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A B S T R A C T   

Water heating accounts for approximately 25% of household energy use in developed countries. Therefore, the 
optimal control of water heating through the deployment of intelligent residential Electric Water Heaters (EWH) 
brings significant benefits. This paper presents an innovative design and implementation of an easy-to-use device 
for intelligent residential water heating. The device relied upon machine learning techniques to forecast a 
consumer’s hot water demand and optimize the operation of an EWH using a novel data collection process that 
relied on non-intrusive vibration data alone. The device was deployed in a six-month pilot project on the island of 
São Miguel, Portugal. The major difficulties were the novel use of vibration data to forecast the volume of hot 
water used and the uncertain behavior of the consumers. The challenges of only using vibration data were solved 
by careful data collection and artificial intelligence methods. To tackle the issue of uncertain consumer behavior, 
an innovative ‘heat now’ function was incorporated into the device to override the novel control framework. 
Results show that the device could accurately forecast hot water demand and optimally operate the EWH to meet 
this demand. The results showed an average reduction of 1.33 kWh/day per consumer, which equates to an 
average decrease of 35.5% in water heating costs. Calculations show that these devices can reduce the total 
energy used by 2832 kWh daily or 0.21% of total electricity generated. Furthermore, a fleet of these devices 
could reduce thermal generation by 0.37%, reducing emissions by 693.31 tons of CO2 per year. The results from 
the consumer survey show that the device did not affect the consumer’s comfort, validating the benefits and 
efficacy of the proposed device. Hence, the paper shows that a simple-to-use, novel device using an innovative 
forecasting algorithm based on non-intrusive vibration data brings numerous quantifiable benefits to actual 
consumers and electrical utilities.   

1. Introduction 

The ongoing shift towards the electrification of energy services, 
especially at a residential level, is an essential step towards the decar-
bonization of our society. This electrification is being driven by several 
factors, chief among them is the introduction of smart appliances and 
Home Energy Management Systems (HEMS) [23]. The increasing ability 
of previously passive residential loads, especially Electrical Water 
Heaters (EWHs), to actively participate in the energy system brings 
several benefits to many actors. Many factors, including increased 

automation, are driving this increased ability to intelligently control 
previously passive loads through artificial intelligence and machine 
learning, and the Internet of Things concept has formed the foundation 
of the so-called Internet of Energy, which allows various devices to work 
together to meet different load demands in an automated and intelligent 
manner, contributing to the clean energy transition [29]. The applica-
tion of machine learning techniques is a rapidly evolving field of 
research, especially considering the applications to the energy sector. 
These techniques can extract powerful insights from historical data to 
help deal with uncertainty and data dynamics [27]. There is significant 
potential for advanced computing techniques, such as machine learning, 
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to be combined with connected devices and reforms in the electricity 
market to allow consumers to participate [45]. 

EWHs are high-potential devices for intelligent operation as they 
typically have high power consumption, operate in regular bursts of 
heating, and can store significant energy as hot water [9]. EWHs are fast- 
responding devices that do not require reactive power support as they 
use a resistive heating element [32]. Water heating uses approximately 
25% of total residential energy consumption in developed countries 
[10]. Therefore, residential water heating is an important sector to 
optimize and can bring numerous benefits to various parties, especially 
if EWHs do the heating. These benefits can be allocated either upstream 
of the device or downstream. Upstream benefits can include reduced 
peak load through load shifting. This can lead to less energy being 
demanded at peak periods and intelligent heating during low-demand 
periods, which can also reduce the need for physical network infra-
structure upgrades and an improved peak-to-average ratio [41]. The 
electrification of heating can lead to increased demand for electricity 
and the ability to heat during periods of high penetration of renewable 
energy, thus improving the utilization of these sources. Typically, elec-
tricity produced at peak periods is generated by more expensive peaker 
plants; therefore, reducing the peak load can have outsized benefits in 
terms of cost reductions. This is especially relevant for islands’ power 
systems, as in this paper. 

Furthermore, the intelligent electrification of residential water 
heating instead of gas in islanded power systems can also reduce the 
need to import costly fossil fuels to the islands, promoting energy se-
curity. Upstream benefits of these intelligent devices are accrued by 
various parties, such as distribution system operators (DSOs), energy 
retailers, and possibly aggregators or virtual power plant operators [19]. 
The downstream benefits of intelligent electrification of water heating 
are typically related to reduced energy costs and improved indoor air 
quality when the electric water heater replaces a natural gas water 
heater. Using gas to heat water is still very common, especially in 
Portugal, and thus replacing these heaters with intelligent electric water 
heaters can even increase access to clean and affordable energy services 
[34]. However, the quantification of both upstream and downstream 
benefits is somewhat unexplored, especially in small or island power 
systems, and therefore this is the main research gap addressed in this 
study. This paper presents an innovative design and implementation of 
an easy-to-use, low-cost device for intelligent water heating for resi-
dential consumption. To the best of the authors’ knowledge is the first 
use of non-intrusive vibration data to forecast hot water flows using 
artificial intelligence techniques. Financial and environmental results 
from a six-month pilot project undertaken on the Azorean Island of São 
Miguel, in collaboration with the Electricidade dos Açores (EDA) utility, 

are presented. This smart plug harnesses the newfound ability to control 
residential EWHs intelligently and benefits both the consumer and the 
wider grid while ensuring that the consumer’s desire for hot water and 
comfort is maintained. 

1.1. Background and context 

Before describing the design and implementation of the device for 
the intelligent operation of residential EWHs, this section provides 
background and context to the pilot project based in the Azores islands 
and Klugit energy, the developers of the device. 

1.1.1. Azores islands 
The Autonomous Region of the Azores is composed of nine islands 

that are widely dispersed and differ significantly in size. An image of the 
Azorean archipelago is shown in Fig. 1. These are isolated microsystems 
with no electrical connection between the islands. The nine islands 
utilize various electricity-generating technologies depending on each 
island’s endogenous resources and demand. Due to their characteristics, 
these islands generally depend on fossil fuel thermal generation [4]. This 
dependence on imported fuels is due to various factors such as energy 
security and cost-effective means of production [40]. 

Each island has a main fossil-fuel-based generator which typically 
uses a diesel engine. There is, however, a growing desire to increase the 
penetration of renewable energy sources in the energy mix of the various 
islands, as can be seen by the 2030 Energy Strategy for the Azores 
published by the Regional Directorate of Energy of the Açores [30]. 

Currently, the most widely used renewable energy source in the 
Azores is geothermal energy, although it is only being exploited on two 
islands, São Miguel and Terceira. São Miguel has two geothermal plants, 
while Terceira only has one. Following geothermal, wind energy is the 
second most important renewable resource, with wind farms on all 
islands except Corvo. Hydropower is the next most developed renewable 
energy source, although it has the most extensive history of usage in the 
archipelago [15]. 

The focus of this study was on the island of São Miguel, and thus, a 
more in-depth discussion of its electricity mix is provided using data 
from the document ‘Caracterização das Redes de Transporte e Distribuição, 
2019′ [15]. At the end of 2020, there were twelve electricity-generating 
stations on the island. Chief among these plants is the Caldeirão Ther-
moelectric Power Plant (CTCL) which has an installed capacity of 98 
MW and relies on fuel. The two geothermal plants, Ribeira Grande 
(CGRG) and Pico Vermelho (CGPV) have an installed capacity of 16.6 
MW and 13 MW, respectively. The single wind farm, Graminhais 
(PEGR), has an installed capacity of 9 MW. Seven hydroelectric power 
plants have a combined installed capacity of 5.1 MW. There is also a 
single plant that relies on biogas for electricity production, the Musami 
Landfill Biogas to Energy Recovery Plant, and it has an installed capacity 
of 1.1 MW. In 2020, 422.15 GWh of electricity was delivered to the grid 
in São Miguel. Roughly 50% of this was from the thermal power plant, 
40% from geothermal power plants, 6% from various hydroelectric 
power plants, and 4% from the wind farm. 

1.1.2. Klugit energy 
The smart plug was developed by Klugit Energy, a Portuguese start- 

up based in Aveiro. The device is used to convert a passive electric water 
heater into an intelligent device. This device consists of two compo-
nents: a smart Wi-Fi-enabled plug that plugs into a regular wall power 
socket, and the EWH is plugged into the other side; the second is a 
connected water use detection sensor that clips onto the hot water outlet 
pipe of the EWH. Therefore, this device can be easily installed and re-
quires no technical knowledge, extra tools, or modifications to the EWH 
unit. An example of an installed Klugit device is shown in Fig. 2, where 
the smart plug and the clip-on water use detection sensor are easily 
visible. 

The Klugit device has been under development since 2018. The 

Nomenclature 

Abbreviation Meaning 
API Application programming interface 
CGPV Pico Vermelho Geothermal Plant 
CGRG Ribeira Grande Geothermal Plant 
CTCL Caldeirão Thermoelectric Power Plant 
DHW Domestic Hot Water 
DSO Distribution System Operator 
EDA Electricidade dos Açores (Electrical utility of the 

Açores) 
EWH Electric Water Heater 
HEMS Home Energy Management System 
LPG Liquified Petroleum Gas 
LSTM Long Short-Term Memory 
PEGR Graminhais Wind Farm 
XGBoost Extreme Gradient Boosting  
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prototypes were installed in 2020, and the first small-scale project was 
carried out in conjunction with E-REDES, the Portuguese DSO, in the 
town of Aveiro, Portugal. The results of this pilot project were positive 
and showed both the technical and economic benefits that the Klugit 
device could bring to both customers and DSOs [41]. The device allowed 
a reduction of energy use for the consumers and showed the potential to 
operate as a non-wires alternative to upgrading the physical infra-
structure within low voltage networks. Based on this successful first 

pilot, a second, larger pilot was planned with EDA and commenced in 
July 2021. EDA is the overall system operator, managing the various 
electrical networks within the Autonomous Region of the Azores. 

