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Abstract—Consumption patterns of electric power systems are 

important for distribution companies, because of their significant 
impact on energy losses amount. Therefore, some incentives are 
suggested by distribution companies to energy consumers for 
correcting their consumption manner. For a specific load pattern, 
distribution system reconfiguration (DSR) is an effective way to 
mitigate energy losses. Hence, some research works have included 
load variations in the DSR problem to show the importance of 
consumption patterns in reconfiguration decisions. However, 
some of the specialized literature has ignored load changes in their 
reconfiguration models due to the high computational burden and 
processing time. On the other hand, the energy losses are 
calculated inaccurately if the consumption pattern is neglected. 
Consequently, the main goal of this paper is to investigate load 
pattern impact on switching sequences to find out how much is 
load profile important for minimization of energy losses in DSR. 
The evaluations were carried out for three well-known 
distribution systems using a classic optimization tool, the  
A Mathematical Programming Language (AMPL). 
 

Index Terms—Consumption pattern, distribution network, 
reconfiguration, efficient mathematical model, energy losses.  

I.  INTRODUCTION 
Distribution system is one of the essential power network 
components [1]–[6] that plays an important role in power 
delivery [7], [8]. However, converting part of the distributed 
power to heat energy [9] can affect the operational costs and 
voltage profile. Hence, the reduction of power distribution 
losses is important for network users and operators [10]. 

One of the effective methods to decrease the energy losses is 
distribution system reconfiguration (DSR), where the topology 
of the network is changed by opening sectional switches and 
closing tie lines to find a suitable radial topology for providing 
the power demand of consumers [11]. In DSR, not only the 
minimization of power losses is important [12], but also voltage 
deviation, network adequacy [13]–[15], network stability [16], 
network reliability [17], [18], lines loading [19], [20], 
maintenance [21], load unbalances, renewable generation costs 
[22] and system restoration [23] can be optimized. 

Many studies have been conducted on DSR with the aim of 
power losses reduction since 1975. In some of these studies, DC 
[24], AC [25], Newton [26], OPF [27], radial [28], simplified 
[29], and linearized [30]–[32] power flow methods have been 
applied to solve the DSR problem. In some of them, loss change 
estimation [33], network partitioning [34], [35], and Benders 
decomposition [36] strategies are suggested to formulate the 
problem. Also, in some others, linear [37], non-linear [38], 
integer [39], [40], and binary [41] programming models are 
proposed for DSR formulation. However, power demand 
changes have not been studied in all of these research works. 
To precisely calculate the energy losses, the demand variations 
have been included in the DSR problem by some specialized 
literature. Also, some studies considered load variations to 
determine real optimal reconfiguration plans.  

Using actual variable load instead of a fix demand causes 
losses to be calculated correctly in static DSR, in which network 
configuration is determined at the beginning of the operation 
period. Also, power demand fluctuations lead to a change in 
reconfiguration plans in dynamic DSR, where distribution 
system topology is upgraded during the operation period based 
on load levels. Some research works claim that load variations 
affect reconfiguration plans in static DSR. However, 
considering load changes in reconfiguration models increases 
computational burden and time. In [42], power losses of the 
distribution system were minimized via network 
reconfiguration, while the load pattern was categorized as four 
levels and the load level of each bus was predicted by an 
artificial neural network (ANN). However, the efficiency of the 
proposed algorithm is reduced by choosing an improper 
training set for ANN. To resolve this issue, a clustering 
technique was employed in [43] to determine the best training 
set of ANN. Although the results of [42] and [43] confirmed 
that the distribution system topology changed with the load 
level in multi-stage (dynamic) reconfiguration problems, the 
reconfiguration plan dependency on load profile in static DSR 
was not addressed in [42] and [43].  
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Although the new strategy used in [43] improved the 
performance of ANN, clustering the loads based on their values 
without considering their locations can reduce the precision of 
the solution method. In [44], the daily load profile was 
considered for the minimization of losses cost and shunt 
capacitors investment in a simultaneous DSR and capacitor 
allocation problem. Actual demand was estimated by four load 
levels to improve the computational efforts of the algorithm. 
However, this estimation considerably decreased the  
accuracy of the calculations, because imprecise comparison of 
losses cost with capacitor investment affects the optimal place 
and number of capacitor banks and subsequent reconfiguration 
plans.  

