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Abstract—The issue of a state estimation-based fault-tolerant 

controller for direct current (DC) microgrids (MGs) is studied in this 

paper. It is considered that the DC MG contains nonlinear constant 

power load (CPL) and is subjected to actuator faults. Current 

sensors are not installed and the voltages of the DC MG are 

measured in the presence of noise and sensor faults. To estimate the 

system states, a novel dual-Extended Kalman filter (D-EKF) is 

proposed, which simultaneously estimates the states and faults.     

The fault- and noise-free estimations are then deployed in a 

nonlinear Takagi-Sugeno (TS) fuzzy predictive controller to regulate 

the DC MG. The proposed method outperforms the exiting results, 

being robust against faults and noise. Also, the predictive scheme 

makes it robust against system uncertainties and forces the system 

states to converge the desired values, precisely. The accuracy and 

robustness of the developed method are evaluated and compared to 

advanced state-of-the-art techniques for a typical DC MG with a 

resistive load, CPL, and energy storage unit.  

Keywords—DC microgrid, Constant power load, Actuator fault, 

Sensor fault, Dual-extended Kalman filter (Dual-EKF), Model 

predictive control (MPC), Fault-tolerant control. 

I. INTRODUCTION 

a) Motivation and Background 

Direct current (DC) microgrids (MGs) are small-scale power 

grids that include distributed generation units, energy storage 

devices, and flexible loads. The DC MGs have been gaining 

popularity, because of robustness, simple control, and high 

efficiency of integrating DC sources such as wind turbines, fuel 

cells, and photovoltaics [1]. In spite of their advantages, the DC 

MGs have some challenging issues. They should feed nonlinear 

loads, such as constant power loads (CPLs). The key 

challenging issue of CPLs is that they destabilize a power 

system by inserting a negative incremental resistance [2], [3].  

The voltage and current sensors are not ideal and subject to 

faults and noise. Therefore, the measures of a DC MG are not 

completely reliable. The controllable power electronic devices 

in a power system may work with faults, which degrade the 

control performance. These issues affect the DC MG operation 

and should be treated in monitoring and controlling actions. 

These challenges have been investigated in the literature and 

several control and estimation methods have been suggested. 

b) Related Literature 

The related works are classified into three groups:  

i) CPL destabilizing effect and its stabilizing methods,  

ii) fault detection,  

iii) fault reconstruction and tolerant control.  

In the following, these groups are reviewed. 

The undesired effect of nonlinear CPLs is avoided and the DC 

MG is stabilized by active stabilizing techniques and different 

linear and nonlinear control strategies, as presented in [4]–[6]. 

Compared with linear proportional-integral (PI) methods, 

nonlinear ones, such as backstepping [7], [8], predictive [9], 

[10], and sliding mode [11], [12] assure the global stabilization 

of the DC MG. However, those nonlinear controllers deploy the 

power system state vector information and therefore, require the 

installation of several current and voltage sensors. This makes 

them fragile to sensor faults and noisy measurements.  

In parallel to stabilizing controllers, recently, few sensor fault 

detections have been deployed for DC MGs [13]. They can be 

classified into data-driven and model-based methods. Compared 

to the data-driven approaches, model-based methods sensor 

fault detectors require a low computational burden and are more 

robust against noise. In [14], a linear high-gain Luenberger 

observer is suggested for DC MGs with CPL. In that approach, 

the nonlinear CPLs are linearized and system states are 

estimated near the operating point. Based on an error between 

the actual output and estimated output, the sensor fault is 

detected. But it is not reconstructed and the system states 

estimations are not accurate.  

In [15], a fusion Kalman filter is used to detect attacks and 

estimate states accurately. In that approach, measurements are 

grouped and each group is deployed to estimate the states.       

By evaluating the estimations of each group, the faulty sensor 

is found and localized. Therefore, an accurate estimation is 

achieved. Since Kalman filter is used [15], estimations are 

robust against noise. However, sensor fault is not reconstructed. 
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Although detecting sensor faults and estimating states are useful 

for monitoring of a power system, they are unsuited for dealing 

with actuator faults and control actions, since an effective 

control mechanism should contemplate actuator faults.   