The work in the current paper builds upon the work done by Tavares 
et al. [41], where the prototype of the device was used in conjunction 
with intrusive temperature monitoring to manage the heating of a small 
number of EWH. At the time, the simplified model aimed to reduce the 
peak load of the local transformer in the distribution system, thus 

Fig. 1. Map of the Azores [1].  

Fig. 2. Connected Klugit device.  
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showing the device’s potential to be a non-wires alternative to tradi-
tional infrastructure upgrades. Consumer comfort was not examined 
apart from a basic threshold to ensure the temperature in the EWH was 
above a certain setpoint. Consumer comfort and other major improve-
ments such as the emission reduction potential, improved forecasting, 
non-intrusive monitoring and a larger pilot project were only included in 
the current paper. 

1.2. Literature review 

The idea of operating electric water heaters intelligently to benefit 
both the distribution operator and the consumer has been examined 
before [34]. However, previous studies tend to rely on intrusive moni-
toring techniques for water temperature and do not update the operation 
and control strategy of the EWH depending on the consumer’s hot water 
usage. Moreover, these studies do not validate and implement their 
models in a real-world setting. EWHs can act as both domestic thermal 
storage and a controllable device that respond to real-time signals 
[10,18]. 

The potential of EWHs to benefit either the consumer or the DSO has 
been the subject of significant research in the past years. For example, a 
data-driven optimization model for the smart scheduling of EWHs was 
developed by Shen et al. [39] to meet several demand-side management 
requests. The authors utilize model predictive control (MPC) to develop 
a two-state EWH model and test it on real-world data consisting of 77 
EWHs for 120 days. Results showed that costs were reduced by 33.2% 
and that anticipated domestic hot water demand met 97% of the actual 
demand during the day. These results were promising. However, there is 
no real-world testing of this model. In addition, even with the MPC 
framework, the temperature within the EWH still went below the lower 
comfort level set by the model. The ability of the model to avoid peak 
loads or to reduce emissions was not considered either. 

The authors of Li et al. [27] developed a control method for various 
residential appliances based on artificial intelligence techniques. The 
approach is very interesting, but the authors rely on intrusive moni-
toring of the temperature of the EWH in contrast to the proposed model, 
which relies on a non-intrusive vibration sensor. This use of non- 
intrusive data collection is a novel contribution relative to the existing 
literature. The proposed method can develop a control policy using data 
obtained by interacting with the environment in a non-intrusive 
manner, simplifying the appliance’s installation and operation. 

Another promising residential appliance that can be utilized as an 
active asset in future energy systems is electric heaters with thermal 
storage. A day-ahead optimal control system for a single electric heater 
with thermal storage in an office building was developed by Mugnini 
et al. [31]. The goal was to operate the EWH to maximize the use of the 
onsite solar PV plant and, in turn, to minimize the amount of electricity 
used from the main grid. The control system was shown over two days. 
The authors used a mixed integer nonlinear programming technique to 
solve the system. The paper has two similarities to the current manu-
script in that they authors test the system in a real-world setting and 
ensure the thermal comfort of the occupants. However, the present 
manuscript has the following novel contributions relative to the paper 
by Mugnini et al. [31]; the use of artificial intelligence forecasting 
techniques, consideration of the avoided generation, and thus avoided 
emissions brought about by the optimal control of the device. 

A study that did investigate results from a real-world pilot project 
considering the demand response flexibility from smart appliances, 
including electric water heaters, was D’hulst et al. [12]. The study was 
based on a Belgian research project titled ’Large-scale implementation of 
smart grid technologies in distribution grids,’ which examined resi-
dential demand response in the Flanders region of Belgium. The project 
prioritized user comfort over other technical objectives. The paper 
considered data from 15 residential EWHs, among other appliances. The 
developed system needed to be attached directly to the EWH and was 
not controllable by the consumer, as is the case in the device in the 

present study. 
A study that focused on the benefits provided by intelligent EWH to 

the grid was conducted by Clarke et al. [9]. The authors used virtual 
devices to emulate real-world EWHs. A thermal model was used to es-
timate the EWH’s temperature, and 100 virtual devices were emulated. 
The key results from this study were the high potential of EWH to engage 
in both frequency response and peak shaving services. The ability of the 
EWH to reduce costs by participating in these services or concerns 
relating to the comfort of the consumer was not considered in their 
study. 

Mukherjee et al. [32] states that simplified thermal models do not 
adequately capture the dynamics of an EWH’s operation, and using 
these simplified models can lead to incorrect planning and operating 
decisions by the electrical utilities. This proposed paper uses a data- 
driven approach that does not rely on the physical modeling of the 
EWH. The authors of Mukherjee et al. [32] utilize a thermal model of an 
EWH, which considers thermal stratification based on the characteristics 
of a single EWH. This choice may limit the ability of the model to be 
applied to other tanks easily, especially as the authors did not consider a 
sensitivity analysis based on variations of the physical characteristics. 

The ability of EWHs to modify residential electricity consumption 
due to external incentives was investigated by Shah et al. [38]. Their 
paper used a simplified EWH model and hot water usage profiles of 450 
apartments for 14 months with a 15-minute time granularity. Results 
showed a reduction in annual consumer costs by 33% and a significant 
ability to shift the heating load away from peak periods. No validation of 
the model in a laboratory or real-world setting was considered. In 
addition, the impacts on the consumer’s comfort were not considered. 

Yang et al. [45] develops a comprehensive model to investigate the 
impact of controllable devices HEMS considering time of use tariffs. 
However, the authors consider rigid control methods, especially for the 
EWH, which may not capture the dynamic behavior of the consumer. 
This dynamic behavior is considered in the proposed manuscript, which 
is a critical contribution relative to the work in Yang. Considering the 
dynamic behavior of the consumer reduces the input information 
needed from the consumer and adapts to changes in behavior auto-
matically, thus providing a better experience for the consumer. 

The paper authored by Tejero-Gómez and Bayod-Rújula [42] dem-
onstrates and validates a simple and low-cost control module for the 
intelligent operation of an EWH. The authors used this system to mini-
mize the home’s water heating cost while respecting the user’s comfort. 
Unfortunately, the system relied on a temperature monitoring probe to 
be inserted into the EWH. This may cause unnecessary complications for 
the user, such as requiring specialist installation or voiding the manu-
factures warranty. A single EWH is used as a case study in this paper, and 
the results show that the power used in high-tariff periods is reduced, 
and thus the cost of water heating is significantly reduced while main-
taining the user’s comfort levels. Another model that uses a heuristic 
algorithm to optimally schedule EWH under a dynamic pricing tariff is 
presented by Kapsalis et al. [24]. 

A paper that incorporated artificial intelligence techniques, notably 
an LSTM model, to forecast heat demand based solely on historical 
heating data was developed by Yao et al. [47]. The authors recognized 
that the LSTM model is one of the most powerful forecasting models for 
time-series data. The authors utilize only past heat demand forecasts as 
they state that auxiliary variables (such as weather data) are not always 
available or are of uncertain quality. In the current manuscript, the 
Klugit device obtains auxiliary data from the vibration sensor, and thus 
this data should be available, and the quality can be guaranteed. 
Therefore, the decision was taken in the current manuscript to utilize 
vibration data as an auxiliary variable to provide more data to the 
model. This decision is a significant novel contribution of the paper as, 
to the best of the authors’ knowledge; this is the first time that hot water 
demand is being predicted using vibration data from the outlet pipe of 
the EWH using artificial intelligence techniques. 

The papers discussed above show that intelligent electric water 
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heaters have been studied. However, several shortcomings of these 
previous studies have been highlighted, and Table 1 shows how the 
current paper addresses those shortcomings in a real case study through 
several novel contributions with machine learning algorithms (XGBoost 
and LSTM) and considering consumer costs, peak load, consumer com-
fort, and emissions, relying on a non-intrusive strategy. 

Through a careful review of the existing literature shown above, two 
gaps in the current knowledge were identified. Many papers either 
considered intrusive temperature measurements of the water inside an 
EWH or, on the other hand, only included historical demand data to 
forecast residential hot water demand. Both approaches have draw-
backs, as mentioned above; therefore, the first knowledge gap concerns 
using data from non-intrusive measurements, such as vibration mea-
surements, in a data-driven model to better forecast residential hot 
water demand. The second knowledge gap is that none of the papers in 
the literature review analyzed the complete set of benefits that the 
intelligent operation of an EWH can bring. Most papers consider either 
the cost-reduction potential of an intelligent EWH or the ability of the 
EWH to provide demand response or other ancillary services to the 
electrical utility. The actual value of intelligent EWH operation is not 
captured by focusing on only one benefit. Thus, this paper presents the 
quantification of several benefits from a pilot project, including cost 
reductions for consumers, avoided generation, reduced peak load, and 
avoided emissions. This comprehensive strategy addresses the second 
knowledge gap. 