In [45], seasonal power demand was considered for the 
minimization of the losses and switching costs in network 
reconfiguration problems when distributed generation (DG) 
resources are utilized. Despite the demonstration of significant 
DG contribution in energy losses reduction, the obtained results 
are not accurate, because DG investment and operational costs 
have been ignored in the problem formulation. In [46], annual 
investment return was maximized through network 
reconfiguration considering weekly and seasonal load profiles. 
The investment return points to cost-savings due to loss 
reduction, communication equipment installation, and remote 
control switches maintenance. The results show that automatic 
switches save a large amount of investment by dynamically 
reconfiguring distribution systems. Load variations had to be 
considered in the problem formulation of [46] even if the 
computation burden and processing time increased because the 
problem is dynamic and the losses cost has been optimized in 
addition to other operational expenses. 

Finally, in [47] and [48], the daily load profile was 
considered in the minimization of energy losses cost using an 
artificial immune system (AIS). The authors have shown that 
power demand variations affect the reconfiguration plans in 
static applications. Indeed, the configurations proposed by most 
of the previous studies have not included the load profile in their 
calculations. Consequently, an accurate evaluation of 
consumption pattern effect on reconfiguration decisions is 
necessary to determine if load variations are effective, so 
consumption patterns must be considered even for the 
minimization of power losses in the static reconfiguration 
studies. 

Thus, the present paper comprehensively evaluates the load 
profile impact on distribution network reconfiguration using 
different consumption patterns and their combinations.  
The load variations manner is suitably formulated by different 
hourly load profiles in a mixed-integer conic programming 
(MICLP) problem using A Mathematical Programming 
Language (AMPL). The proposed model is thoroughly tested 
on three distribution systems using CPLEX solver in AMPL, 
which is a powerful optimization tool for engineering 
applications. 

II.  LOAD PATTERNS 
Fig. 1 shows different consumption patterns for a 

distribution system during an operation period of 24 h. In these 
profiles, the vertical axis represents the power demand as a 
percentage of the system peak load.  

 
Fig. 1.  Load patterns. 

 
In static reconfiguration, usually, power demand of the 

distribution system is assumed to be fixed for the whole 
operation period to avoid high computational burden and efforts. 
On the other hand, power losses cannot be calculated accurately 
if load demand is not considered to be variable. This is a 
challenging problem for distribution system operators because 
considering the load profile in reconfiguration calculations 
increases the computational burden and ignoring it reduces 
computational accuracy. On the other side, [47] and [48] show 
that load patterns and changes impact reconfiguration plans and 
must be considered in DSR.  

Accordingly, in this paper, the impacts of consumption 
patterns of Fig. 1 on the DSR problem are studied. Load 
patterns 2 to 4 have been adopted from [47], while consumption 
pattern 1 has been generated by the authors.  

III.  MATHEMATICAL RECONFIGURATION MODEL 
CONSIDERING LOAD PATTERN 

Aiming for the minimization of energy losses cost (CLoss), 
the desired DSR problem that includes the load patterns of  
Fig. 1 can be described by the following equations [48]. 
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 (6) 

 (7) 

 (8) 

 (9) 

where Ωl and Ωb are set of distribution lines and buses, 
respectively. CL(t) is the cost per unit of energy losses at time t. 
Pij(t) and Qij(t) are the active and reactive power flows of line ij 
at time t, respectively. Rij is the resistance and Xij is the reactance 
of line ij. PiS(t), QiS(t), PiD(t), and QiD(t) are active and reactive 
powers of substation and demand on bus i at time t, 
respectively.│Iij(t)│and Iijmax are the current magnitudes of line 
ij at time t and its maximum value. │Vi (t)│, Vmax, and Vmin are 
the voltage magnitude of bus i at time t and its maximum and 
minimum amounts, respectively, and bij(t) is a variable 
representing the Kirchhoff’s voltage law (KVL) in the loop 
formed by line ij at time t. Also, yij is a binary variable for the 
switch status of line ij (0 for open and 1 for closed switches). 