In [16], the actuator and sensor faults were detected by 

developing a robust linear observer. However, the detected 

faults were not estimated. In [17], a Takagi-Sugeno (TS) fuzzy-

based sliding mode observer ~was deployed to detect both 

sensor and actuator faults. However, that approach mandates 

some matrix rank conditions and transformations and is not 

applicable to complicated DC MGs. Additionally, the fault-

tolerant control (FTC) issue of DC MG based on the estimated 

information was not investigated.  

In [1], a noise resilient nonlinear filter was developed to 

estimate both sensor and actuator faults. However, the optimal 

and fault-tolerant control of DC MG was not studied.  

A robust controller and monitoring technique was presented 

in [18] to alleviate the consequence of occurring faults. In [19], 

a faulty hybrid AC/DC MG was stabilized by a fault-tolerant 

passivity-based controller. System fault occurred at the AC side 

and AC bus voltage was measured. However, in [18] and [19], 

the actual fault is not reconstructed and is only tolerated.  

In [20], the influence of several faults on a typical DC MG 

with CPLs was evaluated, and an FTC method was developed. 

In that approach, for each CPL, an FTC was deployed. However, 

for complicated DC MGs with a high number of CPLs, several 

controllers should be considered, which is not cost-effective.  

Reviewing the state-of-the-art methods reveal that the control 

methods are not robust against faults, or only estimate sensor 

faults, or require a complicated implementation. 

c) Paper Innovation and Contribution 

This work develops a novel fault-tolerant predictive controller 

for the class of DC MGs with nonlinearities, sensor and actuator 

faults, and noisy measurements. The main novelty of this work 

is presenting a novel dual-EKF (D-EKF) based on which the 

system's noise-free states and sensor and actuator faults are 

estimated.  

Since in the estimation procedure the effect of faults is 

involved, an accurate state estimation is achieved. Moreover, 

the D-EKF uses two parallel EKFs, which reduces the overall 

computation burden by implementing them on different 

processors. An improved adaptive fault-tolerant predictive 

controller is proposed, which acquires the faults and states 

estimations to precisely regulate the DC bus voltage.  

To deal with the nonlinear CPL load, the prediction 

mechanism in the predictive controller is equipped with a 

nonlinear TS fuzzy representation, which improves the 

prediction. The considered DC MG connects a DC source and 

energy storage unit to linear and nonlinear loads. The controlled 

energy storage unit and the voltage sensors are assumed to be 

faulty. The proposed approach is applied to the DC MG and its 

estimation and control action results are compared with state-

of-the-art methods.  

d) Paper Organization 

In Section II, the state space presentation of the DC MG with 

an energy storage unit and a CPL is presented and additive 

actuator and sensor faults are thoroughly explained. In Section 

III, the developed fault-tolerant controller, including the dual-

EKF and TS fuzzy-based predictive controller, is designed.       

In Section IV, numerical comparative results are provided and 

the obtained outcomes are discussed. Finally, in Section V, the 

achievements of this paper are summarized and some future 

perspectives are drawn.  

II. FAULTY NONLINEAR DC MG REPRESENTATION 

An islanded DC MG, as shown in Fig. 1, comprises a DC 

source, an energy storage unit, a nonlinear constant power load 

(CPL), a resistive load, and passive RLC filters.  

It is assumed that the voltage of the DC source is fixed by a 

DC/DC converter and it is not controllable. On the other hand, 

the current of the energy storage unit can be manipulated to 

regulate the DC bus voltage. The voltages of the capacitors are 

measured and current sensors are not deployed [21].  

Additionally, the power DC MG is subjected to sensor and 

actuator faults. The main source of sensor faults is the mis-

functionality of the sensors, which produces a bias term in the 

outputs. Also, the power electronic converters of the energy 

storage units may perform improperly, which results in actuator 

faults. The nonlinear CPLs are generated by precise control of 

the load side power electronic devices.  

