Accordingly, 100,000 potential PGA for only 
Zone #1 is graphically illustrated in Fig. 18 due to page 
limitation. Besides, the status of branches following a seismic 
shock in terms of vulnerability is quantified and indicated in 
Table II. In this subsection, we take into consideration the 
damaged location and event occurrence time as a scenario-based 
stochastic approach based on probability theory declares 
whether an event occurred or not [35]. Stochastic modeling is a 
widely used method and it is very effective in capturing the 
dynamic characteristics of uncertainties. In the existing 
literature, probability density function or equal probability are 
utilized during the simulation of the model. According to the 
obtained results, scenarios are created considering the 
unavailability conditions of branches. The most important 
parameter while identifying the damaged location is to diagnose 
the fragility level of line sections. 

 
Fig. 17. IEEE-33 bus test system divided into seismic zones. 
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Fig. 18. Generated scenarios for PGA estimation in Zone 1. 

TABLE II 
UNAVAILABILITY OF DISTRIBUTION BRANCHES DUE TO SEISMIC SHOCK 

Branch a%�' Branch a%�' Branch a%�' �t 0.01432 �tA 0.01496 �A� 0.01330 �A 0.01289 �t� 0.03325 �A� 0.02161 �� 0.01995 �t� 0.02826 �A� 0.03325 �� 0.00831 �t� 0.00665 �A� 0.02161 �� 0.02161 �t� 0.01995 �A� 0.01829 �� 0.03159 �t� 0.01496 �A� 0.01164 �� 0.01164 �t� 0.02660 �A� 0.01995 �� 0.02826 �t� 0.01575 ��� 0.03325 �� 0.01662 �A� 0.01003 ��t 0.02992 �t� 0.01330 �At 0.01575 ��A 0.01662 �tt 0.02660 �AA 0.02435   

 
Four different scenarios for damaged location and event 

occurrence time are considered to address the uncertainties 
caused by the seismic event as stated in Table III. It should be 
underlined that most risky branches which present low 
accessibility following an earthquake based on the 
abovementioned calculations are selected in this manner.  

After combining the damaged location (called as "t − "�) and 
event occurrence time scenarios (called as 3t − 3�), 16 different 
scenarios are obtained in order to get accurate results which 
reflect the stochastic programming nature of the system as 
shown in Table IⅤ. Scenario numbers and selection of the 
representative scenario are a substantial issue in a stochastic 
programming context. It should be reminded that the proposed 
methodology is appropriate for applying the desired number of 
scenarios. The load restoration in percentage for Scenario 1 to 8 
and Scenario 9 to 16 is graphically represented in Fig. 19 (a) and 
(b), respectively. For the first scenario, load restoration reduces 
from 100% to 45.92% at 10:00 as can be deduced from the 
related figure. Although a great portion of the distribution 
system becomes unavailable at this period, load restoration rate 
did not decrease dramatically due primarily to integrated diesel 
generators at 	�� and 	t�. Similarly, it reaches its minimum value 
at 14:00, 18:00, and 22:00 for Scenarios 2 to 4 sequentially.  

On the other hand, 79.13% of the load demand cannot be 
supplied by any source (e.g., upstream grid, EV, or diesel 
generator) in Scenario 5 to 8 following a seismic shock. 
However, the system performance starts to be improved thanks 
to deploying restorative actions step by step and more than 80% 
of the demand location of interest can be served. It should be 
underlined that damages in the line sections continue, i.e., the 
clearing process is not completed by the crews.  

TABLE III 
SCENARIOS OF DAMAGED BRANCHES AND EVENT OCCURRENCE TIME 

 �� �� �� �� 
Damaged 
branches 

�A�, ���, �t� �A�, ���, ��t,��, �t�, �AA, ��, �t� �t�, �tt 

  �  �  �  � 
Event 

occurrence 
time 

10:00 14:00 18:00 22:00 

Duration [h] 4 4 4 1,75 

TABLE IⅤ 
CREATED SCENARIOS FOR CASE STUDIES 

Time↓ 

/Location→ 
�� �� �� �� 

 � Scenario 1 Scenario 5 Scenario 9 Scenario 13  � Scenario 2 Scenario 6 Scenario 10 Scenario 14  � Scenario 3 Scenario 7 Scenario 11 Scenario 15  � Scenario 4 Scenario 8 Scenario 12 Scenario 16 

 

 

 
Fig. 19. Load restoration results for all scenarios (a) from Scenario 1 to 8 during 
simulation (b) from Scenario 9 to 16 during simulation.   

 
Before a critical HILP disturbance, the power system can be 

operated in reliable fashion. Namely, injected power from the 
upstream grid could meet the complete system demand. After an 
event occurrence time, load restoration is boosted substantially 
by exploiting the remarkable potential of V2G which offers an 
improved power system resiliency. It is seen that 100% of the 
demand is fully satisfied for Scenarios 9-16 during a simulation 
except for the period of the event. 