Equations (2) and (3) express nodal active and reactive 
power balances at time t (Kirchhoff’s current law, KCL). 
Equation (4) describes the net summation of voltage drops of 
all lines in a planar loop, which has to be equal to zero (KVL) 
at each time. In this equation, bij(t) will be zero, when the switch 
of line ij is closed at time t (KVL must be established) and will 
be a real number for open switches (KVL is not necessary). 
Also, (5) shows the relationship between line power flow and 
its active and reactive components. Equation (6) indicates the 
radiality constraint. Thus, the total number of lines under 
operation (total number of closed switches) has to be equal to 
the total number of buses minus one (according to graph theory). 
Constraints (7) and (8) represent voltage and current limits, 
respectively. Eq. (9) makes sure that the value of bij (t) will be 
zero, if the switch of line ij is closed (yij=1) and a real number 
between V2max–V2min and V2min–V2max when the corresponding 
line is disconnected (yij=0).  

To convert the above-mentioned non-linear programming 
model to a convex mixed-integer non-linear optimization 
problem that can be accurately solved by linear commercial 
solvers in an acceptable computation time, (1) to (9) are modified 
as follows. 

 (10) 

subject to: 

 (11) 

 (12) 

 (13) 

 
(14) 

 
(15) 

 
(16) 

 
(17) 

 (18) 

 (19) 

 (20) 

 (21) 

 (22) 

 (23) 

 (24) 

 (25) 

where Iijsqr(h) and Visqr(h) are the square of branch current and 
bus voltage magnitudes in hour h, respectively. Also, Ωs is the 
set of substation buses, Pij(h) and Qij(h) are hourly active and 
reactive power flows of line ij, respectively, and ꞵij is the binary 
variable to show the direction of power flow in line ij. Equations 
(14) to (17) guarantee network radiality and connectivity in 
large distribution systems. Equation (16) indicates that if the 
start bus of a distribution line is connected to a substation, ꞵij 
will be zero; ꞵji is a binary number. If the end bus of the 
corresponding line is connected to the substation, ꞵji is zero; ꞵij 
is a binary number. In this case, distribution lines can be 
connected to the substation bus according to the values selected 
for variables ꞵij and ꞵji. Also, (22) and (23) describe active and 
reactive power flow limits for each line. Although constraints 
(19) and (20) provide these conditions, (22) and (23) improve 
the computation time and accuracy of the solutions. Moreover, 
(24) imposes that at least one branch has to be connected to 
every bus. It means that topologies with isolated buses are 
ignored during reconfiguration, which in fact reduces the search 
space of the solution algorithm significantly. Finally, (25) 
indicates that the total number of closed switches should be 
equal to the difference of the total number of nodes with 
substation buses. 
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IV.  SIMULATION RESULTS 
To have an accurate evaluation of consumption pattern role 

in distribution network reconfiguration, the proposed model 
was tested on 33-bus [28], 84-bus [50], and 136-bus [51] 
distribution systems with single-line diagrams of Figs 2 to 4 
using CPLEX in AMPL.  

The per unit energy losses costs of [47] were chosen 
according to Table I. The same load levels used in [47] were 
selected as load patterns in Table I.  

The peak load of each bus should be multiplied by the hourly 
demand percentage to obtain the load levels of the 
corresponding bus in each hour. The results of the proposed 
model, such as network configuration (open switches), daily 
energy losses cost ($), and computation time (s) are listed in 
Tables II to XIV for all test systems. According to [47], it is 
assumed that 60%, 25%, and 15% of the consumers have load 
patterns 2 to 4, respectively. Load patterns 2 to 4 are related to 
residential, commercial, and industrial load profiles, as 
mentioned in [47]. 