1.3. Contributions 

Considering the context of the power system of the Açores and 
examining past literature in this field, the main contributions of this 
paper are the following: 

• Design, validate, and implement a non-intrusive device to intelli-
gently control electric water heaters in an easy and user-friendly 
manner.  

• Development of a machine-learning algorithm to forecast residential 
hot water consumption based on non-intrusive vibration data alone. 
The model can use temperature data to identify the volume of water 
used. This was also used as the basis of the control method to intel-
ligently control the device to ensure that the demand for hot water is 
met cost-efficiently and with no alterations to the EWH. 

• Details and results of a pilot study where the device was imple-
mented in 15 homes on the São Miguel island from July to December 
2021.  

• Results show the impact of intelligent heating on the consumer’s 
energy bill, providing evidence that the consumer’s comfort was not 

impacted through a survey conducted on the pilot study homes. This 
introduces essential qualitative information about the subjects’ 
preferences, behavior, and comfort.  

• Quantification of the results shows the impact of the device on 
consumer costs and avoided emissions. Additionally, the benefits of 
the device to the electrical utility are shown in terms of avoided costs 
of generation, avoided emissions, and impacts on physical 
infrastructure. 

Based on the literature surveyed above, this paper aims to develop a 
first-of-its-kind commercially available device that optimally manages 
the operation of an EWH using machine learning model that utilizes non- 
intrusive vibration data., This paper presents several novel aspects 
regarding the optimal operation of EWH using non-intrusive data 
collection in a pilot study considering comfort, financial and environ-
mental outcomes by combining the research gaps identified in the 
literature survey and the contributions previously mentioned. 

Although challenging to develop, a model that relies on non- 
intrusive data is an important step forward as it reduces the cost and 
difficulty of installing devices based on intrusive in-line flow meters. 
Using a non-intrusive sensor also increases the number and type of EWH 
that can be retrofitted with the device, thus increasing its potential 
impact. 

Even with the novel control technique for EWH, the major stumbling 
block of previous intelligent EWHs has been related to implementing the 
EWH in a real-world setting and showing that the comfort of the con-
sumer is not affected. An example of this was demonstrated by Shen 
et al. [39], where the water temperature still went below the minimum 
set point temperature of their model, and in Clarke et al. [9] and Shah 
et al. [38], where the model was compared to water usage profiles but no 
actual validation of the model occurred in the real world and, addi-
tionally, consumer comfort was not even a consideration. Therefore, the 
inclusion of consumer comfort and the validation of the model in a six- 
month pilot project is novel compared to the literature surveyed above. 

Finally, a significant difference to the existing literature is the 
consideration of thermal comfort, financial outcomes (for both the 
consumer and the electrical utility), and the environmental impact of the 
intelligent operation of an EWH in this pilot project. While D’hulst et al. 
[12], Kapsalis et al. [24] and Tejero-Gómez and Bayod-Rújula, [42] 
considered consumer comfort and cost, they did not show the financial 
and environmental impacts of intelligent EWH operation for the utility. 
These concerns are critical in small island power systems, as is the case 
of São Miguel, and therefore are included in this paper. 

The rest of the paper is structured as follows: Section 2 details the 
methodology followed during the design and application of the machine 
learning-based control algorithm. The experimental validation of the 

Table 1 
Surveyed literature.  

Paper Type of control Consumer 
cost 

Peak 
load 

Pilot 
project 

Non- 
intrusive 

Consumer 
comfort 

Data set used Emissions 
considered 

[39] Model predictive control Yes No No Not 
applicable 

No 77 EWH for 120 days No 

[27] LSTM Yes No No No Yes EWH Single No 
[12] Linear programming Not 

considered 
Yes Yes Yes Yes 15 EWH No 

[9] Unspecified thermal model No Yes No No No Synthetic data No 
[32] Thermal model No Yes No No No Single EWH No 
[38] Greedy algorithm Yes Yes No Not 

applicable 
No 450 apartments for 14 

months 
No 

[42] Heuristic Yes Yes Yes No Yes Actual data from single 
EWH 

No 

[47] LSTM No No No Not 
applicable 

No Data from 1113 houses No 

[24] Heuristic Yes No No No Yes Authors own No 
This 

paper 
Machine learning algorithms 
(XGBoost, LSTM) 

Yes Yes Yes Yes Yes 15 homes over six 
months 

Yes  
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algorithm and device is also included in this section. The results of the 
case study are presented in Section 3. Finally, Section 4 contains the 
conclusions drawn from these results. 

2. Data-Driven model for hot water prediction 

This section introduces the methodology used in this paper. Initially, 
a section discussing the theoretical background is presented to provide 
an overview of the methods used. Following this, the details of the 
implementation of this methodology are given. There was a sequential 
methodology followed during the design of the device. The key 
parameter to identify was the Domestic Hot Water (DHW) demand 
throughout the day. This depended on several factors, such as the 
number of people living in the home, the day of the week, and ambient 
temperature. In addition, at the beginning of the pilot project, minimal 
data related to the DHW demand was available to be included in the 
prediction model. As a result, the methodology was split into different 
periods depending on the data available for the prediction model. Each 
period used a different technique to forecast the hot water demand of 
each household. These techniques were XGBoost and Long-Short-Term- 
Memory (LSTM) networks. 

2.1. Theoretical background 

This section introduces the data-driven techniques which were used 
to optimize and control the EWH. This section also contains the details of 
both the Extreme Gradient Boosting algorithm and the Long Short-term 
Memory network that were developed for this application. 

As the problem of forecasting domestic hot water demand using non- 
intrusive techniques is a novel problem, several different machine 
learning techniques could be used. Because of this, an initial exploratory 
phase was carried out where several techniques were implemented and 
the results analyzed. This helped improve the results’ quality as the best- 
performing models were chosen and refined. The models examined 
during this exploratory phase included decision trees, LSTM, XGBoost, 
K-means clustering, hierarchical clustering, random forest, and Support 
Vector Machines. Additionally, this exploratory phase helped avoid the 
cold start problem where the model cannot draw inferences due to 
insufficient information. The two models chosen were LSTM and 
XGBoost. 

Following this exploratory phase, the decision was taken to use a 
two-stage approach with two different machine learning algorithms 
depending on the amount of data available. These were the XGBoost and 
Long Short-Term Memory algorithms. The advantages of XGBoost are 
that it is highly flexible, can be applied to problems using parallel pro-
cessing, converges faster than regular gradient boosting techniques, and 
uses regularization to help avoid the risk of overfitting. The major 
disadvantage of this technique is that it does not perform well on sparse 
and unstructured data. Care was taken with the data obtained from the 
Klugit devices to minimize this disadvantage. 

In the second stage, the LSTM model was applied to the problem. 
There are several advantages of this model, especially when analyzing 
sequential data. This is due to their ability to formulate high-level rep-
resentations of complex data, which better captures the structure of the 
data relative to other recurrent neural networks. Other advantages of the 
LSTM model include their ability to remember information for extended 
periods, allowing them to handle long-term dependencies in the data. 
Finally, the LSTM model is less susceptible to the vanishing gradient 
problem because it uses the LSTM cell as the activation function, which 
preserves information across more prolonged periods. These two models 
are discussed in detail in the following sections. 

2.1.1. Extreme gradient boosting (XGBoost) algorithm 
Once sufficient data was collected for the household from the clip-on 

vibration sensor, the Extreme Gradient Boosting (XGBoost) algorithm 
was used to forecast hot water consumption. XGBoost is a widely used 

tree-boosting system [8]. XGBoost is a highly scalable machine learning 
system that uses several adjustments to traditional tree-boosting algo-
rithms. These adjustments provide the ability to handle sparse data, a 
proven procedure for handling weights for efficient proposal calcula-
tions. These improvements lead to a powerful tree-boosting solution 
successfully deployed in many real-world applications. A python inter-
face of XGBoost was used in this paper [35]. 

The XGBoost algorithm is based on several decision trees, with each 
tree being generated through a gradient descent method. The algo-
rithm’s objective is to minimize a particular objective function subject to 
a second-order Taylor expansion. To reduce overfitting, the XGBoost 
utilizes the complexity function of the tree to represent the objective 
function’s constant term. The mathematical formulation of the XGBoost 
algorithm, represented by Equations (1) to (4), is taken from [8]: 

Object(t) =
∑n

i=1
l
(
yi, ŷt

i

)
+Ω(ft)+C (1)  

ŷt
i = ŷt− 1

i + ft(xi) (2)  

Ω(ft) = γTt +
1
2

λ ‖w‖2 (3) 

In the equations above, l is a differentiable convex function that 
calculates the gap between the prediction ŷt

i and the true value yi. Ω(ft)

is a penalty function that increases as the complexity of the model grows 
to reduce overfitting, and C represents a constant. In Eq (2), xirepresents 
the input vector, and the actual value of hot water demand is shown by yi 

while the predicted value of hot water demand is shown by ŷt
i . In Eq (3), 

the number of leaves in the tree is shown by Tt . The square loss function 
is represented by γand λ. w is the leaf weight. Using the Taylor expan-
sion, we can approximate the Object( • ) by the following: 

Object(t) ≈
∑n

i=1

[

l
(
yi, ŷt

i

)
+ gift(xi)+

1
2

hi ft
2(xi)

]

+Ω(ft)+C (4) 

where giand 1
2hi represent the coefficients of the first and quadratic 

terms of the Taylor expansion, respectively. 

