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H I G H L I G H T S  

• Developing a robust coordination model for Integrated Energy Hubs. 
• Proposing a novel lambda-based iterative algorithm for more realistic applications. 
• Addressing the transfer loss in the proposed model within a closed-loop approach. 
• Elaborating robust scheduling as a single-level optimization framework. 
• Forming the optimization model as a computationally efficient problem.  
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A B S T R A C T   

Recently, multi-carrier energy systems (MCESs) have been rapidly developed as flexible multi-generation systems 
aiming to satisfy load demands by purchasing, converting, and storing different energy carriers. This study 
specifically focuses on the optimal and robust large-scale coordination of interconnected energy hubs (IEHs) in 
an iterative consensus-based procedure considering distribution network losses. Furthermore, a new robust- 
based hybrid IGDT/consensus algorithm is introduced to achieve risk-averse optimal energy management in 
IEHs under uncertainty. The fast convergence, needless to collect the total information from all hubs, minimal 
computational burden, and more robust communication system are the most important features of the proposed 
distributed consensus algorithm in this study. The effectiveness of the proposed consensus algorithm is verified 
by simulation results considering various energy trading structures in IEHs at different scales. The obtained 
results highlight the scalability capability of the proposed method. Regarding an IEHS of 30 energy hubs, the 
computation burden is lightened by 0.53 (s) and 0.1917 (s), respectively with and without uncertainty. 
Considering distribution network losses, the total purchasing costs can be increased by 8%. The simulation re-
sults also reveal an increase of 11% in the total power trading under the uncertainty.   

1. Introduction 

1.1. Motivation 

Future electricity delivery system moves toward a reliable, flexible, 
and in a word, smarter grid. Looking forward, multi-carrier energy 
system (MCES) plays a key role in smart power systems. An energy hub 
(EH) is recognized as an interface framework for MCESs integrating 
multiple supply resources with various load demands. The ability of an 
EH to store, convert, and supply various energy demands plays a key role 
in improving flexibility [1]. By interconnecting MCESs, the concept of 

large-scale interconnected energy hub systems (LIEHSs) is formed in 
which a network of numerous energy hubs collaborates together. LIEHS 
opens a new critical pathway in future power systems for improving 
flexibility, especially with the rapid growth of RESs. The flexibility of 
MCESs in meeting multiple energy demands has a key role in optimal 
cooperative energy trading. Considering the strong energy (electricity- 
heating) coupling in a such large-scale coalition (LIEHS), the coordi-
nation of MCESs is more complicated. Concerning the wide integration 
of RES into a such complex large-scale coalition, the coordination can be 
quickly realized by adopting a fast distributed method. 
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1.2. Literature review 

Recently published studies have especially focused on optimal and 
cooperative energy trading in an interconnected energy hubs coalition. 
For example, a centralized optimization method was proposed in [2] to 
model transactive energy in an IEHS. Due to the non-linear generator 
power costs and non-linear NG network constraints, as well as consid-
ering the dispatch factor in the defined coupling matrix, the optimiza-
tion problem is mainly non-convex, highly constrained, and multi- 
period in the presence of energy storage systems. In [3], the participa-
tion of the IEHs in DA energy and reserve markets has been modeled 
based on coordinated energy management. In [4], the economic 
scheduling of the electrical and thermal networks with flexi-renewable 
EHs is developed. In [5], a non-linear programming problem has been 
reformulated as mixed-integer linear programming using a piece-wise 
linear approximation. All these papers build the deterministic cooper-
ative scheduling models. Considering the uncertainty, a scenario-driven 
stochastic scheduling model has been proposed in [6] for multi-energy 
hub systems minimizing the operation cost and total emissions of the 
system. A full AC non-linear power flow was used to accurately model 
the loss of distribution network. To handle the price uncertainty, an 
optimal robust-based load dispatch model has been presented in [7] for 
a community energy hub. A distributionally robust dispatching model 
has been established in [8] based on the energy sharing and profit 
allocation for a community energy hub. Relying on the stochastic-based 
uncertainty modeling, a linear coordinated power management scheme 
has been established in [9] considering uncertainties in loads, power 
prices, and RES generation power. A bi-level multi-objective model is 
developed in [10] for renewable networked microgrids. Wind uncer-
tainty has been introduced in [11] for optimal scheduling of IEHSs via 

centralized stochastic optimization. Similarly, Ref. [12] presented a 
centralized stochastic framework for peer-to-peer energy trading in 
IEHSs. In [12], the authors have included both normal and resilient 
operation uncertainties. 

In the present centralized optimization schemes in all the above- 
mentioned studies, information is exchanged between the central co-
ordination unit and all participating hubs. Therefore, the significant 
computational burden compromises the centralized method’s applica-
tion in a large-scale IEHS. Alternatively, distributed optimization 
methods can be developed as a proper substitute for the central scheme. 
In this method, the optimal operation of EHs is individually solved in an 
isolated manner and, followed exchanged across adjacent hubs. 
Distributed optimization algorithms have been extensively used for 
multiple energy trading between prosumers in the context of P2P 
trading and local energy markets. 