The dynamics of the typical system of Fig. 1 are as follows 
[22]: �� = �� + ���	 + 
�� + 
��� + ������ = ��� + ��
�                                          , (1) 

where � = ���   ��   ��  ���� = ����  ���   ���  �����  is the state 

vector. It contains the inductor current and capacitor voltage of 

the filter connected to the CPL(source), i.e. ��� ( ��� ) and ���(���), respectively; the control input is the current of the 

energy storage unit and can be both positive or negative to inject 

or absorb power to the DC MG, respectively; ��� is the voltage 

of the DC source; 
�(
�) stands for the actuator(sensor) fault;      � is the output measurement. The actuator and sensor faults are 

modeled by additive terms [17], [23].  

Also, the constant matrices, � , �� , �� , �� , and ��  and 

nonlinear functional matrix 
��� are defined as follows: 

� =
⎣⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡− $�%� − 1%� 0 1%�1�� 0 0 0

0 0 − $�%� − 1%�
− 1�� 0 1�� − 11(��⎦⎥

⎥⎥⎥
⎥⎥⎥
⎥⎤

; �� =
⎣⎢⎢
⎢⎡ 000− 1��⎦⎥⎥

⎥⎤ ; 


��� =
⎣⎢⎢
⎢⎡ 0−-�����00 ⎦⎥⎥

⎥⎤ ; �� =
⎣⎢⎢
⎢⎡ 001%�0 ⎦⎥⎥

⎥⎤ ; 
�� = .0 1 0 00 0 0 1/ ; �� = .11/ 

(2) 

where $�($�), %�(%�), and ��(��) are the resistive, inductive, and 

capacitance values of the CPL(source) filter, ( and - stand for 

the resistive and constant power loads, respectively.  
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Fig. 1. The DC MG with CPL, resistive loads, actuator fault, sensor fault, and 

noise. 

 

The goal of this work is to propose a fault-tolerant controller 

to adaptively regulate the DC bus voltage of the DC MG. Since 

only some states (i.e. ��  and ��) are measurable, it is desired 

that the state vector is estimated. This facilitates deploying the 

estimated state vector as the feedback in the controller. 

Appearing the faults degrades the estimation and control actions. 

To solve this issue, the state estimator should be enhanced so 

that it can estimate the faults as well.  The CPL in the DC MG 

makes the dynamics nonlinear. Thereby, the estimator and the 

controller should be applicable to nonlinear systems to stabilize 

the power system, effectively. These challenges will be 

responded in the following parts. 

III. PROPOSED NONLINEAR FAULT-TOLERANT CONTROLLER 

The proposed fault-tolerant controller involves two parts of 

the states and faults estimator and model predictive controller. 

These parts will be discussed in the following. 

a) Dual-Extended Kalman Filter 

The D-EKF algorithm is an improved version of the 

conventional EKF and can estimate the state and the called 

parameters of a nonlinear system, simultaneously.  

To deploy the D-EKF, the faults can be treated as parameters 

and estimated. Although the faults can be time-varying, their 

dynamics are not known. Therefore, the following consideration 

is considered: 
�� = 0, 
�� = 0. (3) 

It is worth noting that although (3) indicates that the faults are 

constant, it is applicable for time-varying parameters [24], [25]. 

Also, to make the dynamics more accurate, system noise can be 

added to (3). The D-EKF mandates that the output is parameter-

free, which is not the case of (1).  

Therefore, the measurement equation of the faulty DC MG 

should be modified by introducing a filtered output                    1 = �1�  1���  as follows [17]: 1� = −21 + 2� = −21 + 2��� + 2��
�, (4) 

where 2 3 0.  