It should be noted that the selection of the type of consumer 
at each node has been done randomly in [47], assuming that 60% 
of the consumers are residential, 25% are commercial, and 15% 
are industrial. In this paper, the same load profile combination 
(60% of consumers have load pattern 2, 25% of them have load 
pattern 3, and 15% have load pattern 4) and per unit energy 
losses costs as [47] are used without random assignment of load 
patterns. The load assignment is not the main topic of the 
present paper, but the proposed model was tested on example 
networks with two different load profile combinations. 

From Tables II, III and IV, it can be seen that the proposed 
approach and models presented in [47] and [48] suggest the 
same optimal configurations for a fix load amount and reduce 
the energy losses cost-efficiently after reconfiguration, in which 
the peak load has been considered as a fixed demand during the 
whole operation period.  

According to these tables, losses costs are reduced by 31% 
for the 33-bus test system and by 12% for 84-bus and 136-bus 
distribution networks.   

 
 

 
 

Fig. 2.  33-bus test system. 
 

TABLE I 
DATA OF LOAD PATTERNS AND COSTS PER UNIT OF ENERGY LOSSES 

 

Hour 
 Demand Percentage of Load Patterns (%)  Cost 

($/kWh)  1  2  3  4  
1  35  36  28.38  6.25  0.065 
2  29  26  29.73  10  0.065 
3  28  24  28.38  7.5  0.065 
4  27  22  31.08  11.88  0.065 
5  27  24  29.38  10  0.065 
6  30  42  33.78  8.75  0.065 
7  42  54  40.54  13.75  0.11 
8  60  56  52.7  38.75  0.11 
9  62  54  72.97  74.38  0.11 

10  57  58  83.11  76.25  0.11 
11  52  43  100  90  0.11 
12  51  48  95.95  100  0.11 
13  54  58  93.24  61.88  0.11 
14  52  52  95.95  68.75  0.11 
15  51  41  97.3  78.75  0.13 
16  55  46  95.95  76.25  0.13 
17  68  42  97.3  81.25  0.13 
18  92  49  91.89  87.5  0.13 
19  100  79  78.38  61.88  0.15 
20  93  98.4  71.62  35.63  0.15 
21  86  97  66.22  23.75  0.15 
22  79  100  58.11  12.5  0.065 
23  69  54  50  11.88  0.065 
24  49  42  32.29  8.32  0.065 

 
TABLE II 

RECONFIGURATION RESULTS OF 33-BUS TEST SYSTEM FOR FIXED LOAD 
 

Model  Configuration Energy Losses Cost ($) 

Proposed  

Before 
Reconfiguration 33,34,35,36,37 493.5 

After 
Reconfiguration 7,9,14,32,37 339.8 

[47] 

Before 
Reconfiguration 33,34,35,36,37 493.5 

After 
Reconfiguration 7,9,14,32,37 339.8 

[48] 

Before 
Reconfiguration 33,34,35,36,37 493.5 

After 
Reconfiguration 7,9,14,32,37 339.8 

 
TABLE III 

RECONFIGURATION RESULTS OF REAL 84-BUS DISTRIBUTION NETWORK FOR 
FIXED LOAD 

 
Model  Configuration Energy Losses 

Cost ($) 

Proposed  

Before 
Reconfiguration 

84,85,86,87,88,89,90,
91,92,93,94,95,96 1295.45 

After 
Reconfiguration 

7,13,34,39,42,55,62, 
72,83,86, 89,90,92 1144.15 

[47] 

Before 
Reconfiguration 

84,85,86,87,88,89,90, 
91,92,93,94,95,96 1295.45 

After 
Reconfiguration 

7,13,34,39,42,55,62, 
72,83,86, 89,90,92 1144.15 

[48] 

Before 
Reconfiguration 

84,85,86,87,88,89,90, 
91,92,93,94,95,96 1295.45 

After 
Reconfiguration 

7,13,34,39,42,55,62, 
72,83,86, 89,90,92 1144.15 
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Fig. 3.  84-bus distribution system. 