In this regard, the consensus algorithm is widely used owing to the 
fast convergence and global optimal solution. In consensus optimiza-
tion, each agent has access to its local objective function and decision 
variables but lacks complete knowledge of the global problem. Extensive 
studies have investigated the state-of-the-art consensus algorithm to 
optimally schedule IEHs. There have been some attractive efforts in [13] 
to the optimal and deterministic operation of an IEHS using a distributed 
consensus algorithm. In [14], a consensus-based distributed algorithm is 
proposed for the optimal control of m-EHs. In [15], a new consensus- 
based decentralized transaction-based energy management is devel-
oped for an IEH system. [16] concerned with optimal energy manage-
ment in an IEH System solved by an ADMM consensus-based algorithm. 
A fully distributed consensus-based ADMM approach is also established 
in [17] for fully distributed optimal cooperative scheduling in multi- 
energy hubs. Based on various types of energy hubs, [18] introduced a 

Nomenclature 

Abbreviations 
AC Absorption Chiller 
CHP Combined Heat and Power 
CM Centralized Method 
DM Distributed Method 
EC Electrical Chiller 
EDP Economic Dispatch Problem 
IEHs Interconnected Energy Hubs 
LIEHS large-scale i=Interconnected Energy Hub Systems 
IESs Integrated Energy Systems 
IGDT Information Gap Decision Theory 
EHs Energy Hubs 
GB Gas Boiler 
HE Heat Exchanger 
MCESs Multi-Carrier Energy Systems 
PV Photovoltaic System 
RESs Renewable Energy Sources 
ST Solar Thermal 
WT Wind Turbine 

Sets 
e, h, g Indices of electricity, heat, natural gas 
i Index of energy hub 
k Index of iteration number in the inner loop 
t Index of time 
m Index of RESs (e.g., WT, PV, and ST) 
j Index of iteration number in outer loop 

Parameters 
ηtrans,i Efficiency of transformer i 

Pmax
grid,t Capacity of power grid (MW) 

le/h/c
i,t Electrical/heating/cooling demand (MW) 

ηh,CHP,i Heating efficiency of i-th CHP 
ηe,CHP,i Electrical efficiency of i-th CHP 
CEC,i Efficiency of i-th EC 
CAC,i Efficiency of i-th AC 
ηGB,i Efficiency of i-th GB 
ηHE,i Efficiency of i-th HE 
Pmax

CHP/GB,t Capacity of CHP/GB (MW) 
pij Element (i, j) of matrix P 
De/m,i,t Predicted electrical demand/RES’s power generation 

(MW) 

Variables 
Pe

i,t Purchased electricity (MW) 
Pgas

i,t Purchased natural gas (MW) 

Pg,CHP/GB
i,t Consumed natural gas by CHP/GB (MW) 

Pe
i,EC/AC,t Consumed electricity/heating by i-th EC/AC (MW) 

CE,i,t Purchase cost of electrical power ($) 
CCHP/GB,i,t Purchase cost of natural gas consumed by CHP/ GB ($) 
λe/h,i,t Electrical/heating increasing costs 
ΔPi,t Total supply-demand imbalance (MW) 
ΔPe/h,i,t Electrical power/heating imbalance (MW) 
ΔDe/m,i,t Uncertainty in electrical demand/RES’s power generation 

(MW) 
Dact

e/m,i,t Actual electrical demand/RES’s power generation (MW)  
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fully distributed energy trading mechanism using an ADMM-based OPF 
model. In the previous papers [13–18], the inherent uncertainty of 
volatile renewable energy sources (RESs) and forecasted electrical de-
mand were not considered. 

To fulfill this research gap, appreciable efforts have specifically 
focused on stochastic and robust scheduling models of IEHs considering 
uncertainty while benefiting from the advantages of the distributed 
methods. 

For example, the authors in [19] investigated a two-stage stochastic 
decentralized scheduling strategy for multi-region integrated energy 
systems (IESs) considering the uncertainty of RESs. Under the uncer-
tainty, an advanced optimal dispatch model is proposed in [20] for 
multi-agent energy hubs relying on the distributed consensus algorithm. 
Moreover, the authors in [21] developed a scenario-driven stochastic 
optimization to model peer-to-peer multi-energy transactions in multi- 
energy hubs. An optimal stochastic power trading model is proposed 
in [22]. In that paper, a Bayesian game is used to solve the proposed 
model under incomplete information. A decentralized bi-level stochastic 
model is also developed in [23] for optimal operation of networked 
multi-energy microgrids. A bi-level stochastic optimization model has 
been proposed in [23] for the decentralized control framework in multi- 
agent microgrids. In stochastic optimization, several different uncer-
tainty scenarios are defined based on historical information and data 
probability statistics. 

Alternatively, a distributed robust optimization problem is also used 
in recent articles. A distributed robust synergies scheduling is proposed 
in [24] for multi-region IESs with uncertainties of wind turbine (WT) 
and electricity load. In [24], the provided max-min robust operation 
model is decentralized into multiple independent sub-problems using a 
consensus-based distributed ADMM. The authors in [25] proposed a 
fully distributed robust scheduling model for multi-area IESs. A 
distributed consensus-based ADMM cooperative scheduling model is 
established in [26] for IESs. In that study, a two-stage robust optimi-
zation is developed to handle the uncertainties. Pinpointing the 
distributed peer-to-peer heat and power trading, a two-stage robust 

optimization is developed in [27] considering different uncertainty 
budgets. A distributed robust operational optimization has been 
modeled in [28] to coordinate entities in different robustness levels. The 
previous investigations usually consider a max-min robust optimization 
to find the optimal feasible solution under the worst conditions. While 
the proposed algorithms have shown their superiority in convergence 
performance, the present algorithms can get slow for the complex large- 
scale IES. 