Considering (4), it is possible to introduce a fault-free output 

as follows: 4 = 1�5�. (5) 

By defining the two vectors 6� = ���  1�� =���   ��   ��   ��  �7  �8��  and 6� = �
�   
��� = ��9   �:�� , 

reminding (1), (3), and (4), and using the Euler discretization 

method, one has 

⎩⎨
⎧>6��? + 1�6��? + 1�@ = .Ψ���?� Ψ���?�0 B / >6��?�6��?�@ + C��D�	�?�                          +C��D���� + ��?�                              4�?� = ��̅6��?� + F�?�                                                     (6) 

where C� is the discretizing sample and 

�D� = ����   0   0��, �D� = ����   0  0��, 

��̅ = .0 0 0 0 1 00 0 0 0 0 1/, 
Ψ���?� = B + C� >GH��6�G6� … GH8�6�G6� @�JKLMKL�N�, 

Ψ���?� = C� >GH��6�G6� … GH8�6�G6� @�JKLMKL�N�, 
(7) 

and 

⎣⎢⎢
⎢⎢⎢
⎡H��6�H��6�H��6�H��6�H7�6�H8�6�⎦⎥⎥

⎥⎥⎥
⎤

=

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡ − $�%� �� − 1%� �� + 1%� ��1�� �� − -�����− $�%� �� − 1%� ��1�� �� − 1�� �� − ��(�� − 1�� �9−2�7 + 2�� + 2�:−2�8 + 2�� + 2�: ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤
. 

Also, ��?�  and F�?�  are system and measurement noises 

characterized by Gaussian function ℊ, respectively as follows:  

��?�~ℊ Q0, >R� 00 R�@S ,     F�?�~ℊ�0, R��. (8) 

These noises can represent the system uncertainties such as 

the discretizing error, and un-modeled dynamics such as energy 

storage dynamics. 

Inspired from the dual estimation idea [24], [26], [27], in the 

following, D-EKF is developed for system (1): 

• Initialize the state EKF by 6T1U�0� and -�U�0�. 

• Initialize the fault EKF by 6T2U�0�, -�U�0�, and ΓKXKL�0�. 

where 6YZU�. � is the estimation of 6Z�. �, -ZU�. � is the covariance 

matrix of the estimation error of 6Z�. � , and ΓKXKL�. �  is an 

auxiliary state vector showing the interaction of the states and 

faults in the D-EKF. For ? [ 1 , the following recursive 

algorithms should be performed: 

Resistive 

Load 

DC Source 

DC/DC converter Filter 1 

 M 
Filter 2 

DC/DC converter 

DC/AC inverter 

Generator 

Energy 

storage 

system 

CPL 

AC 

Motor 

	 = �\� 	] = 	 + 
� Actuator Fault 

Sensor Fault 

& 

Noise ��� 

��� 
� + 
� + F 
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• Algorithm of the state-EKF 

⎩⎪⎪
⎨
⎪⎪⎧

6Y�_�?� = Ψ���?�6Y�U�? − 1� + C���	�?� + C������             +Ψ���?�6Y�U�? − 1�                                    -�_�?� = Ψ���?�-�U�? − 1�Ψ��� �?� + R�                     
�̀�?� = -�_�?���̅����̅-�_�?���̅� + R��_�                    6Y�U�?� = 6Y�_�?� + �̀�?� a4�?� − ��̅6Y�_�?�b           -�U�?� = �B − �̀�?���̅�-�_�?�                                      

 (9) 

• Algorithm of the fault-EKF 

⎩⎪⎪
⎨
⎪⎪⎧

-�_�?� = -�U�? − 1� + R�                                           
�̀�?� = -�_�?�c���c�-�_�?�c���?� + R��_�         6Y�U�?� = 6Y�U�? − 1� + �̀�?� a4�?� − ��̅6Y�_�?�b-�U�?� = �B − �̀�?�c��-�_�?�                                  ΓKXKL�?� = Ψ���?��B − �̀�?���̅�ΓKXKL�? − 1�           +Ψ���?�                                       

 (10) 

where c� = ��̅ΓKXKL�? − 1�. 