2.1.2. Long Short-Term Memory (LSTM) algorithm 
Once sufficient data was collected regarding the hot water usage of 

the consumers, the XGBoost algorithm was replaced by a Long Short- 
Term Memory (LSTM) algorithm. This was done due to the superior 
accuracy of the LSTM model [21]. LSTMs utilize feedback connections, 
and this property enables LSTMs to process entire sequences of data 
without treating each point independently. Instead, the LSTM retains 
valuable information about previous data in the sequence to help pro-
cess new data points. As a result, LSTMs are particularly good at pro-
cessing time series data, which is a significant factor in selecting this 
technique for this paper. LSTM models have been successfully imple-
mented in the energy sector [20;46]. However, the LSTM technique has 
been widely and successfully applied to practical applications in other 
fields outside of electrical energy systems. For example, researchers used 
LSTM models in conjunction with other techniques to develop a 
spatiotemporal model to analyze the temperature distributions in 
various thermal processes [17]. The model was applied to the curing 
process within semiconductor manufacturing, and the results show that 
the model performed well. Another example of the LSTM model being 
used in a real-world context is presented by [3]. In the paper, the authors 
developed a deep-learning neural network to identify different carp 
species. The model used a 5-fold cross-validation process and achieved 
an accuracy of 100%. 

A bidirectional-LSTM model was developed by [44] to formulate an 
optimal gear-shifting strategy for manual transmission systems of heavy- 
duty trucks working in mines. The bidirectional LSTM model was pre-
pared by backpropagating an LSTM model to combine forward and 
backward information simultaneously. The model achieved an accuracy 
of 95.8% and could operate with high speed to meet the demands of the 
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transmission’s operation. A final application of LSTM models to real- 
world applications is shown in [7], where an LSTM model was used 
for rainfall prediction. The LSTM model outperformed other data-driven 
models, namely a random forest algorithm, and could be rapidly applied 
to various climatic areas across the globe. Despite the increase in the 
predictive ability of the LSTM model, this algorithm also required a 
considerable amount of data for training and testing, hence the decision 
to first use the XGBoost model until sufficient data were available. Seven 
LSTM models were trained, one for each day of the week. 

A typical LSTM model consists of several sub-networks which are 
recurrently connected [37]. These sub-networks are known as memory 
blocks. These memory blocks maintain their state over time and regulate 
the information flow through the non-linear gating units. Conceptually, 
an LSTM model is composed of several processing blocks and inputs. The 
interaction between these components is discussed below in Fig. 3. 

The initial step is an input that uses the output of the previous LSTM 
unit and the current input cell. This is expressed as after [43]: 

z(t) = g
(
Wzx(t) + Rzy(t− 1) + bz

)
(5) 

In the above equation, Wz and Rz are weights associated with x(t) and 
y(t− 1) respectively and the bias weight vector is denoted as bz (Van Houdt 
et al., 2020). The next step is to update the input gate, which combines 
the current input × and the previous LSTM unity-1 with the cell value c 
of the prior iteration. 

Van Houdt et al. (2020) showed this as Equation (6). 

i(t) = σ
(
Wix(t) + Riy(t− 1) + pi ⊙ c(t− 1) + bi

)
(6) 

where Wi,Ri and pi are weights associated with x(t), y(t− 1) and c(t− 1)

respectively for this component. The bias weight vector is represented 
by bi. The gate activation function is represented by σ. The LSTM layer 
determines how much information is retained in the cell states c(t)from 
the previous steps. The vectors pi and c(t− 1) are multiplied using point- 
wise multiplication (⊙). This layer also considers the selection of the 
candidate values, z(t),which may be added to the cell states as well as the 
input gate activation values, i(t). 

The following essential aspect of the LSTM cell is the forget gate in 
which a decision about how much information to remove from the 
previous cell state, c(t− 1), is removed. In this step, the activation values, 
f (t), of the forget gates are calculated using the current input, x(t), the 
outputs from the previous time step, y(t− 1), and the previous memory cell 
state, c(t− 1), the peephole connection and the terms representing the 
bias, bf . This is shown as, after (Van Houdt et al., 2020): 

f (t) = σ
(
Wf x(t) + Rf y(t− 1) + pf ⊙ c(t− 1) + bf

)
(7) 

where Wf , Rf , and pf are weights associated with x(t) ,y(t− 1) and c(t− 1)

respectively and the bias weight vector is denoted as bf . The next step is 
to compute the cell value. This step uses the outputs of the block input, 
z(t), the input gate, i(t), and the forget gate, f (t) as well as the previous cell 
value. Van Houdt et al. (2020) represented this as: 

c(t) = z(t) ⊙ i(t) + c(t− 1) ⊙ i(t) (8) 

The subsequent output to be calculated is the output gate which 
combines the current input, x(t), the result of the last LSTM unit, y(t− 1)as 
well as the cell value, c(t− 1). Visually, this is represented after (Van Houdt 
et al., 2020): 

o(t) = σ
(
Wox(t) + Roy(t− 1) + po ⊙ c(t− 1) + bo

)
(9) 

where Wo, Ro, and po are weights associated with x(t) ,y(t− 1) and c(t− 1)

respectively and the bias weight vector is denoted as bo. The final step is 
the calculate the block output. This combines the current cell value and 
the current output gate. This was represented by Van Houdt et al. (2020) 
as: 

y(t) = g(c(t))⊙o(t) (10)  

2.2. Deployment 

The data was collected by a non-intrusive temperature sensor 
attached to the hot water outlet pipe of the EWH. In the pilot project in 
São Miguel, only the temperature data was collected from the various 
EWHs. In a previous pilot project to validate the proof of concept, water 
flow data was also collected, and the model was initially validated 
against this last data. This was used to train the temperature-to-flow 
converter model, but in the current pilot project, only the temperature 
data were collected and utilized. 

2.2.1. Temperature to flow converter model, 
The first model uses previously available flow data and the chrono-

logically corresponding temperature data to train a model that predicts 
whether there was significant flow in a given time interval, generating 
either 1 or 0 for a specific moment. The flow and processing of data in 
this model are shown in Fig. 4. The model pipeline presented in Fig. 4 is 
a minimalistic view of the training steps for each model. The initial 
datasets are used as input for the models (temperature data obtained 
from the previous pilot project), and the output was the validated flow 
data learned from this data. A vital advantage of this pipeline is the 
discretization of the time steps to two-minute binary windows. This was 
obtained through experimentation of different periods. The two-minute 
windows provided the best compromise between accuracy and water 
usage prediction. The water usage prediction relied on clusters of true 
positive forecasts instead of a single true positive value. This was done to 

Fig. 3. Structure of a vanilla LSTM model [43].  
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minimize the heating of the EWH while ensuring the consumer’s 
comfort. 

Each model was trained and validated five times using different 
training and validation data, especially during the hyperparameter 
search phase. The five sets of training and validation data were prepared 
before the hyperparameter search and used across all models. The 
training and validation sets were obtained from larger datasets during 
the later tuning phase. The size of the training and validation datasets 
was determined according to the size of the search space and the time to 
train each model. 

The selected sampling rate was two minutes. The issue of whether 
the ratio between the sampled flow duration and actual flow duration 
was significantly different in the predicted and actual flow data was 
studied, and it was concluded that there was only a significant difference 
if the sampling rate was greater or equal to three minutes, meaning any 
value lower than three minutes is appropriate. For values of the sam-
pling rate lower than three minutes, there was no significant change in 
the ratio, as mentioned above. Interestingly, the results obtained when 
using two minutes were better than when a sampling rate of one minute 
was used. The machine learning model uses a neural network with the 
structure shown in Table 2. The design of the model and the hyper-
parameters were determined through a multi-level grid search. This 
search used larger increments of the values for the hyperparameters in 
the initial stages of the search, and then when the search space had been 
narrowed down, the multi-level grid search used much smaller in-
crements of the hyperparameters to fine-tune the structure of the model 
rapidly. The final choice of the design of the model was based solely on 
the results of the F-Score assessment. 

The model was trained for 70 epochs with a batch size of 128. The 
learning rate was set at 0.0001, and a validation split of 0.2 was used. 
The loss was computed using a custom function that allows different 

weights for the two classes to be applied to a typical binary categorical 
cross-entropy function. The weights applied made the loss function 
penalize false negatives twice as much in the best-performing model that 
was trained. This was done to compensate for the fact that there is a 
substantial discrepancy between the number of samples of each class. 

The Rectified Linear Activation Function (ReLU) was used to trans-
form the weighted sum of the inputs of a specific node into that same 
node’s activation or output. The ReLU is a piecewise linear function, a 
popular default neural network activation function that helps improve 
model performance [2]. The main motivations for using this parameter 
in the model are simple computation, sparse representation, and linear 
behavior. 

After each layer, a batch normalization procedure is carried out. This 
process ensures that all features are constrained to the same scale. This 
process is done to ensure that a single feature does not dominate the 
model and can help speed up the convergence of the LSTM model [22]. 
Models with several layers may be sensitive to the initial random 
weights assigned to the inputs, and batch normalization helps stan-
dardize a layer’s inputs. Batch normalization helps to reduce the number 
of training epochs that would have otherwise been needed. 