 
 

TABLE IV 
RECONFIGURATION RESULTS OF ACTUAL 136-BUS DISTRIBUTION NETWORK FOR FIXED LOAD 

 

Model  Configuration Energy Losses Cost ($) 

Proposed  

Before 
Reconfiguration 

136,137,138,139,140,141,142,143, 
144,145,146,147,148,149,150,151, 

152,153, 154,155,156 
780.1 

After 
Reconfiguration 

7,35,51,90, 96,106,118, 
126,135,137,138,141,142, 

144,145,146,147,148, 150,151,155 
682.3 

[47] 

Before 
Reconfiguration 

136,137,138,139,140,141,142,143, 
144,145,146,147,148,149,150,151, 

152,153, 154,155,156 
780.1 

After 
Reconfiguration 

7,38,51,54,84,90,96,106,118, 
126,135,137,138,141,144,145, 

147,148,150,151,155 
682.3 

[48] 

Before 
Reconfiguration 

136,137,138,139,140,141,142,143, 
144,145,146,147,148,149,150,151, 

152,153, 154,155,156 
780.1 

After 
Reconfiguration 

7,38,51,54,84,90,96,106,118, 
126,135,137,138,141,144,145, 

147,148,150,151,155 
682.3 
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Fig. 4.  136-bus distribution system [51].
 

The consumption pattern of each load point is achieved by 
multiplying the weighted sum of load patterns 2 to 4 by the peak 
load of the corresponding bus. In simple terms, summation of 
load patterns 2 to 4 with weighted factors 0.6, 0.25, and 0.15 for 
load combination 1 or 0.15, 0.25, and 0.6 for load combination 
2, respectively, are multiplied by the peak load of each bus.  

Moreover, Tables V to VII indicate that the proposed model 
can find better configurations with fewer power losses than 
those of [47] and [48] when different load patterns are 
considered instead of a fixed load amount.  

 
TABLE V 

RECONFIGURATION RESULTS OF 33-BUS TEST SYSTEM FOR THE LOAD 
COMBINATION 1 AT EACH BUS: 60% OF CONSUMERS WITH LOAD PATTERN 2, 

25% WITH LOAD PATTERN 3, AND 15% WITH LOAD PATTERN 4 
 

Model  Configuration 
Energy 

Losses Cost 
($) 

Proposed 

Before 
Reconfiguration 33,34,35,36,37 175.6 

After 
Reconfiguration 7,9,14,32,37 123.1 

[47] 

Before 
Reconfiguration 33,34,35,36,37 175.6 

After 
Reconfiguration 7,9,14,28,32 128.8 

[48] 

Before 
Reconfiguration 33,34,35,36,37 175.6 

After 
Reconfiguration 7,9,14,28,32 128.8 

In other terms, the radial topologies suggested by the 
proposed model cause more cost savings than the 
configurations presented in [47] and [48].   

Comparing the results of Tables V to VII with those of 
Tables II to IV, respectively, explain that considering 
consumption patterns in the reconfiguration of distribution 
systems reduces the cost of energy losses significantly but it 
cannot change the network configuration (reconfiguration 
plans).  

 
 

TABLE VI 
RECONFIGURATION RESULTS OF 84-BUS DISTRIBUTION NETWORK FOR THE 

LOAD COMBINATION 1 AT EACH BUS: 60% OF CONSUMERS WITH LOAD 
PATTERN 2, 25% WITH LOAD PATTERN 3, AND 15% WITH LOAD PATTERN 4 

 

Model  Configuration 
Energy 

Losses Cost 
($) 

Proposed  

Before 
Reconfiguration 

84,85,86,87.88.89,90, 
91,92,93,94,95,96 470.1 

After 
Reconfiguration 

7,13,34,39,42,55,62, 
72,83,86,89,90,92 417.6 

[47] 

Before 
Reconfiguration 

84,85,86,87.88.89,90, 
91,92,93,94,95,96 470.1 

After 
Reconfiguration 

7,34,39,63,72,83,84, 
86,88,89,90,92,95 418.2 

[48] 