Fig. 20 presents the output power of diesel generators placed 
at 	�� and 	t� for Scenario 1 to 4 and their contribution to 
supplying the demand in formed islands. Since the amount of 
load requirement to be served by the generator connected to the 	�� is relatively higher than the 	t�, the distinct difference occurs 
between the provided power of the integrated sources as can be 
deduced from the figure. It reaches its peak value for 3� 
depending strongly on the power demand of buses in the 
islanded area. The most significant conclusion to be extracted 
from this analysis is that diesel generators also help to increase 
power system resiliency, especially during an emergency 
condition when encountered with unintentional islanding. 
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Fig. 20. The output power of diesel generators for Scenario 1 to 4 with load 
restoration rate.   

 
The fleet output power on buses that have connection points 

for several scenarios is graphically demonstrated in Fig. 21. In 
Scenario 1, demanded power of the 	A� and subsequent buses is 
met by 31 EVs while after a period of the HILP disturbance for 
boosting survivability of the critical loads. Although a high 
number of on-call services are connected to the stations, the load 
restoration did not reach the 100% level due mainly to the 
available socket number. It is changing from 45.92% to 90.07%, 
i.e., the load of 	A� and 	�� buses are not matched by V2G option 
in some periods. The non-critical loads at mentioned buses are 
not satisfied which has lowest priority coefficients and no more 
vehicles are called just meet these load demand as expected. 4�¡ 
level critical loads placed at 	A� and 	�� reach their maximum 
value from 10:00 to 14:00, and therefore procured power from 
on-call services is not becoming enough.  

On the other hand, full load restoration thanks to managing 
EV fleets is performed for Scenarios 9 to 16 due to the relatively 
low power demand of damaged zones. Discharging power 
output is matched by demanded power of 	tt and 	A� and as well 
as their subsequent buses. The power balance of bus 	A� 
including served demand of consecutive buses (i.e., 	A� to 	��), 
power losses occurred in the branches from �A� up to ��A, the 
provided power from the diesel generator and as well as total 
energy resource (means total SoE level of directed on-call EV 
services at the beginning of the scenario) and discharging power 
during emergency condition is illustrated in Fig. 22.  

The upstream grid is capable of supplying the demanded 
power of the loads without interruption in pre-event and post-
event timeframes. However, there occurs a disruption at 10:00 
for the scenario of interest and supplementary resources are 
activated concerning resiliency enhancement strategies.  

 

Fig. 21. Fleet discharging results for buses for Scenarios 1, 5, 9, 13.  

Fig. 22. The power balance of bus 	A� for Scenario 5. 

At 10:00, a great portion of loads in the formed island 
experiences a power outage from the main grid except 	�A and 	�� as can be deduced from the related figure. They are supplied 
by the diesel generator until clearing the damaged in line 
sections ��� and ��t. When the specific time of the day such as 
from 10:00 to 14:00 is examined in detail, it is observed that on-
call EV service output is aligning with the total demand of 
related buses and as well as power losses in the branches.  

On the other hand, available SoE capacity tends to reduce due 
primarily to this dynamic component’s discharging periods 
determined by the proposed optimal decision-making algorithm. 
The comprehensive results show that the optimization-based 
strategy performs properly as expected, indicating the accuracy 
of the presented scheme. Also, the dynamic characteristics of 
load pattern and uncertain nature of HILP event can be captured 
thanks to conducting stochastic-based model with respect to 
resiliency concept. Managing mobile and static emergency 
resources contributes to increasing system performance as 
indicated in obtained optimal results.  

The variation of the injected power from the upstream grid is 
demonstrated in Fig. 23 to simplify the interpretation of the 
results for the considered 16 scenarios. Box-whiskers are 
commonly used in the literature so as to show the distribution of 
the data set. The line in the middle of the boxes states the median 
of the drawn power for all scenarios of interest during 
simulation. The median divides the data into two parts namely, 
first and third quartiles. Lastly, whiskers show the maximum 
and minimum power values with the end of the vertical lines. 

As an example, the transferred power varies between 88.26 
kW to 473.145 kW; 25% of the data is greater than 473.145 kW 
while 25% of the data is lower than 398. 583 kW at 11:00 
considering all possibilities.  

 
Fig. 23. The variations of the drawn power from the upstream grid for all 
scenarios.  
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Since any disruption is not the issue until 10:00, the amount 
of drawn power for all scenarios is the same at the corresponding 
time of the day as can be seen in the related graph. From the 
other perspective, the deviation in procured power for 
considered scenarios becomes evident at 20:00. The differences 
between maximum and minimum values of transferred power 
become clear especially for the scenarios considering 3t and 3A. 
The reason for high deviations can be explained that the highest 
load demand of the distribution system (from 	A� to 	��) is fully 
curtailed in some scenarios and this enables to reach supplied 
power at the minimum point. 