The first three layers of the LSTM use a 1D convolution layer. This 
type of layer is especially applicable to time series data [26]. The fourth 
layer utilizes global average pooling to replace the other fully connected 
layers in the LSTM [28]. Global pooling takes the average of each feature 
map and creates a vector that is sent directly to the softmax activation 
layer. In this layer, there is no parameter to optimize; therefore, over-
fitting is avoided. The final layer is a dense layer, so called because each 
neuron in the layer is connected to all other neurons in the next layer. 
The output of this layer is the dot product of all inputs and their cor-
responding weights and relies on the choice of the activation function 
[5]. 

In this paper, the softmax activation function was used. As 
mentioned above, this function takes the vector of numbers and converts 
them into a vector of probabilities proportional to each value’s relative 
weight [6]. It is a popular activation function for problems in machine 
learning [33]. 

The performance of various iterations of this model with these and 
different parameters was tested using the F-Score for the test set. A 
multi-level grid search was performed, using different values for all 
parameters mentioned above and testing the final F-Score for each. The 
process followed for selecting the hyperparameters was a multi-layer 
grid search. This approach uses various levels of increments for the 
hyperparameter search. In the first iterations, the increments between 
the values were larger than those in the later iterations. This allowed for 
rapid convergence of the hyperparameter values and easier fine-tuning 
in the final stages of the model development. The advantage of using 
the grid search was reducing the number of configurations required to 
be tested, versus, for instance, testing every combination of parameters. 
Performing the multi-level grid search further reduced the number of 

Fig. 4. Pipeline for the temperature-to-flow converter model.  

Table 2 
Temperature to flow convertor’s neural network structure and parameters.  

Layer 
number 

Layer type Parameters 

1 1D Convolutional Filters: 64, Kernel size: 3 
Batch normalization – 
Rectified Linear Activation 
Function 

– 

2 1D Convolutional Filters: 64, Kernel size: 3 
Batch normalization – 
Rectified Linear Activation 
Function 

– 

3 1D Convolutional Filters: 64, Kernel size: 3 
Batch normalization – 
Rectified Linear Activation 
Function 

– 

4 1D Global average pooling – 
5 Dense Neurons: 2, Activation: 

softmax  
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tested designs while at the same time allowing for more precise fine- 
tuning. The best model obtained from this multi-layer grid search had 
an F-Score of 0.77 and was saved for later use in the relevant hot water 
usage prediction model, as shown in Fig. 5. 

The model aims to forecast the timing and quantity of hot water 
demanded by the household. Therefore, the false positives and negatives 
are the most relevant metric to analyze the model’s performance. Some 
of the best-performing models from the exploratory phase were trained 
to forecast hot water demand in two-minute intervals, but the final 
choice of whether or not to activate the EWH to heat the water will also 
depend on the quantity of water demanded, and this was inferred from 
the number of usage intervals predicted by the model. Therefore, clus-
ters of true positive values are critical for the optimal performance of the 
model. Clustered false positives could lead to instances of EWH heating 
when there was no actual water demand, increasing the energy used. 
The F score metric was chosen during the hyperparameter search phase 
as it best fits the requirements to assess the true positives and false 
positive results. Other scoring metrics, such as the Root Mean Square 
Error (RMSE), were utilized as well, for example, when the flow volume 
metrics were required. During the hyperparameter search phase, when 
the number of models to train, validate and compare was large, F-Score 
was the scoring method that best suited the requirements of the 
problem. 

2.2.2. Relevant hot water usage prediction model 
This model predicts the relevant water usage for a set of days the user 

provides. It is used to make predictions about when water needs to be 
heated. The structure of the hot water prediction model is shown in 
Fig. 6. The figure shows how the temperature data creates and uses 
various predictive models. Three different models were used to forecast 
the hot water demand depending on the data available for that specific 
device. First, a linear regression model was used to identify the mean 
daily hot water demand profile. After this stage, the XGBoost model was 
used until six weeks of data were available, and finally, the LSTM model 
was used after six weeks. Once the model had been created, trained, and 
saved, it could be used to forecast the periods of hot water demand for 

the consumers. This is shown in Fig. 6, where a request would be sent to 
the application programming interface (API), which would call the 
relevant model to forecast the hot water demand. The forecast is made 
and sent back as a response to the API, which sends it to the device. Then 
the decision is taken whether or not to heat the water to meet the 
forecast demand. 

Three types of models are used, which are: Means, XGBoost, and 
LSTM. The Means model is used when we have a low number of samples 
and training a model is not yet viable. Using a Mean Shift model, it 
identifies which hours were relevant hot water usage in the last few 
weeks. The XGBoost model minimizes the squared error and uses 1000 
estimators. The LSTM model comprises seven models, one for each day 
of the week. Each model is trained individually but with the same pa-
rameters. Each model consists of 32 LSTM units, followed by a Dropout 
layer that drops 20% of the results and a final dense layer of 24 neurons 
(one for each hour) that uses a softsign activation function in the version 
designed for flow data. When using temperature data, an activation 
function is not necessary as the temperature data is normalized before it 
is used as input into the network. The data is rescaled afterward to 
reconstruct the temperature data. This approach was not appropriate for 
the flow data, as it is binary, so an activation function that allowed some 

Fig. 5. Pipeline for training the relevant hot water usage prediction model.  

Fig. 6. Pipeline for obtaining the predicted relevant hot water usage for a day.  
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progression, such as the softsign, was necessary. The Adam optimizer 
optimized both temperature and flow versions. The Adam optimizer is 
an alternative to classical stochastic optimization in deep learning 
problems. It combines the advantages of two other stochastic gradient 
descent extensions. These other extensions are the Adaptive Gradient 
Algorithm and the Root Mean Square Propagation [36]. Further details 
of the Adam algorithm can be found in [25], but, in summary, the Adam 
algorithm achieves good results quickly and emerged as an excellent 
overall choice of algorithm for deep learning applications [36]. In terms 
of loss functions, the temperature model used the Mean Square Error 
model, while the Flow model relied on the Squared Hinge model. 

After applying these models, the times of significant hot water usage 
need to be identified. The temperature model identifies these times, and 
the results are evaluated using the Root Mean Square Error Model for the 
first iterations, and afterward, the F-Score model was applied. During 
the pilot project, the model was under continuous evaluation and 
improvement. One such improvement is the flow model. The flow model 
is an extension of the temperature model; in this model, the duration of 
the flow can also be forecasted. The performance of the flow model was 
compared to the values obtained by the temperature model. For this 
comparison, the ratio of the correct predictions against the accurate 
predictions plus incorrect predictions was used for all periods where 
water flow was predicted. 

The following two figures, Fig. 7 and Fig. 8, show the improvement 
of the flow duration model for the XGBoost and LSTM methods across 
ten experiments. The flow model outperformed the previous tempera-
ture model in each experiment and for both machine learning tech-
niques. This new method also provides additional information regarding 
the total quantity of hot water used, which can be reported to consumers 
to increase their knowledge of water usage. The choice of adding an 
estimation of the flow of water was made during the pilot project, and 
the results show that this choice improves the model results. 

2.3. Digital infrastructure design 

The models introduced above were incorporated into a broader 
digital infrastructure. This infrastructure allowed the devices to gather 
the data, communicate this data to the server and receive control signals 
from the server. The infrastructure used in this system is presented in 
Fig. 9. The relevant services and applications are shown with the flow of 
the information displayed via the black arrows. The device is depicted as 
the Klugit Unit in the bottom left of the figure. 

3. Case study 

This section contains the details of the case study implemented in São 

Miguel between July and December 2021. São Miguel was selected as 
the location of the pilot project after discussions with Electricidade dos 
Açores (EDA). The homes selected for the project were in fact the homes 
of employees of EDA who chose to participate in this pilot project. São 
Miguel is the largest island of the Açores and has been used in previous 
research projects. Other islands within the Açores may be alternatives 
for future projects. The islands share a similar climate and other char-
acteristics which mean that the results obtained in this pilot project can 
be representative of the other islands. 

The devices were installed in 15 homes, and a photo of a typical 
installation is shown in Fig. 10 below. The types of homes and equip-
ment installed varied widely across the houses. The number of in-
habitants ranged from two to five people in the home, while the capacity 
of the EWH ranged from 80 to 150 l. A standard installation and training 
process was done for each household. The device was controlled by a 
smartphone app, allowing users to monitor hot water usage, and 
included a ‘heat now’ option. A screenshot from the app is shown in 
Fig. 11. This option allowed the users to override the smart mode and 
immediately heat the water in the tank up to a particular set point. This 
option provided the users with increased control and flexibility. 

The smart mode is the main novelty of the Klugit device as it converts 
a previously passive EWH into an active grid asset that takes several 
inputs and intelligently operates the EWH to minimize the heating cost 
of the consumers while ensuring their needs for hot water are met. Three 
aspects influence the operation of the smart mode. The first is the tariff 
regime in place for the consumer. The smart mode aims to minimize the 
energy consumed from the high tariff periods while maintaining the 
consumer’s comfort. The second aspect of the smart mode is related to 
the forecast of the hot water demand needed by the household. This 
forecast relies on artificial intelligence techniques to accurately forecast 
the quantity of hot water based on the past behavior of the home. The 
final influencing factor of the smart mode is the temperature of the water 
stored in the EWH, which also relies on the amount of water used in the 
previous periods and physical characteristics relating to the EWH itself. 