Since the state-EKF and fault-EKF operate in parallel, if no 

fault occurs or a constant fault occurs, the fault-EKF can be 

stopped, and in the state-EKF 6Y�U�?� = 0  or 6Y�U�?� = 6Y�∗ , 

where 6Y�∗ is the last estimated constant value of the faults, in (9). 

The output of the D-EKF corresponds to system states and faults, 

which will be deployed in the fault-tolerant controller. 

b) Nonlinear TS-based MPC Controller  

Since the system dynamics are nonlinear, a nonlinear MPC 

based on a Takagi-Sugeno (TS) fuzzy model is deployed. Also, 

to deal with faults, future system behavior in the presence of 

faults should be calculated. After that, the control law is 

designed. In the following, these issues are studied. 

For the desired reference for the DC MG bus ��∗  and letting �� = 0  in (1), the desired references for the other states and 

control input can be obtained as follows: 

��∗ = -��∗ ; ��∗ = ��∗ + $�-��∗ ; ��∗ = ��∗ − ���$� ; 
	∗ = ��∗ − ��∗ − ��∗( − 
� 

(11) 

Defining �̅ = � − �∗  where �∗ = ���∗, ��∗, ��∗, ��∗��  and       	D = 	 − 	∗, the dynamics (1) are re-written as follows: �̅� = ��̅ + ��	D + 
��� − 
����. (12) 

To deal with the nonlinearity term 
��� − 
����, TS fuzzy 

modeling is deployed. TS fuzzy representation of a nonlinear 

system is a fuzzy aggregation of linear subsystems. This fuzzy 

model facilitates computing the future behavior of the system 

by formulating the nonlinear dynamics in a quasi-linear form. 

For the region ℧ = f��| h� i �� i h�j, where h� i ��∗ i h� , 

the term 
�kX − �kX∗  is within lower and upper sectors l���  and l���, as shown in Fig. 2. Therefore, 

l��� i 1�� − 1��∗ i l���, (13) 

 
Fig. 2. Sector region of the nonlinear term 1/�� − 1/��∗. 

where 

l� = ��∗ − h�h����∗ ; l� = ��∗ − h�h����∗ , (14) 

and l� = 1/h��  and l� = 1/h�� . Inspired from the sector 

nonlinearity, consider the following equalities: 

n 1�� − 1��∗ = o�l��� + o�l���o� + o� = 1                             . (15) 

Solving (15) to calculate the fuzzy membership functions oZ 
for � = 1,2, results into 

o� = l��� + 1/��∗ − 1/���l� − l���� ; 
o� = 1/�� − 1/��∗ − l����l� − l���� . (16) 

Substituting (15) into (1) results a 2-rule TS fuzzy system, as 

follows: 

p�̅� = q oZf�Z�̅ + ��	Dj�
ZM� . (17) 

where 

�� =
⎣⎢
⎢⎢⎢
⎢⎢⎢
⎡− $�%� − 1%� 0 1%�1�� − -��� l� 0 0

0 0 − $�%� − 1%�− 1�� 0 1��
1(�� ⎦⎥

⎥⎥⎥
⎥⎥⎥
⎤
, 

and 

�� =
⎣⎢
⎢⎢⎢
⎢⎢⎢
⎡− $�%� − 1%� 0 1%�1�� − -��� l� 0 0

0 0 − $�%� − 1%�− 1�� 0 1��
1(�� ⎦⎥

⎥⎥⎥
⎥⎥⎥
⎤
. 

1�� − 1��∗  

h� h� l��� 

l��� 

℧ 

��∗  
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The TS fuzzy system (17) is discretized by the Euler 

discretizing method with the sampling time C�, as follows: f�̅�? + 1� = Ψ�?��̅�?� + C���	D�?�, (18) 

where Ψ�?� = B + C� ∑ oZs��?�t�Z�ZM� .  