1.3. Research gaps 

The relevant research gaps can be divided into two categories. The 
first thread considers that the robust optimization should be applied to 
LIEHS. In reality, an IES is a network of numerous energy hubs that 
collaborate together. Considering the strong electricity-heating 
coupling, the cooperative scheduling is more complicated. In this re-
gard, Information Gap Decision Theory (IGDT) can be regarded as a 
promising optimization approach with a slight computational burden in 
many coordination problems, especially for power systems such as 
economic dispatch, P2P energy trading, and real-time power dispatch. 
Nevertheless, in the proposed distributed models for the peer-to-peer 
multi-energy transactions in IEHs, IGDT models are not well addressed 
yet. To address this issue, an IGDT-based distributed robust method is 
developed in this paper to handle the uncertainty. One of the claimed 
advantages of the proposed method is its scalability for large-scale 
systems. 

Secondly, the influence of energy loss is ignored in the above papers 
focused on the distributed optimization algorithms. The electricity and 
heating energy losses, which are approximately 10% and 5% in the 
distribution power system, significantly impact the optimal power 
trading. In relatively large-scale IESs, considering distribution network 
losses is deemed inevitable. It is worth noting that in [6,9], the energy 
loss of distribution network is integrated into the present model by 
nonlinear AC-OPF constraints. Nevertheless, the present scenario-driven 
stochastic model can’t be implemented for a LIEHS since it has been 

Table 1 
Taxonomy table covering some features for related references. 
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solved by a centralized method. Moreover, considering the nonlinear 
quadratic model of the energy loss makes the max-min robust optimi-
zation complex and non-convex needed to be reformulated using the 
convexification methods. To address this issue, a novel tractable itera-
tively distributed consensus-based algorithm is formulated in this paper. 
A useful taxonomy table covering some features of these references has 
been provided in Table 1. In order to discern how the contributions of 
this paper distinguish it from prior research, the reviewed works have 
been grouped in 4 different colors (blue, red, and purple) based on their 
similarities. Also, the last row indicates the features of this paper against 
existing ones. The proposed method is applicable in large-scale systems 
due to its scalability. 

1.4. Contributions 

In extension to previous research, this paper proposes the modeling 
and optimal operation of a cooperative LIEHS while taking distribution 
line losses into account. To achieve this goal, a novel heuristic iterative 
consensus-based algorithm is developed. Herein, a new robust 
consensus-based framework is also investigated to deal with uncer-
tainty. Specifically, the main contributions of this study are summarized 
as follows:  

• Previous appreciable efforts especially focused on distributed energy 
management of a small-scale IEHS using the consensus algorithm. 
While the power losses were overlooked in the related mentioned 
papers. Inspired by these studies, this paper proposes a new realistic 
lambda-based iterative algorithm for the optimal operation of a 

cooperative LIEHS considering losses. Due to the relatively large 
scale (MW) of the energy hubs, considering distribution network 
losses is deemed necessary. The proposed framework is executed in 
two different loops, the inner and outer loops. In the inner loop, the 
distributed consensus algorithm is performed for optimal P2P energy 
trading. In the outer loop, the loss factor is specially calculated based 
on the latest energy trading estimated by the inner loop, and the 
electricity demand is finally updated.  

• The subject of the bi-level robust optimal energy management of IEH 
systems has attracted attention in previously published articles. To 
handle the uncertainty, this paper aims to focus on the distributed 
information gap decision theory (IGDT) optimization method for the 
risk-averse optimal scheduling of IEHs. The present algorithm can 
provide a robust scheduling decision for IEHS minimizing the total 
cost while maximizing the uncertainty. The proposed model is solved 
via a distributed consensus-based algorithm in a way that not only 
global optimal solution can be reached, but also the volume of 
computations can be lightened. In this way, the proposed consensus 
algorithm is expanded to a robust IGDT-based algorithm intended to 
assess the negative effects of uncertainty on optimal energy man-
agement. It is worth noting that the IGDT-based proposed method is 
generally known as bi-level. In this paper, the IGDT-based proposed 
model is reformulated as a single-level optimization. In the proposed 
scheduling problem, increasing the uncertainty has a negative 
impact on the scheduling cost. For example, if the uncertainty drops, 
the scheduling cost will decrease as well or vice versa if the uncer-
tainty increases, the cost will certainly increase. In other words, the 
maximum cost of uncertainty is equivalent to the maximum uncer-
tainty. Thus, the proposed IGDT model is broken into a single-level 
multi-objective problem. Due to its distributed implementation 
(consensus algorithm) and scalability (IGDT), the proposed method 
can be effectively utilized in a cooperative large-scale IES. 

1.5. Paper organization 

The rest of this paper is as follows: In Section 2, the mathematical 
model of an individual MCES is expressed. In Section 3, the optimal 
energy management strategy for an IEH system is formulated. The 
proposed iterative consensus-based framework, along with the mathe-
matical formulation of the presented algorithm is discussed in Section 4. 
Considering the uncertainty, the proposed robust hybrid IGDT/ 
consensus algorithm is also developed in Section 5. To assess the pro-
posed method’s effectiveness, case studies are simulated in Section 6. 
Finally, the conclusion is presented in Section 7. 