The smart mode helps to reduce energy consumption and therefore 
costs by maximizing the amount of heating taking place during low tariff 
periods, and only in exceptional circumstances, such as if the user 
chooses the ‘heat now’ option, will the smart mode heat water during 
high tariff periods. The physical reasons for this are that less electricity is 
being consumed in high tariff periods and the heating load is being met 
during lower tariff periods, and the EWH effectively stores this water 
until it is needed, which helps ensure that the consumer’s comfort is 
maintained. 

Fig. 7. Improvement in the performance of the final XGBoost flow model.  

Fig. 8. Improvement in the performance of the final LSTM flow model.  
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4. Results 

This section presents the quantitative results of hot water fore-
casting, peak load reduction, and avoided emissions. In addition, the 
qualitative results of consumer interviews and surveys are presented. 
These surveys are included to help evaluate the impact of the devices on 

consumers’ lifestyles and comfort. 

4.1. Hot water forecasting and intelligent heating 

The core function of the device is to forecast residential hot water 
demand and to activate the EWH to meet this demand intelligently. This 
intelligent heating can help reduce unnecessary heating cycles of the 
EWH, thus reducing thermal losses and shifting the heating periods 
away from periods of high tariffs. These two benefits accrue to the 
consumer, but the device can also offer benefits upstream to the system 
operator. These benefits may include peak shaving, load shifting, 
participation in demand response programs, and ancillary services. In 
this pilot project, only the first two benefits were assessed. 

In addition to the abovementioned benefits, there is also the ability 
of the device to operate during high periods of renewable energy gen-
eration. By operating during these periods, the device can help increase 
the penetration of renewable energy technologies and utilize energy that 
may be curtailed if the device is not functioning. To demonstrate the 
impact of the device on the operation of an EWH, Fig. 12 compares the 
baseline operation for the average of July and August without any 
intervention for the same months. In Fig. 12, the blue line shows the 
baseline operation of EWH without the operation of the device. The 
orange line shows the device operating in the smart mode to heat the 
water intelligently when needed. From the Figure, it is clear that the 
heating load has been shifted out to the early morning and late afternoon 
periods, avoiding the early evening peak. This intelligent load heating 
results in a reduction in the electricity used. There is a significant period 
of pre-heating done in the morning and again between 16:00 and 17:00. 
This helps reduce the need for heating at other high-peak demand 
periods. 

The heating load was reduced by an average of 1.33 kWh/day per 
device for all devices, representing an average reduction in heating 
demand of 26.43%. The maximum decrease in heating use was 54.4% 
for a single household, while one home saw the heating demand increase 
by 2.24%. This specific case is discussed in detail in the following 

Fig. 9. Infrastructure layout of the Klugit system.  

Fig. 10. Typical installation of a Klugit device.  
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paragraphs. The average daily energy use in the baseline and smart 
mode of the ten devices with the most recorded data during the pilot 
period are shown in Table 3. The device names have been removed for 
data privacy reasons. The table shows a considerable reduction in the 
energy use associated with domestic hot water use. In addition to 
reducing the electricity used for water heating, the Klugit device also 

shifts the heating timing to periods with low energy tariffs, reducing the 
consumer’s energy bill. 

In São Miguel, a three-period tariff regime is available for the clients. 
There are periods of low, moderate, and high energy tariffs depending 
on the time of day. These tariffs are shown in Table 4 below. These costs 
are distributed over the entire day, periods of which are related to the 
demand for electricity in the regulated energy market. The low tariff 
corresponds to the periods where the electricity demand is less; the 
moderate tariff corresponds to the periods where there is medium de-
mand; the high tariff corresponds to the periods where the peak load is 
observed, which means the electricity demand is at the highest. 

The tariff is overlaid in Fig. 13 below, which shows the average 
baseline and smart mode operation for a given home. The green area 
represents periods of a low tariff, the yellow indicates periods with 
moderate tariff, and the red denotes the periods with a high tariff. Again, 
the blue curve represents baseline mode operation, and the orange curve 
represents smart mode operation. 

Fig. 13 shows that in the smart mode operation, there is more elec-
tricity used by the EWH in low or medium tariffs compared to the 
baseline operation. The smart mode operation reduces the energy cost to 
consumers by combining the effects of reducing energy consumption 
and switching the heating load from high tariff periods to low tariff 
periods. Based on the tariffs in place and Fig. 13, consumers would pay 

Fig. 11. Screenshot of the Klugit energy app.  

Fig. 12. Energy use in both smart mode and baseline modes.  

Table 3 
Energy use differences.  

Device Baseline (kWh) Smart mode (kWh) % reduction 

1 10.09  8.79  12.88 
2 2.52  2.22  11.90 
3 5.03  3.51  30.22 
4 4.61  3.37  27.84 
5 2.9  2.14  26.21 
6 7.78  4.82  38.05 
7 4.23  2.92  31.78 
8 5  2.28  54.40 
9 4.46  4.56  − 2.24 
10 3.75  2.41  35.73  

Table 4 
Tariffs in use during the pilot project.  

Tariff Type Low Moderate High 

Cost (€/kWh)  0.10  0.16  0.23  
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an average of €0.754/day in the baseline and €0.4866/day in the smart 
mode to satisfy their heating demand. This results in a cost-saving of 
35.54% for the consumer. The annual cost savings the consumer enjoys 
equate to €97.63 without affecting the thermal comfort of the consumer. 

While operating in smart mode during the pilot project, one EWH 
used more electricity than the baseline operation, as shown in Fig. 14. In 
this case, the smart mode used an additional 0.05 kWh/day relative to 
the baseline operation. However, in this case, due to shifting the load 
from high tariff periods to lower tariff periods, the cost to the consumer 
was still lower when the smart mode was operating. In the baseline 
approach, this EWH had a daily cost of €0.33/day, while in the smart 
mode, the cost was reduced to €0.277/day. This result shows the benefit 
of load shifting and how it can directly benefit the consumer even if 
more electricity is used to satisfy heating demand in some instances. 

Therefore, considerable savings can be observed when this smart 
plug is connected to an EWH and operating in smart mode. Importantly, 
as there were only 15 homes in the pilot project, there was constant 
communication between the users and the project organizers. This 
allowed the consumers to report any issues with the smart mode oper-
ation, such as inadequate hot water. 

Therefore, considerable savings can be observed when this smart 
plug is connected to an EWH and operates in smart mode while 

maintaining consumer comfort. These savings in both energy and money 
are expected to increase with increasing numbers of installed devices. 
The savings are direct savings accrued to the consumer. A summary of 
these results is shown in Table 5. 

4.2. Peak load reduction 

The ability of the installed device to reduce energy consumption and 
shift load to periods of lower demand also has important benefits for the 
system operator, and this is especially true in the case of São Miguel 

Fig. 13. Effects of load shifting due to the Klugit device.  

Fig. 14. Energy use of selected EWH with higher energy consumption in smart mode. for device 9.  

Table 5 
Summary of results from the São Miguel pilot.   

Average 
energy 
saved 

Average energy 
removed from 
high tariff 
period 

Average 
energy added 
to low tariff 
period 

Money saved 
by the 
customer 

Azores 
Pilot 

1.33 kWh 0.92 kWh 1.26 kWh €0.267 /day 

Annually 485.45 
kWh 

335.8 kWh 459.9 kWh €97.63  
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Island. As mentioned, the island relies heavily on imported fossil fuel 
(diesel and oil) to run the main thermal power plant, the 98 MW ca-
pacity Caldeirão Thermoelectric Power Plant (CTCL). This plant uses a 
combination of diesel and fuel oil to generate electricity. Due to the fuel 
being imported for this plant, its generating costs are significantly higher 
than other resources in São Miguel. This is shown in. 

Table 6, which contains the generating or operational costs of each 
technology for São Miguel and is provided by EDA. 

In addition, the operating costs of the CTCL plant are dependent on 
numerous factors, including the global oil price. This can vary signifi-
cantly. Between January and June 2021, the operational costs for the 
CTCL plant were €0.1241/kWh, but this can change depending on the 
global oil price, which has been very volatile in the past 12 months [14]. 
The dispatch order is the order in which the different technologies are 
used to meet the system’s demand. It depends on numerous factors such 
as power plant composition, capacity, capital and operational costs, and 
flexibility (ramping, load following, frequency regulation). The dispatch 
order is essential in this analysis as a collection of installed devices can 
operate as a flexible resource and thus would be able to partially replace 
the peaking plants used by EDA to meet the demand. The collection of 
devices may function as a Virtual Power Plant and can respond to spe-
cific requests from the system operator. The devices were compared to 
the biogas and thermal plants, which are dispatch orders 4 and 5. 