Based on (18), the future behavior of the system is 

formulated. To do this, the freezing method [21], [28] is utilized 

in which Ψ�? + u� = Ψ�?� for u v 0. Therefore, one gets: 

6D = w Ψ�?�Ψ�?��⋮Ψ�?�yz
{ �̅�?�

+ w C��� … 0C�Ψ�?��� … 0⋮ ⋱ ⋮C�Ψ�?�yz_��� … C�Ψ�?�yz_y}U���
{ ~�, 

(19) 

where 6D = ��T�? + 1|?�  �T�? + 2|?� …  �Ts? + ���?t��
, �T�? + �|?�  is the � -step ahead prediction of the state �̅  and    ~� = �	D�?� 	D�? + 1� …  	D�? + �� − 1��� .  Equation (19) can 

be expressed in a vector form as 

6D = Υ� + Θ�~�, (20) 

where 

Υ� = w Ψ�?�Ψ�?��⋮Ψ�?�yz
{ ��?�, 

Θ� = w C��� … 0C�Ψ�?��� … 0⋮ ⋱ ⋮C�Ψ�?�yz_��� … C�Ψ�?�yz_y}U���
{. 

To design the control input vector ~�, a minimization problem 

with the following cost function is considered: 

�s��, ��t = �6D − �� ��Δ��6D − ��  � + ~��Λ�~�. (21) 

where �� = �F�5 + 1�   F�5 + 2� …   Fs5 + ��t��
 is the 

vector of future references, Δ� = diagf��1�, ��2�, … �s��tj and Λ� = diagf��1�, ��2�, … , �s��tj  are cost function weight 

vectors, diagf. j stands for a diagonal matrix. By substituting 

(20) into (21), one gets 

�s��, ��t = ~��c�~� + �̀~� + ~�� �̀� + �̅, (22) 

where c� = Θ��Δ�Θ� + Λ� v 0,   K� = �Υ� − �� ��Δ�Θ�, �̅ = �Υ� − W� ��Δ��Υ� − �� �. 
The analytic solution of minimizing the cost function  � given 

in  (22) with respect to ~ is as follows: 

~� = −c�_� �̀� . (23) 

The first array of the ~�, i.e. 	D�?�, is the control input law for 

(12). Using the change of variables based on (11), the control 

input law for the DC MG is obtained as 	�?� = 	D�?� + 	∗ . 

Also, since the desired value of the control input 	∗ is a function 

of 
�, it is constructed based on the estimation of actuator fault. 

The closed-loop system based on the stable filter (4), D-EKF 

(9) and (10), and the control law (23) are given in Fig. 3. The 

measurements of the system are applied to the stable filter to 

construct artificial outputs. Then, the D-EKF is utilized to 

estimate the state and faults vectors. Based on the desired 

reference and the estimations, the controllable energy storage 

current is designed.  

IV. SIMULATION RESULTS 

The developed estimator is applied the DC MG dynamics (2) 

with the parameters $� = 1.1 �Ω� , %� = 39.5 ��c� ,               �� = 500 �1H� , $� = 1 �Ω� , %� = 17 ��c� , �� = 500 �1H� , ( = 100 �Ω� , - = 300 ��� , ��� = 200 ��� . Also, the 

sampling time is C� = 0.2 ��u���.  

It is worth noting that the parameters of the filter are chosen 

similarly to [21]. Inspired from [1], the sensor and actuator 

faults are selected to cover real behaviors, including time-

varying or constant and prompt or smooth changing. Two 

scenarios are considered. In the first one, the performance of the 

developed D-EKF in estimating the faults and states is evaluated. 

Then, the performance of the fault-tolerant MPC is studied in 

the second scenario. For both scenarios, comparative results are 

also given to illustrate the advantages of the proposed methods.  

To have a fair comparison, the same initial conditions for the 

filters and the same weights for the cost functions for the 

proposed approach and state-of-the-art methods are considered.  