Optimal operation of 
individual EHs

A novel robust consensus-based 
algorithm considering the 
distribution network losses

Cooperative operation of 
large-scale IEHs

Fig. 1. Schematic of proposed framework  

MCES

Fig. 2. The investigated MCES and its components  
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2. General proposed framework 

This paper aims to investigate a new robust-based distributed strat-
egy for cooperative energy management of a large-scale IEH as indicated 
in Fig. 1. It is assumed that IES is a network of numerous energy hubs at 
the distribution level that collaborate together (1, ..., n). Hence, the 
distribution network loss is also taken into consideration in the proposed 
framework. To deal with the loss, an iterative distributed consensus- 
based algorithm is introduced in Section 4. Load variations and un-
certainties of RESs are also integrated into the presented model. The 
proposed robust-based model is discussed under uncertainty via a hybrid 
IGDT/consensus algorithm as detailed in Section 5. To describe the 
developed distributed energy management strategy in Section 3, it is 
necessary to provide preliminaries about MCESS modeling and their 
individual operation in the following section. 

2.1. MCES modelling 

As a foundational backbone of cooperative scheduling for IEHs, en-
ergy flow modeling and optimal operation analysis of an individual 
MCES are mathematically formulated in this Section. Fig. 2 describes the 
hierarchy energy hub schematic consisting of a transformer, combined 
heat and power (CHP) unit, gas boiler (GB), heat exchanger (HE), 
electrical chiller (EC), and absorption chiller (AC) to reliably deliver 
energy through coordination of optimal energy dispatch across multiple 
energy vectors. CHP is strongly used in MCESs to simultaneously pro-
duce electricity and heating energy. The interdependent relationship 
between Pe,CHP

i,t , Ph,CHP
i,t and Pg,CHP

i,t are respectively calculated in (1) and 
(2). A heat exchanger (HE) is also utilized for changing the temperature 
of generated heating by CHP based on (4). 

Pe,CHP
i,t = Pg,CHP

i,t × ηe,CHP,i;∀i, t (1)  

Ph,CHP
i,t = Pg,CHP

i,t × ηh,CHP,i;∀i, t (2)  

Pe,CHP
i,t ≤ Pmax

CHP,t; ∀i, t (3)  

PHE
i,t = Ph,CHP

i,t × ηHE,i;∀i, t (4) 

Unlike CHP, GB is only able to produce heating energy according to 
(5). Similarly, the provided heating energy by GB should not exceed its 

capacity 
(

Pmax
GB,t

)
, according to (6). 

Ph,GB
i,t = Pg,GB

i,t × ηGB; ∀i, t (5)  

Ph,GB
i,t ≤ Pmax

GB,t;∀i, t (6) 

The required fuel for CHP and GB operating is natural gas 
(

Pg,CHP
i,t , Pg,GB

i,t

)
. To balance energy production and consumption, natural 

gas 
(

Pgas
i,t

)
is necessarily purchased from the external energy grid ac-

cording to (7). The maximum amount of natural gas that can be pur-
chased is limited to the Pmax

gas,t in (8). 

Pgas
i,t = Pg,CHP

i,t +Pg,GB
i,t ;∀i, t (7)  

Pgas
i,t ≤ Pmax

gas.t;∀i, t (8) 

In addition, electrical and absorption chillers are suitable options for 
converting energy (e.g., electricity and heating) to cooling. This con-
version process is mathematically modeled as (9) and (10). Where Pc

i,EC,t 

and Pc
i,AC,t are limited by their predesigned capacity (Pmax

EC,t and  Pmax
AC,t)

based on (11) and (12). 

Pc
i,EC,t = CEC,i ×Pe

i,EC,t ;∀i, t* (9)  

Pc
i,AC,t = CAC,i ×Ph

i,AC,t;∀i, t (10)  

Pc
i,EC,t ≤ Pmax

i,EC,t ;∀i, t
(11)  

Pc
i,AC,t ≤ Pmax

AC,t; ∀i, t (12) 

Focusing on the energy component modeling presented above, the 
electrical, heating, and cooling balances are finally stated as (13)–(15). 

Pgrid
i,t +Pe,CHP

i,t = le
i,t +Pe

i,EC,t; ∀i, t (13)  

PHE
i,t +Ph,GB

i,t = lh
i,t +Ph

i,AC,t; ∀i, t (14)  

Pc
i,EC,t +Pc

i,AC,t = lc
i,t; ∀i, t (15) 

Assuming the grid-connected MCES, the imported electrical power 
(

Pgrid
i,t

)
can be calculated as (16). Additionally, (17) is used to restrict the 

input purchasing power according to the capacity of UG. 

Pgrid
i,t = Pe

i,t × ηtrans,i;∀i, t (16)  

Pgrid
i,t ≤ Pmax

grid,t ;∀i, t (17)  

3. Cooperative optimal energy management for IEHs 

Different from the individual MCES scheduling stated above, coop-
erative energy hubs can constitute an interdependent community 
minimizing the total cost via enabling their surplus energy trading. To 
do so, this paper especially focuses on modeling a system of inter-
connected multi-carrier systems in which both electrical and heating 
energy exchanges have been considered. The optimal energy manage-
ment in this cooperative community can be modeled based on a con-
strained optimization formulation as follows: 

min OFt =
∑T=24

t=1

∑N

i=1

[
CE,i,t +CCHP,i,t +CGB,i,t

]
(18) 

Subject to (1)–(14), (19)–(21) 

CE,i,t = αe
i

(
Pe

i,t

)2
+ βe

i Pe
i,t + γe

i ; ∀i, t (19)  