Figure 15 shows the average energy mix for São Miguel on 7 July 
2021. It can be seen that both geothermal and hydro act as baseload 
generators. Biogas (yellow area) has the cheapest operational cost but 
does not contribute significantly to electricity generation (biogas only 
produced 0.17% of electricity in São Miguel in 2020) and only produces 
electricity when there is enough feedstock material. Wind generation 
has a relatively small contribution on this day, but it has a larger share in 
the late afternoon. The CTCL plant operates as a mid-merit plant to 
satisfy the remaining demand.The quantity of electricity generated by 
each technology and its associated generation costs are reflected in 
Table 7, and the data are provided by EDA [14]. These are the com-
mercial costs paid for each unit of electricity the plants generate under 
the relevant production agreements. The amounts of energy generated 
by solar PV and biogas are estimates, as they are independently owned 
and operated. The amount of power generated by these two sources is 
not currently meaningful to the broader energy system of São Miguel. 

On São Miguel island, there are 64 055 low-voltage clients. Of these 
clients, 8.3% already use an existing electric water heater (based on the 
“Inquérito ao consumo de energia no sector doméstico – 2020”); thus, 
this is the initial target market for the intelligent EWH. This provides a 
currently addressable market of 5317 EWHs in São Miguel. In the future, 
it is expected that an increasing number of low-voltage clients will 
switch from liquefied petroleum gas (LPG) boilers (currently, 88.3% of 
low-voltage clients in the Açores islands use LPG boilers to heat water) 
to electric water heaters. 

Various scenarios were considered to investigate the system-wide 
impact of the devices. These initial scenarios were classified as low, 
medium, and high uptake scenarios depending on the percentage of 
clients with an existing EWH who will install a device. These scenarios 
are the following:  

• Low uptake: Klugit devices are installed on 20% of existing EWHs 
(20% of 5317 EWHs gives 1063 devices).  

• Medium uptake: Klugit devices are installed on 40% of existing 
EWHs (40% of 5317 EWHs gives 2127 devices).  

• High uptake: Klugit devices are installed on 80% of existing EWHs 
(80% of 5317 EWHs gives 4254 devices). 

Fig. 16 below shows the total generation profile for São Miguel (pink 
curve) and a load of these EWHs operating both in smart mode (orange 
curve) and baseline mode (blue curve). For this analysis, the medium 
uptake scenario was considered. While the magnitude of the impact of 
the devices may be limited in this scenario, we can see an increase in the 
early morning load when the fleet of devices operates in smart mode. 
This impact is only expected to increase as the number of devices 
increases. 

This shift in early morning load from the connected devices oper-
ating in smart mode is shown in Fig. 17. The pink line shows the existing 
generator load or standard load profile with passive EWHs, in other 
words, the current situation. The green lines would represent the load 
curve if the aggregated EWH operated in the smart mode in the different 
uptake scenarios. There is load shifting, especially with an increase in 
the load in the early morning when the devices are heating. Installing 
the devices can reduce the total energy used by 2831.98 kWh daily or 
0.21% of total energy under the medium uptake scenario. This figure is 
solely from installing the device on existing EWH and is complementary 
to the other benefits mentioned earlier 

4.3. Avoided emissions 

Reducing energy use and associated operating costs are not the only 
benefit that this aggregated group of intelligent EWH may provide. Due 
to the high share of imported fossil fuels (both fuel oil and diesel) used 
by EDA to generate electricity throughout the Azores, the carbon in-
tensity of the electricity is high, with a value of 421.5 gCO2/kWh in 2020 
[13], which is well above the average for Portugal which stands at 201 
gCO2/kWh [16]. This value highlights the importance of reducing 
emissions in the Azores islands, significantly reducing the amount of fuel 
oil imported. Because of the high carbon intensity of fuel oil, even 
though the absolute amount of energy saved using intelligent EWH is 
less than 1% of total energy, by reducing the electricity used, especially 
from the CTCL plant, the group of EWH can have a significant impact on 
the emissions profile of São Miguel. Through the analysis of the hourly 
generation and demand profiles, the amount of thermal generation 
displaced by the intelligent heating of the EWHs can be quantified. 

Fig. 18 compares the thermal generation used for residential water 
heating in the passive (black) and smart modes (green) in the medium 
uptake scenario. This substitution leads to a reduction of 0.37% of 
thermal generation or 2831.98 kWh per day with a generation cost of 
€0.1241/kWh. This reduction in thermal generation varies between 
1413.79kWh per day (0.1% of total generation from CTCL) in the low 
uptake scenario and 5657.8 kWh per day (0.32% of total generation 
from CTCL) when the high uptake scenario is considered. Solely based 
on the avoided generation from the CTCL plant, assuming a unit cost of a 
Klugit device of €85 per unit (this cost is obtained directly from Klugit 
Energy and considers the most up-to-date production cost), the costs to 
equip 2127 residential homes with the device will be repaid in 1.4 years, 
solely from not needing to use the CTCL plant to generate this extra 
electricity that is not required. Considering a margin of error of 15% for 
both an increase and decrease of the unit costs, this means that this set of 
Klugit units would repay their purchase price in 1.61 years in the case of 
higher costs or 1.22 years in the case of lower costs. This benefit is in 
addition to the direct cost-saving benefit to the consumer of nearly €100 
annually based on reducing energy consumption. 

Displacing this thermal generation will also have positive impacts on 
the emissions profile of EDA. Assuming that the aggregate group of 
intelligent EWH can replace 2831.98 kWh per day in the medium uptake 
scenario and using a carbon intensity of 670.729 gCO2 /kWh for the 
thermal generation, leads to a reduction of 693.31 tons CO2 per year 

Table 6 
Dispatch order and operational costs.  

Plant Type Dispatch order Rate (€/kWh) 

Geothermal 1  0.101 
Hydro 2  0.101 
Wind 3  0.101 
Biogas 4  0.0924 
CTCL 5  0.1241  
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(346 tons CO2 in the low uptake scenario or 1385.4 tons CO2 in the high 
uptake scenario) emissions from thermal generation by simply plugging 
in one of these devices to manage the heating load of an EWH efficiently. 

EDA emitted 368 000 tons of CO2 in 2020; therefore, aggregated 
devices can reduce this total by 0.18 % by only installing 2127 of these 
devices across São Miguel (this corresponds to 0.089 % in the low uptake 
scenario or 0.36 % in the high uptake scenario). This substitution can 
have important implications for reducing CO2 emissions and improving 
air quality. 

4.4. Impact on the physical infrastructure 

Another possible benefit that intelligent EWH may offer the system 
operator is the reduced load placed upon the physical infrastructure, 
such as transformer units in low-voltage networks. These EWH and other 
distributed energy resources may operate as non-wires alternatives to 
investing in physical infrastructure upgrades [11]. The information on a 
substation transformer data from the region in São Miguel, whose data 
was available, is gathered and used for the analysis. The daily trans-
former load profile of the substation is shown in Fig. 19. The total 
transformer load is pink, while the baseline, passive EWH demand is 
blue. While the lines are nearly identical, there is a slight decrease in the 
energy used during the two peaks, at around noon and again at 20:00. 
There is also an increase in the demand during the early hours of the 
morning at around 03:00. The intelligent EWH operation is shown in 
orange under the medium uptake scenario. The straight horizontal lines 
represent the mean load for the different loads over the entire day. 

Fig. 20 shows the baseline transformer load in pink (Transformer 
Load). The green line is created by removing the baseline EWH load and 
replacing it with the intelligent load from the devices. There is load 
shifting occurring when the smart EWHs are operational. However, 
there is no peak reduction occurring. The peak load is slightly increased, 

Fig. 15. Energy mix for 7 July 2021.  

Table 7 
Energy generated and costs for São Miguel in 2020.  

Technology Energy generated in 2020 
(MWh) 

Operational cost 
(€/kWh) 

Thermal 
(CTCL) 

218673.81 0. 1241 

Geothermal 169447.68 0.1011 
Wind 15028.81 0.1011 
Hydropower 23846.95 0.1011 
Solar PV 21 0.1011 
Biogas 700 0.0924  

Fig. 16. Total load compared to baseline and smart mode demand of fleet of Klugit devices.  
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and the minimum load is reduced. However, the objective of this device 
is not currently related to minimizing the impact on the physical 
infrastructure. 

A figure showing the differences in power demanded in the baseline 
(Old transformer load in pink) and smart mode for different penetration 
levels (shown in green) of the device is shown in Fig. 20. However, there 
is minimal peak reduction occurring. The peak load is slightly decreased, 
and the minimum load increases, especially at a penetration level of 
80%. These results are small as the objective of this device is not 
currently related to minimizing the impact on the physical 
infrastructure. 

The objective is to reduce the cost of satisfying the consumers’ hot 
water demand. Therefore, in the future, the objective may be modified 
so that reducing the impact on the physical infrastructure is considered. 
This objective can be achieved by allowing the utility to control the EWH 
during high system stress. This control is possible as the simple device 
transforms a passive EWH into a controllable distributed energy 
resource asset that can be used to satisfy several objectives from 
different agents. 

4.5. Results from the customer satisfaction survey 

At the end of the pilot project, consumer semi-structured interviews, 
surveys, and questionnaires were also carried out to measure consumer 
satisfaction with the devices installed qualitatively. 

The quantitative survey consists of 20 questions, of which 18 were 
categorical questions about recommendations, application features, 
design, installation, and usability on a scale from 1 to 10. We have one 
multiple-choice question with five. 

different prices and a section for consumer suggestions for 
improvement. The consumers gave the device a global average score of 
7/10. The following list contains the key areas of focus in the 
questionnaire:  

• Recommendation: how probable they would recommend the device 
to a family or friend. 