Before 
Reconfiguration 

84,85,86,87.88.89, 90, 
91,92,93,94,95,96 470.1 

After 
Reconfiguration 

7,34,39,63,72,83,84, 
86,88,89,90,92,95 418.2 
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TABLE VII 
RECONFIGURATION RESULTS OF 136-BUS DISTRIBUTION NETWORK FOR THE 

LOAD COMBINATION 1 AT EACH BUS: 60% OF CONSUMERS WITH LOAD 
PATTERN 2, 25% WITH LOAD PATTERN 3, AND 15% WITH LOAD PATTERN 4 

 
Model  Configuration Energy Losses 

Cost ($) 

Proposed  

Before 
Reconfiguration 

136,137,138,139, 
140,141,142,143, 
144,145,146,147, 
148,149,150,151, 
152,153,154,155, 

156 

284.1 

After 
Reconfiguration 

7,35,51,90,96,106, 
118,126,135,137, 
138,141,142,144, 
145,146,147,148, 

150,151,155 

250.23 

[47] 

Before 
Reconfiguration 

136,137,138,139, 
140,141,142,143, 
144,145,146,147, 
148,149,150,151, 
152,153,154,155, 

156 

284.1 

After 
Reconfiguration 

7,38,51,54,84,90, 
96,106,118,126, 

135,137,138,141, 
144,145,147,148, 

150,151,155 

250.41 

[48] 

Before 
Reconfiguration 

136,137,138,139, 
140,141,142,143, 
144,145,146,147, 
148,149,150,151, 
152,153,154,155, 

156 

284.1 

After 
Reconfiguration 

7,38,51,54,84,90, 
96,106,118,126, 

135,137,138,141, 
144,145,147,148, 

150,151,155 

250.41 

 
TABLE VIII 

RECONFIGURATION RESULTS OF 33-BUS TEST SYSTEM FOR THE LOAD 
COMBINATION 2 AT EACH BUS: 15% OF CONSUMERS WITH LOAD PATTERN 2, 

25% WITH LOAD PATTERN 3, AND 60% WITH LOAD PATTERN 4 
 

Model  Configuration Energy Losses 
Cost ($) 

Proposed 

Before 
Reconfiguration 33,34,35,36,37 181.1 

After 
Reconfiguration 7,9,14,32,37 126.5 

 
TABLE IX 

RECONFIGURATION RESULTS OF 84-BUS DISTRIBUTION NETWORK FOR THE 
LOAD COMBINATION 2 AT EACH BUS: 15% OF CONSUMERS WITH LOAD 

PATTERN 2, 25% WITH LOAD PATTERN 3, AND 60% WITH LOAD PATTERN 4 
 

Model  Configuration Energy 
Losses Cost 

($) 

Proposed  

Before 
Reconfiguration 

84,85,86,87.88.89,90, 
91,92,93,94,95,96 482.9 

After 
Reconfiguration 

7,13,34,39,42,55,62, 
72,83,86,89,90,92 428.5 

TABLE X 
RECONFIGURATION RESULTS OF 136-BUS DISTRIBUTION NETWORK FOR THE 

LOAD COMBINATION 2 AT EACH BUS: 15% OF CONSUMERS WITH LOAD 
PATTERN 2, 25% WITH LOAD PATTERN 3, AND 60% WITH LOAD PATTERN 4 

 
Model  Configuration Energy Losses 

Cost ($) 

Proposed  

Before 
Reconfiguration 

136,137,138,139, 
140,141,142,143, 
144,145,146,147, 
148,149,150,151, 
152,153,154,155, 

156 

291.64 

After 
Reconfiguration 

7,35,51,90,96,106, 
118,126,135,137, 
138,141,142,144, 
145,146,147,148, 

150,151,155 

256.54 

 
TABLE XI 

COMPUTATIONAL TIME OF THE PROPOSED MODEL FOR FIXED AND VARIABLE 
LOADS 

 

System  

Computation Time (s) 