CCHP,i,t = αCHP
i

(
Pg,CHP

i,t
)2

+ βCHP
i Pg,CHP

i,t + γCHP
i ;∀i, t (20)  

CGB,i,t = αGB
i

(
Pg,GB

i,t
)2

+ βGB
i Pg,GB

i,t + γGB
i ;∀i, t (21)  

∑N

i=1

[
Pgrid

i,t +Pe,CHP
i,t − Pe

i,EC,t

]
=

∑N

i=1
le
i,t +

∑n

j=1
Ploss

t,i ; ∀t (22)  

∑N

i=1

[
PHE

i,t +Ph,GB
i,t − Ph

i,AC,t

]
=

∑N

i=1
lh
i,t;∀t (23)  

Ploss
t,i = Li ×

(
Pexc

i,t

)2
;∀i, t (24) 

This cooperative model aims to minimize the operation cost of all 
participants under the constraints of electrical and heating energy bal-
ances. Where the purchasing costs of input energy carriers (Pe

i,t ,P
g,CHP
i,t ,

and Pg,GB
i,t ) is quadratically defined for i-th energy hub according to (19)– 

(21). As each EH should be able to meet its demands via its own local 
energy supplies, (1)–(14) is also considered. This optimization problem 
is subject to the electrical and heating balance constraints as (22)–(23). 

Toward innovation, the power losses 
(

Ploss
t,i

)
is also included in (22). 

Ploss
t,i can be calculated according to (24) where Pexc

i,t is the exchanged 
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electrical power by the i-th energy hub [29]. In this work, the presented 
optimal operation model of IEHS is effectively solved through the pro-
posed iterative framework considering loss. In this iterative framework, 
a distributed consensus algorithm is utilized in the inner loop. 

4. Proposed iterative consensus-based heuristic framework 
considering energy loss 

To solve the optimization problem in a cooperative mode consid-
ering the distribution network losses, a novel iterative consensus-based 
heuristic algorithm is proposed. The flowchart of the proposed iterative- 
based algorithm is indicated in Fig. 3. 

The proposed consensus-based framework is executed in two 
different loops. In the inner loop, the distributed consensus algorithm is 
performed to obtain the optimal energy trading. It is worth noting that 
the loss factor is assumed to be fixed in the inner loop. In the outer loop, 
the loss is especially updated based on the latest energy trading esti-
mated by the inner loop. In the following, the details of the inner and 

outer loops are briefly described. 

4.1. Inner loop: distributed consensus algorithm 

In the presented framework in Fig. 3, a novel distributed consensus 
algorithm is implemented in the inner loop for modeling optimal elec-
trical and heating energy trading. Table 2 describes distinctive charac-
teristics and differences between these two proposed methods. The 
distributed consensus algorithm is more robust and reliable to the single 
point of failure and the frequent changes in the power system topology 
since there is no need for the central coordination unit for the supervi-
sion of the entire IEHS. In this paper, the distributed consensus algo-
rithm is used in the inner loop to solve the proposed optimization 
problem. 

Herein, the consensus algorithm computes iteratively the optimal 
point using local communications (between agents and their adjacent on 
the network), needless to a supervision coordination unit. In this 
method, each agent has access to its local objective function and deci-
sion variables but lacks complete knowledge of the global problem. In 
this regard, all agents (energy hubs) coordinately work together to 
realize a shared consensus. The distributed consensus algorithm consists 
of three different steps as follows: 

• Initially, the value of consensus variables (λe,i,t and λh,i,t) is calcu-
lated in any iteration based on consensus equations in (25) and (26) 
after the initialization. It is worst-nothing that to achieve the optimal 
value, λe,i,t and λh,i,t are only communicated among the inter-
connected EHs after each iteration. Where, (25) and (26) reflect the 
distributed aspect of the proposed method. 

λe,i,t[k+ 1] =
∑n

j=1
pijλe,j,t[k] + εΔPi,t[k]; ∀i, t (25)  

λh,i,t[k+ 1] =
∑n

j=1
pijλh,j,t[k] + εΔPi,t[k]; ∀i, t (26) 

Matrix P and Q indicate the network topologies in an IEH system 
which are row-stochastic and column-stochastic matrices, respectively. 
In the row-stochastic matrix, the sum of row entries is equal to 1. If m-th 
EH is connected to j-th EH, Pmj > 0 and Qmj > 0, otherwise Pmj = Qmj =

0. The weights of the entries in P and Q can be determined as 1/d+
m and 

1/d−
m, respectively.  

• When the consensus variables are determined, the main decision 
variables (i.e.,Pe

i,t , Pe,CHP
i,t , Pg,GB

i,t ) are individually calculated for each 
energy hub subsequently using (27)–(29). Where, ΔPi,t [k] is calcu-
lated by the sum of the electrical and heating energy imbalances in i- 
th energy hub. Finally, the energy mismatch 

(
ΔPi,t [k]

)
is updated in 

k-th iteration by using (30) and (32). 