Scenario 1: In this scenario, the energy storage current is set 

as �\� = 0, although the system is subjected to actuator fault, 

which highly affects the power system. Also, the voltage 

measurement of the CPL, i.e. ��, is subjected to the sensor fault 

and the convertor voltage of the source, i.e. �� , is measured 

correctly. To evaluate the applicability of the D-EKF, two 

stepwise and smooth time-varying functions are considered for 

the actuator and sensor faults as follows: 


� = p0        0 i 5 i 11        1 3 5 i 4−1          4 3 5     

� = n0                              0 i 5 i 4sin ¡2¢�5 − 4�3 £         4 3 5   

(24) 

 

Fig. 3. Implementation of the proposed estimation method. 
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���, ���, ���, ��� 
�, 
� 

Fault-EKF (9) 

DC MG with ESSs, CPLs, resistive 

loads, and faults (2) 
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To implement the D-EKF, the parameter of first-order (4) is 2 = 0.1 . The parameters of the D-EKF initials are given in 

Table 1.  

The actual value and estimation of the DC MG states are 

provided in Fig. 4. As can be seen in Fig. 4, when the actuator 

fault value changes, the system states react and experience 

oscillations. However, the D-EKF accurately estimates the 

states in about 0.5 �u��� . Reminding the amplitude of the 

currents and voltages of the DC MG system, Fig. 4 reveals that 

the estimation error amplitudes are neglectable. Also, the 

estimation error converges to zero.  

 

TABLE 1. D-EKF INITIALS FOR SCENARIO 1. 

State-EKF 6Y�U�0� = �1 200  1 200 0 0��; -�U�0� = 10�B8;  R\ = 10_7B8; (\ = 1_�B� 

Fault-EKF 6Y�U�0� = �0  0��; -�U�0� = 10�B�; ΓKXKL�0� = 08×�; R§ =¨�©ª f10�, 10j; (§ = ¨�©ªf10_�, 10_�, 10_�, 10_�j 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. The states and their estimations (Actual value by the blue line and the 

estimated value by the red line): (a). ��, (b). ��. (c). ��, (d). ��. 

The actual and estimation of the faults are provided in Fig. 5. 

The results illustrate that the D-EKF algorithm estimates the 

actuator fault about 1.3 times faster than the sensor fault. Since 

D-EKF needs a transient time response to estimate the correct 

values of faults. Therefore, for the case of a fast actuator fault, 

the overall estimator produces a small estimation error to all 

states and faults. However, for the case of slowly varying sensor 

fault the D-EKF tracks the faults. 

To illustrate the performance improvement and online 

computational reduction of the D-EKF, it is compared with 

conventional EKF [25] and augmented joint-EKF [24]. The 

estimation error indices and computational burden per iteration 

of all approaches are given in Table 2.  

The estimation errors are calculated based on norm 1 (sum 

of the absolute value of a signal) and bias error (the absolute 

value of the last quantity of a signal). It is worth noting that to 

better provide the results, the error indices are normalized by 

multiplying by 10_� and 10�, respectively.  

Table 2 affirms less computational burden belongs to the 

conventional EKF [25], but it fails to estimate the faults and 

provide accurate state estimation. More especially, the norm 1 

and bias value of the estimations based on conventional EKF are 

about 16 and 113 times bigger than those of the D-EKF and 

augmented joint-EKF, respectively.  

Contrary to the conventional EKF, the augmented joint-EKF 

[24] and the proposed D-EKF estimate the faults and states, 

precisely. Meanwhile, the proposed approach has less 

computational burden than the augmented joint-EKF and 

performs about 2 times faster than the augmented joint-EKF. 