• App features (with eight questions): measuring the actual satisfac-
tion with the device’s features themselves, and seven others 
measuring the importance of the following list of characteristics:  
1. The priority given to the “low peak” period and avoiding the “high 

peak” period to heat water. 

Fig. 17. Baseline load vs. smart mode load.  

Fig. 18. Energy from thermal generation from CTCL in the baseline and smart modes.  
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2. Reduction of thermal losses from the water heater.  
3. Viewing savings in the app.  
4. Visualization of the reduction of CO2 emissions.  
5. Visualization of the forecast for upcoming hot water needs.  
6. Request additional hot water when needed (Heat Now) in the app.  
7. Turn off smart mode when needed.  

• Design: consisting of 3 questions measuring satisfaction on the 
following topics:  

1. Design and user experience of the mobile app.  
2. The appearance of the product.  
3. Packaging.  
• Installation process: assessing the level of satisfaction during the 

experience of the device installations.  
• Usability: 3 questions measuring satisfaction, safety, trust, and 

feeling:  
1. Satisfaction with the ease of use.  
2. Degree of safety and trust when using the device.  
3. The feeling of owning one of the devices. 

From a qualitative perspective, an interview script was prepared 
with 14 groups of small open-ended questions with 10 participants. Each 

participant was asked the same group of questions individually via 
remote, semi-structured interviews. The interview discussed the instal-
lation process, the existence of other water heaters, the previous use of 
different devices to control energy consumption (for example, timers), 
the difference between Klugit and those devices, lack of hot water during 
the test period, satisfaction, the use of the app and the ‘heat now’ 
feature, changes on the bill, feelings about savings presented on the app 
and overall services, and finally the probability of recommendation for 
the device and services. 

Results from the survey indicate that the consumers’ DHW demand 
was met during the pilot project. Four users gave the device a 10/10 
score in the user satisfaction and recommendation category, while only 
two scored under 5/10, so the median score was 8/10. Regarding the 
ease of installation, only two users scored under 7/10, and the median 
value was again 8/10. There was an average of 7.3/10 for ease of use of 
the device (median value of 8/10) and 6.1/10 for satisfaction with the 
functionality of the device, with a median value of 7/10. The average 
rating for the satisfaction of the mobile application was 7/10, with a 
median of 8/10. Regarding the aesthetics and packaging of the product, 
the average score was 7.3/10 (median 8/10) and 7.6/10 (10/10), 
respectively. The functionalities of the device that the consumer valued 

Fig. 19. Transformer load with baseline and smart mode loads.  

Fig. 20. New (smart mode) and old (baseline) transformer load.  
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as most important and would like to be included in future versions are as 
follows (ranked from the most important to the least important).  

1. Load shifting or avoiding high tariff periods.  
2. Reducing the contracted power by ensuring that the EWH is not 

operating simultaneously with other major appliances.  
3. The ability to disconnect the smart mode or use the ‘heat now’ 

function when necessary.  
4. The sustainability and design of the device and the packaging.  
5. The ability to visualize savings from the smart mode in the mobile 

application.  
6. Viewing the forecasted schedule for hot water demand.  
7. Reducing the thermal losses from the EWH.  
8. Reducing CO2 emissions from the energy used to heat the EWH. 

The consumers stated that the device installation was quick, easy, 
and straightforward. Several consumers were already using a pro-
grammable plug for their EWH, which might have simplified the 
installation process. Concerning the two users who were not completely 
satisfied with the device, the significant reasons were not related to the 
device. In one case, a weak Wi-Fi signal made communication difficult 
between the device and the home router. In the other case, the consumer 
was required to use hot water during peak periods, and the device was 
specifically designed to avoid use during peak periods. The consumers 
stated that the major reason for using the mobile application was to 
utilize the ‘heat now’ functionality and then to view the estimated 
savings from the smart mode and the forecasted schedules for hot water 
demand. 

In terms of areas identified for further improvement, the survey and 
questionnaire identified the following:  

• Improve the device’s WIFI connectivity.  
• Modify the system to allow for heating during high tariff periods if 

necessary to meet the DHW needs of the consumer.  
• Once enough data has been gathered, modify the device to act more 

like a standard programmable plug. Propose a heating schedule to 
the consumer and request approval of this schedule. The schedule 
will not be changed unless directed by the consumer. Suggestions for 
improvement will be sent to the user but will require their approval 
before application. This will allow the user to become more familiar 
with the heating patterns of the EWH. This will help users regarding 
the optimal periods of EWH operation, especially those customers 
who already have a standard programmable plug, as was the case in 
several of the users in the Azores pilot study.  

• Improve the feedback given to the consumers, especially around 
their savings in the electricity bill. Accurate and up-to-date savings 
can act as positive reinforcement for consumers.  

• Add an option to switch the application to Portuguese (and other 
languages in the future) to improve ease of use. 

5. Discussion and conclusions 

This section discusses the results presented in the previous section 
and draws conclusions from these results. 

5.1. Discussion 

This paper has discussed the innovative development, implementa-
tion, and validation of a device to convert a passive EWH into an 
intelligent, controllable, distributed energy resource. The device uses 
machine learning techniques to accurately forecast DHW demand based 
solely on the data received from a clip-on temperature sensor. This paper 
contains the details of an actual case study in collaboration with EDA 
utility on the island of São Miguel, Portugal. The pilot project showed 
that these devices function very well and are highly effective in con-
trolling water heating to benefit both the consumers and the system 

operator. Benefits accrued to the consumer regarding reduced energy 
costs, and to the electrical utility, mainly through avoided generation. 
These benefits show the potential for new devices and optimized in-
teractions with the electricity network. These devices or non-wires al-
ternatives may usher in a new paradigm of active residential demand 
and improved ability to respond to requests from the network operator. 
These benefits are even more critical in small island systems which rely 
heavily on renewable energy sources, especially in the current era of 
uncertain costs for imported fossil fuels. 

The paper also showed that the device was well received by the 
participants, being easy to install and operate. Overall, the qualitative 
results showed that the device did not significantly affect the consumer’s 
comfort while saving them a considerable amount of their monthly 
heating bill. The consumers enjoyed the sense of control of their EWH 
and their ability to visualize their estimated savings and forecasted hot 
water demand. Importantly, this shows that consumers can be incen-
tivized to actively participate in the energy system using a combination 
of cost-saving measures, innovative applications of machine learning 
techniques, and forward-looking initiatives from electrical utilities, as 
was shown in this case by EDA being an active participant in the pilot 
project. 

5.2. Conclusions 

In terms of direct benefits to the consumer, the device reduced the 
energy used to heat water by an average of 1.33 kWh per day per device, 
or 26.43% throughout the pilot study, which is significant. This energy 
reduction led to an estimated average saving of 35.5% per consumer. 
The annual cost savings the consumer enjoys equate to €97.63 without 
affecting the thermal comfort of the consumer, which is noteworthy. 
This monetary benefit exceeds the unit price of the device (estimated at 
€85 per unit), and with a lifetime of 5 years, the device can bring sig-
nificant financial benefits to the consumers while maintaining their 
comfort. The device can also provide direct and indirect benefits to the 
system operator. Using a group of these devices in a coordinated 
manner, similar to a Virtual Power Plant, the devices can reduce the 
system’s peak load, increase load during low-demand periods, and 
displace electricity generated by fossil fuels. Using a fleet of 2127 
intelligent EWHs, it is estimated that the devices can reduce total energy 
used on São Miguel by 2832 kWh per day just through the efficient 
heating of water, with no noticeable impacts on the thermal comfort of 
the consumer. The energy savings from these devices in displacing 
generation from the CTCL plant ensured that the devices had an 
acceptable payback period. Additionally, it is estimated that these de-
vices can reduce the carbon emissions of EDA by 693.31 tons CO2/year. 
Further, the costs of importing fossil fuels to the islands will be reduced. 

There are some limitations identified from the model development 
and pilot project process. These limitations include that the consumers 
were employees of EDA and volunteered for this project. The volunteers’ 
background could mean they are more familiar with the technology. A 
more diverse sample of people should be recruited for the following 
projects. 

The model optimized the system without feedback from the con-
sumer. In the future, the user could suggest changes to initial heating 
patterns to integrate the consumer’s behavior better. The model was 
focused on minimizing the cost of a single consumer. There was no 
attempt to pursue additional goals such as aggregated peak load 
reduction or displacing fossil fuel-based generation. These objectives 
can be included in future iterations of the model, and a multi-objective 
process can be followed depending on the consumer’s preferences. 

Future directions can include translating the application into 
different languages and improving the vibration sensor for improved 
water flow forecasting. This includes investigating other locations of the 
vibration sensor to ensure that the data obtained is as accurate as 
possible. Additionally, different locations and environments should be 
tested to ensure that the device works in various settings. In addition, the 
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device’s ability to participate in real-time demand response programs 
and provide ancillary services such as network frequency regulation. 

In closing, this paper has shown that a relatively cheap and user- 
friendly device to intelligently control an electric water heater can 
bring significant benefits to both consumers and the system operator. 
These benefits included energy savings, peak load reduction, and 
reduced emissions through avoided generation. This paper provided 
evidence of a successful pilot project where this innovative device was 
used by actual consumers for six months and offered real cost savings to 
the households while maintaining their thermal comfort. 
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