Pe
i,t[k+ 1] =

ηtrans,i λ1,i,t[k + 1] − βe
i

2αe
i

;∀i, t (27)  

Pg,GB
i,t [k+ 1] =

ηGB,i λ2,i,t[k + 1] − βGB
i

2αGB
i

;∀i, t (28)  

Pg,CHP
i,t [k + 1] =

λ1,i,t[k + 1] × ηe,CHP,i + λ2,i,t[k + 1] × ηh,CHP,i × ηHE,i − βCHP
i

2αCHP
i

; ∀i, t
(29)  

ΔPi,t [k] = ΔPe,i,t [k] +ΔPh,i,t [k];∀i, t (30)  

ΔPe,i,t = Pgrid
i,t +Pe,CHP

i,t − Pe
i,EC,t − le

i,t − Ploss
t,i ; ∀i, t (31)  

ΔPh,i,t = PHE
i,t +Ph,GB

i,t − Ph
i,AC,t − lh

i,t;∀i, t (32) 

Fig. 3. Flowchart of the proposed iterative consensus-based framework 
considering the distribution network losses. 

Table 2 
Comparison of distributed method versus centralized approach.  

Centralized Distributed 

Supervision of entire energy hubs by the 
central coordination unit 

Supervision of each energy hub by its 
respective agent 

Heavy calculation burden Slight calculation burden 
Achieve higher robustness Achieve lower robustness 
Application in a small-scale system in size Application in a large-scale system in 

size  
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• Until 
⃒
⃒
⃒Pe

i,t [k + 1] − Pe
i,t [k]

⃒
⃒
⃒ is non-zero, this process (aforesaid steps) 

will be repeated. Herein, k is the discrete index of iteration in the 
proposed consensus algorithm in the inner loop. This condition is 
satisfied if the energy mismatch is within the acceptable range.  

Remark 1. In the proposed iterative flowchart in Fig. 3, the distributed 
consensus algorithm is implemented in any iteration to determine the 
optimal energy trading. To guarantee the convergence of the presented 
consensus method, the convergence study has been presented in the 
appendix. 

Remark 2. In this subsection, the distributed consensus algorithm is 
executed in the inner loop while ignoring the uncertainty. The robust 
consensus formulation ((25)–(32)) will be developed In Section 5 
considering the uncertainty. 

4.2. Outer loop: losses updating 

The outer loop consists of three different steps:  

• Step 1: Optimal energy management in IEHs is conducted without 
considering the fixed line losses. In this paper, it is assumed that 
Ploss

t,i [1] = 0. Therefore, the electrical load demand is lei,t. In this step, 
the inner loop is executed using the presented consensus algorithm 
and finally, the optimal electrical and heating energy trading 
(

Pexc
i,t

)
is obtained.  

• Step 2: Distribution network loss
(

Ploss
t,i [j] for j = 1 ,2,…, n

)
is 

updated based on the optimal energy trading 
(

Pexc
i,t

)
and accordingly 

Ploss
t,i is acquired according to (24). Updating the electrical load 

(lei,t [j + 1] = lei,t [j] + Ploss
t,i [j + 1]) is finally conducted in this step.  

• Step 3: Steps 2 and 3 will be regularly repeated until Ploss
t,i converge to 

the acceptable value. 

5. Proposed robust hybrid IGDT/consensus algorithm 

Variations of renewable energy resources (RESs), such as wind tur-
bine, photovoltaic, and solar thermal, and the uncertainty of electrical 
demand, are the main challenges in the optimal operation of IEHs. This 
subsection seeks to investigate the optimal and robust operation of IEHs 
using combined IGDT optimization and consensus algorithm. 

Inspired by information gap decision theory (IGDT), uncertainty can 
be defined as an error between the real-time and forecasted uncertain 
parameters. In this paper, the generation power of WT, PV, and ST as 
well as electrical demand are assumed to be uncertain. The uncertainty 
set can be formulated as (33) and (34). Where αm and αDare the un-
certainty horizon parameters. 

Pm,i,t and Pact
m,i,t are the forecasted and actual generated electricity and 

heating energy by RESs, respectively. Moreover, De,i,t and Dact
e,i,tare 

respectively the forecasted and actual electrical demand. In the pro-
posed robust scheduling model, the operator pursues a risk-averse 
strategy to guarantee the energy hub’s robustness against the 
maximum uncertainty set. Using this Risk-averse strategy, the maximum 
uncertainty [α̂m, α̂D] can be calculated as (37) considering the con-
strained cost. In (37), the maximum cost resulting from unfavorable 
deviations from the forecasted values should be restricted to the pre- 
defined upper-cost limit

(
Zlimit Cost

w
)
. The higher Zlimit Cost

w is, the 
maximum uncertainty will be obtained. 

∀αm ϵ U
(
Pm,i,t,αm

)
=

{

Pact
m,i,t :

⃒
⃒
⃒
⃒
Pact

m,i,t − Pm,i,t

Pm,i,t

⃒
⃒
⃒
⃒ ≤ αm

}

; ∀m ∈ {WT;PV; ST}

(33)  

∀αD ϵ U
(
De,i,t,αD

)
=

{

Dact
e,i,t :

⃒
⃒
⃒
⃒
Dact

e,i,t − De,i,t

De,i,t

⃒
⃒
⃒
⃒ ≤ αD

}

; ∀m ∈ {WT;PV; ST}

(34)  

(1 − αm)Pm,i,t ≤ Pact
m,i,t ≤ (1+αm)Pm,i,t;∀m ∈ {WT;PV; ST} (35)  

(1 − αD)De,i,t ≤ Dact
e,i,t ≤ (1+ αD)De,i,t (36)  

[α̂m, α̂D] = max
{

αm, αD :
(
maxOFt ≤ Zlimit Cost

w

) }
; ∀m ∈ {WT;PV; ST}

(37) 