Table V encapsulates the 16 scenarios assessed in this study 
by considering the unavailability of overhead distribution 
branches following a seismic event. According to the results, 
load restoration of damaged locations becomes 93.13% in 
Scenario 1, and it is evident that if such a scheme was not 
implemented, the loss of load rate would be very high. On-call 
EV services operate in V2G mode for matching the 1074.840 
kWh demand of critical loads with high priority.  

On the other hand, relatively load restoration after an 
interruption emerges in Scenarios 5 to 8 when comparing the 
other considered scenarios. The main reason behind this is that 
the highest demanded power cannot be fully matched either 
diesel generator or EV services due to the inaccessibility of the ��t branch. Since the demanded load is met by 100% except the 
beginning of the event, the restoration rate has reached more 
than 92% for Scenarios 13 to 15.From the results, it can be seen 
that the proposed scheme has an efficient performance in terms 
of boosting power system resiliency. 

Note that, obtaining approximately 95% restoration does not 
only show superiority of using scenario-based stochastic 
approach, but also indicates that this value can be even increased 
considering a larger distribution system integrating with more 
emergency resources. Besides, 16 potential scenarios enable to 
obtain more realistic system scheduling. Moreover, the 
decisions are more accurate and closer to what can be 
realistically expected in practical implementations. If this kind 
of framework had not been presented, total loss of load would 
have been 100% and all critical loads would have been curtailed 
in low resilient power system. 

 
TABLE V 

RESULTS OF THE EVALUATED SCENARIOS STOCHASTIC BASED ANALYSES 

 Probability 
Total demand 

during an 
event [kWh] 

Supplied 
energy by 

EVs [kWh] 

Load 
restoration [%] 

Scenario 1 0.097376 1154.065 1074.840 93.13 

Scenario 2 0.288184 724.345 672.906 92.89 

Scenario 3 0.079735 1045.080 994.112 95.12 

Scenario 4 0.129586 341.898 294.362 86.09 

Scenario 5 0.056531 1333.524 1074.840 80.60 

Scenario 6 0.067179 878.878 672.906 76.56 

Scenario 7 0.054959 1236.438 994.113 80.40 

Scenario 8 0.050131 409.747 294.363 71.84 

Scenario 9 0.028149 386.578 363.070 93.91 

Scenario 10 0.034277 273.053 253.702 92.91 

Scenario 11 0.025058 415.872 396.239 95.27 

Scenario 12 0.032575 142.025 121.725 85.70 

Scenario 13 0.009734 461.298 433.101 93.88 

Scenario 14 0.006889 318.796 295.986 92.84 

Scenario 15 0.019377 497.490 474.218 95.32 

Scenario 16 0.020262 169.837 145.748 85.81 

V.  CONCLUSION AND FUTURE WORK 

In this paper, a resiliency-driven multi-step critical load 
restoration strategy for distribution system integrating on-call 
EVs under fleet operator framework ahead an HILP event was 
proposed. The main objective of the presented model was to 
maximize the cumulated service time for loads, weighted by 
their priority, with the minimum number of EVs. In the first step, 
the random nature of the seismic event was handled by creating 
a high number of hazard scenarios via MCS method. Then, the 
failure probabilities of the overhead distribution branches after 
an extreme event were determined within the fragility curve 
concept. In the second step, the location and the number of EVs 
in the related zone were forecasted by performing learning-
based analyses for capturing mobility-based uncertainties of 
EVs using the PROPHET algorithm, considering daily, weekly 
and yearly seasonality, as well as holiday effects. Finally, MILP-
based optimal restoration plan was performed on IEEE-33-bus 
test feeders for clearly illustrating the capabilities of the model 
in the PuLP 1.6.8 open-source library of Python 2.7 version, 
solved by the CPLEX solver by using the obtained input 
parameters. The stochasticity regarding the damaged location 
and event occurrence time was taken into consideration in the 
scenario-based stochastic model for capturing the inherent 
uncertainties. Numerical results proved the effectiveness of the 
proposed framework. The outage scale and duration of critical 
and even non-critical loads after an event were reduced 
substantially due to the optimal dispatching of EVs. The load 
restoration was increased at least 71.84%, at most 95.32%, 
depending on the available socket number, available number of 
EVs, the event occurrence time and location. However, if the 
algorithm had not been implemented, it is clear that the total loss 
of load would have been 100% during an emergency condition 
and the distribution system would have been operated in a low 
resilient fashion. Furthermore, for facilitating the real-world 
implementation of such concepts, interfaces for three 
stakeholders were developed in the Python Kivy framework and 
presented in detail. Integrating the transportation system 
constraints into the proposed concept can be considered as a 
future direction. 
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