 

Scenario 2: The performance of the fault-tolerant MPC is 

studied in this scenario. As discussed in Scenario 1, stepwise 

varying faults are more challenging than the slowly varying 

ones. Therefore, the following actuator and sensor faults are 

considered: 
 
� = p0          0 i 5 i 11          1 3 5 i 4−1           4 3 5     ;  
� = «0           0 i 5 i 41                4 3 5    (25) 

 

 
(a) 

 
(b) 

Fig. 5. The actuator and sensor faults and their estimations (Actual value by 

the blue line and the estimated value by the red line): (a). 
�, (b). 
�. 
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TABLE 2. PERFORMANCE COMPARISONS OF KALMAN 

FILTERS.  
        Approach 

Results      

Proposed 

approach 

Conventional 

EKF [25] 

Augmented  

joint-EKF [24] 

Computational 

burden × 10� 
3.0621 2.0412 6.2534 

N
o

rm
 1

 o
f 

es
ti

m
at

io
n

 

er
ro

r 
×10_�  �� 1.3263 4.6983 1.1528 �� 8.0585 37.6723 8.1391 �� 2.4762 35.1053 2.4514 �� 4.5437 37.0002 4.9072 
� 1.5525  Not estimated 1.5991 
� 2.9492  Not estimated 3.0288 

B
ia

s 
v

al
u

e 
o

f 

es
ti

m
at

io
n

 

er
ro

r 
×10�  �� 0.0498 7.9476 0.0478 �� 8.8966 1006.737 9.2525 �� 7.9661 997.9626 7.8625 �� 8.7304 997.9687 8.9923 
� 1.4521 Not estimated 1.4666 
� 2.4973  Not estimated 2.9864 

 

Applying the proposed D-EKF fault-tolerant MPC with the 

desired bus voltage ��∗ = 200 � is used to stabilize the DC MG 

power system. The initial voltage of the DC bus is set as 190 �. 

This can occur if the desired voltage level changes because of 

different operating modes. The results of the proposed control 

method and [21] are given in Fig. 6.  

The approach of [21] uses a method to deal with the system 

state estimation and predictive control similar to this paper. 

However, in that approach, the effect of faults on the estimation 

and control is not mitigated.  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. The states and their estimations (Proposed approach the blue line and 

the MPC [21] by the red line): (a). ��, (b). ��. (c). 	. 
 

 
(a) 

 
(b) 

Fig. 7. The absolute value of the estimation error states (Proposed approach the 

blue line and the MPC [21] by the red line): (a). ��, (b). ��. 

 

The reason that the approach [21] is used for comparison is 

that that approach uses a similar control strategy as the proposed 

work. More specifically, both methods use a nonlinear Kalman 

filter to estimate the system states and a state-feedback 

nonlinear fuzzy controller to manipulate the DC/DC converter. 

The results show that although both approaches stabilize the DC 

MG, the developed fault-tolerant controller rejects the effects of 

faults on the DC bus voltage. 

Fig. 7 shows two estimation errors of the DC MG system. 

Since the actual values of the closed-loop system based on the 

proposed approach and the MPC [21] differs, the estimation 

error is presented to study the effect of faults on the estimation. 

The estimation errors of the second and third states are given as 

samples and the others are not provided to save space. Fig. 7 

reveals that the proposed D-EKF outperforms the conventional 

estimator of [21]. 

V. CONCLUSION 

This work focused on the issue of stabilizing a typical 

nonlinear DC MG in the presence of sensor and actuator faults.  

It was considered that some states of the system are measurable 

subject to faults and noise. Based on a D-EKF, the DC MG 

states were estimated such that the effect of faults was 

eliminated. The estimated information was then used in a 

nonlinear TS fuzzy fault-tolerant predictive controller, which 

was suggested to regulate the DC bus voltage. Since the faults 

were avoided in the estimation and control process, the DC 

voltage was precisely regulated. Simulation results showed that 

the proposed approach outperforms the state-of-the-art 

estimators and predictive controllers in which faults were not 

treated. More precisely, the estimation and tracking errors based 

on the proposed approach are zero. On the other hand, the 

proposed approach is not robust against parameter uncertainty 

and the state-space representation of the power system should 

be given in prior. For future work, considering unknown CPLs 

and loads and multi-area DC MG power systems, and extending 

the results of this work to cyber-attacks in more-electric 

transportation systems are suggested. 
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