Bi-level-based IGDT is one of the main solutions for solving the 
provided optimization problem in (37). In the proposed scheduling 
problem, increasing the uncertainty has a negative impact on the 
scheduling cost. For example, if the uncertainty drops, the scheduling 
cost will decrease as well or vice versa if the uncertainty increases, the 
cost will certainly increase. In other words, the maximum cost of un-
certainty is equivalent to the maximum uncertainty. Thus, the proposed 
IGDT model is broken into a single-level multi-objective problem. This 
alternative solution is also proposed in (38)–(43) in this paper. The 
proposed method aims to maximize the uncertainty and minimize the 
total operation cost of IES. Herein, the weight coefficient wi,t (uncer-
tainty budget) can be calculated as (39) reflecting the Zlimit Cost

w limitation 
under uncertainty. Suppose that ZCost

w is the total deterministic operation 
cost without uncertainty. With wi,t = 0.1, the uncertainty will be 
strongly maximized with a higher freedom degree with no cost 
consideration. 

The worst-case scenario (maximum increase in electrical demand 
and maximum decrease in the output produced power of RESs) is 
considered in this paper. Aiming to maximize the uncertainty and 
minimize the total cost of IEHs, the proposed robust optimization 
framework is formulated as (38)–(43). Where the actual output power of 

RESs 
(

Pact
m,i,t

)
and actual electrical demand 

(
Dact

e,i

)
are determined using 

(40)–(41). 

minOFrobust
t =

∑N

i=1
wi,t

[
CE,i,t +CCHP,i,t +CGB,i,t

]
−
(
1 − wi,t

)[
ΔD2

e,i,t +ΔP2
WT,i,t

+ΔP2
PV,i,t +ΔP2

ST,i,t

]

(38)  

s.t.(1) − (14) and (24)

wi,t =
ZCost

w

Zlimit Cost
w

(39)  

Pact
m,i,t = Pm,i,t +ΔPm,i,t; ∀i, t,m ∈ {WT;PV; ST} (40)  

Dact
e,i,t = De,i,t +ΔDe,i,t;∀i, t (41)  

Pact
WT,i,t +Pact

PV,i,t × ηk,i +Pgrid
i,t +Pe,CHP

i,t − Pe
i,EC,t − Dact

e,i,t − Ploss
t,i = 0; ∀i, t (42)  

Pact
ST ,i,t + PHE

i,t + Ph,GB
i,t − Ph

i,AC,t − lh
i,t = 0 ; ∀i, t (43) 

To solve the proposed robust framework, the robust consensus is 
implemented according to the present algorithm. The robust consensus 
algorithm is executed similarly to subsection 4.1. The optimal operation 
of EHs is individually solved in an isolated manner, Pe

i,t ,P
e,CHP
i,t ,Pg,GB

i,t ,λe,i,t, 
and λg,i,t are determined for each hub and, followed exchanged across 
adjacent hubs. Herein, the uncertain variables are also updated in step 4 
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based on (44)-(46). 

ΔPWT,i,t = ΔDe,i,t =
λe,i,t

2
(
1 − wi,t

);∀i, t (44)  

ΔPPV,i,t =
λe,i,t × ηk,i

2
(
1 − wi,t

); ∀i, t (45)  

ΔPST,i,t =
λh,i,t

2
(
1 − wi,t

); ∀i, t (46)   

Proposed robust consensus algorithm 
1: initialization 
2: Update λ1,i,t [k + 1] and λ2,i,t [k + 1]
3: Update Pe

i,t [k + 1],Pe,GT
i,t and Pg,GB

i,t [k + 1]
4: Update ΔDe,i,t [k + 1],ΔPWT,i,t [k + 1],ΔPPV,i,t [k + 1],ΔPST,i,t [k + 1]
5: Update ΔPe,i,t [k + 1] and ΔPh,i,t [k + 1]

6: Repeat step 2- step 5 until 
⃒
⃒
⃒Pe

i,t [k + 1] − Pe
i,t [k]

⃒
⃒
⃒ < ε where ε has the sufficiently low 

value.  

Regarding distribution losses, the proposed optimization flowchart 
in Fig. 3 will be executed where the above algorithm is replaced with the 
proposed consensus algorithm in the inner loop due to taking the un-
certainty into account. 

6. Simulation results 

In this section, the optimal and robust operation of an IEH system is 
simulated to illustrate the proposed consensus-based algorithm’s per-
formance. Herein, the electrical and heating efficiencies of CHP, trans-
former, GB, and EHP are assumed to be 0.3, 0.4, 0.98, 0.9, and 0.95, 
respectively. All of the other required parameters are presented in the 
nomenclature. To assess the proposed method, two different cases are 
examined (Case I and Case II) with and without uncertainty. In this 
study, uncertainty management is conducted under the worst-case sce-
nario (maximum uncertainty) with no flexible resources. Considering 
ESs and DRPs in the energy hub structure provides an additional degree 
of freedom to handle the uncertainty and to decrease its negative se-
curity and economic impacts. Thus, to establish the worst-case scenario, 
no flexible resources are considered in the presented model. 

Case I. Assessment of the proposed scheduling in IEHs without 
uncertainty. 

Case II. Assessment of the proposed robust scheduling in IEHs with 
uncertainty. 