Fixed load 
 Variable load 

 Load 
Combination 1 

Load 
Combination 2 

33  3.26  15.68 18.03 
84  2.7  34.23 23.02 

136  7.06  203.49 251.33 

 
TABLE XII 

RECONFIGURATION RESULTS OF 33-BUS TEST SYSTEM FOR DIFFERENT LOAD 
PROFILES 

 
Load Pattern Configuration Energy Losses Cost ($) 

1 7,9,14,32,37 137.9 
2 7,9,14,32,37 117.2 
3 7,9,14,32,37 190.3 
4 7,9,14,32,37 118.7 

 
TABLE XIII 

RECONFIGURATION RESULTS OF 84-BUS DISTRIBUTION NETWORK FOR 
DIFFERENT LOAD PROFILES 

 
Load 

Pattern 
Configuration Energy Losses 

Cost ($) 
1 7,13,34,39,42,55,62,72,83,86,89,90,92 467.12 
2 7,13,34,39,42,55,62,72,83,86,89,90,92 397.13 
3 7,13,34,39,42,55,62,72,83,86,89,90,92 642.80 
4 7,13,34,39,42,55,62,72,83,86,89,90,92 401.73 

 
TABLE XIV 

RECONFIGURATION RESULTS OF 136-BUS DISTRIBUTION NETWORK FOR 
DIFFERENT LOAD PROFILES 

 
Load 

Pattern 
Configuration Energy Losses 

Cost ($) 

1 7,35,51,90, 96,106,118,126,135,137,138, 
141,142,144,145,146,147,148,150,151,155 279.6 

2 7,35,51,90, 96,106,118,126,135,137,138, 
141,142,144,145,146,147,148,150,151,155 237.8 

3 7,35,51,90, 96,106,118,126,135,137,138, 
141,142,144,145,146,147,148,150,151,155 384.2 

4 7,35,51,90, 96,106,118,126,135,137,138, 
141,142,144,145,146,147,148,150,151,155 240.3 
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Even though the models of [47] and [48] could find different 
radial topologies from the fixed load situation, their proposed 
configurations are not accurate and are not as optimal as the 
topologies found by the proposed model. Therefore, it can be 
said that considering the load pattern should not change the 
reconfiguration plans even if each hour has a different cost of 
energy losses, because the proposed topologies have to meet the 
maximum peak load of all consumers. The results of Tables 
VIII to X and XII to XIV confirm this reality because the same 
configurations are proposed for different consumption patterns. 
Therefore, these tables describe the important role of power 
demand variations and load patterns in energy losses 
calculations.  

Table XI shows that the computational burden and 
processing time of the model increase with considering load 
profile in DSR calculations. Therefore, solving the DSR 
problem for fixed load is adequate if the goal is just finding the 
best configuration with the minimum power or energy losses or 
the lowest energy losses cost. Whereas if the aim is to optimize 
energy losses or its cost compared to other operational or 
investment expenses, the load profile and consumption pattern 
have to be considered. 

V.  CONCLUSION 
Regarding the important role of the load pattern and 

electrical energy consumption manner in power losses 
reduction, electric companies give discounts to network users if 
they modify their consumption behavior according to company 
recommendations. Distribution system reconfiguration (DSR) 
is an effective method for energy losses minimization, 
especially when load profile is considered. Recently, few 
research works tried to study this important point in the 
reconfiguration of distribution networks. However, considering 
load variations in the reconfiguration problem increases the 
computational efforts in large and real distribution systems. 
Therefore, this paper evaluated the role of consumers’ manner 
and load pattern in DSR. The simulation results indicate that the 
load profile and consumers’ behavior influence the energy 
losses cost significantly, but cannot change the switching 
sequences (network configurations). It should be mentioned 
that if the DSR problem is going to be solved for the 
minimization of power losses or losses cost, network 
reconfiguration should be carried out according to the peak load 
level without considering the consumption pattern. However, 
the load profile must be considered when other operational 
and/or investment costs are optimized beside losses, because 
power losses amount affects the results and may change the 
reconfiguration topologies.  
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