6.1. Case I 

In Case I, no uncertainty resources (RESs and uncertain load de-
mands) are considered. Considering the power losses, the correctness of 
the distributed consensus framework is validated in this case. Case I 
consists of five different studies. In Study 1, the obtained results are 
firstly compared to the centralized method to analyze the accuracy and 
productivity of the distributed consensus-based framework. The nu-
merical results are also more discussed in Study 1 compared to [18]. The 
major effects of EH’s structure will be analyzed in Study 2 on optimal 
energy trading. 

A detailed sensitive analysis is conducted in Study 3 varying the 
value of the most critical parameters. The main advantage of the pro-
posed method is its scalability for large-scale systems. It is validated in 
systems at different scales in Study 4. Finally, the main effects of the 
power loss on the purchasing input carriers and energy trading frame-
work are evaluated in Study 5 considering both small-scale (a network of 
5 EHs) and large-scale IES (a network of 30 EHs). 

Study 1: Optimal cooperative scheduling of IEHs without 
uncertainty 

To assess the effectiveness of the proposed framework, the daily 
optimal scheduling of IEHs is simulated in this subsection, ignoring the 
uncertainty. To do so, an IEH consisting of three MCESs is initially 
developed. The obtained numerical results are also compared to the 
centralized method (CM). Herein, HUB#1 is only assumed to be 

Fig. 4. Comparison results of the total traded energy compared to the 
centralized method in Case I  

(a) electrical power (b) heating energy. 

Table 3 
Optimal power balance in the studied IEHs.  

Optimal electrical energy flows (MW) hub1 hub2 hub3 

The produced electrical power 1131.56 396.7 241.74 
Electrical demand 590 590 590 
the exchanged electrical power 541.568 − 193 − 348  

Table 4 
Optimal heating balance in the studied IEHs.  

Optimal heating energy flows (MW) hub1 hub2 hub3 

The produced heating energy 1350 450 270 
heating demand 690 690 690 
the exchanged heating energy 660 − 240 − 420  

Table 5 
Comparison results of operation costs of energy hubs with and without consid-
ering the economic energy trading.  

Cost ($)
(
× 106) Without interconnection With interconnection 

HUB#1 HUB 
#2 

HUB 
#3 

HUB 
#1 

HUB 
#2 

HUB 
#3 

The electrical 
power 
purchasing 

0.879 1.92 2.95 1.97 0.986 0.657 

The input natural 
gas of CHP 0.383 0.801 1.21 1.44 0.481 0.288 

The input natural 
gas of GB 0.247 0.906 1.56 1.97 0.658 0.394 

Cost of MCESs 1.52 3.63 5.73 5.39 2.12 1.34 
Total cost of IEHS 10.88 8.85  
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involved in the proposed energy trading (p23 = p32 = 0). Fig. 4 shows 
the optimal energy trading (electricity and heating energy) among 
MCESs using the proposed distributed method (DM) and centralized 
method (CM). In this figure, p12 and h12 are the electrical power and 
heating energy exchanged between HUB#1 and HUB#2, respectively. 
Furthermore, p13 and h13 are the exchanged electrical power and 
heating energy between HUB#1 and HUB#3. As a key result, the 
optimal solutions provided by the centralized and distributed ap-
proaches are similar. 

Table 3 and Table 4 show the power and heating energy balance in 
the IEHS. As a result, it can be found that a significant part of load de-
mands in HUB#2 and HUB#3 is provided by higher purchasing energy 
carriers in HUB#1 (i.e., 1131.56 MW for electricity and 1350 MW for 
heating). This emphasizes supplying energy shortage in HUB#2 (− 193 
and − 240 MW) and HUB#3 (− 348 and − 420) by the exchanged energy 
carriers (i.e., 541.568 MW for electricity and 660 MW for heating). 

Table 5 provides the details on the total costs in the defined coop-
erative IEHS. It can be found that cooperative energy trading reduces the 
total cost of HUB#2 and HUB#3 in IEHS by 41% and 76%, respectively. 
Furthermore, the total cost of HUB#1 declined by up by 71% due to the 
higher purchasing input energy carriers. Finally, the simulation results 

verify the proposed cost-effective operation which decreases the total 
IEHS costs in cooperative mode. 

In the other comparison, the effective performance of the proposed 
distributed method (DM) has also been verified (see Table 6) by 
comparing the simulation results to the centralized and decentralized 
methods (CM and DM) in Ref. [18]. In this regard, the IEHS is assumed 
to be a network of 5 EHs according to [18]. Table 6 shows that the 
purchased energy carriers (electricity and natural gas) have increased 
concerning [18]. This increase is due to neglecting the emission cost in 
the defined objective function. 

Study 2: Analysis of IEH’s structures 
This subsection consists of two different studies. Herein, the struc-

tures of IEHS and its building elements (EHs) will be analyzed on 
optimal energy trading respectively in Study 2. B and 2. A. It is worth- 
noting that the electrical and heating load demands are initialized in 
this Study at 150 MW and 140 MW. 

-Study 2. A: In Study 2. A, the task is simplified by assuming that the 
cooperative coalition (i.e., IEHS) consists of five MCESs that collaborate 
together according to Fig. 5 (Scenarios 1, 2, and 3). As IEHs building 
elements, we denote three interconnected EHs where all three constit-
uent EHs are assumed to be with structures (a), (b), or (c) as indicated in 

Table 6 
Results of the purchasing input energy carriers by energy hubs in IEHs compared to [18].  

number The proposed simulation results 
Without considering the emission cost in the objective function 

The simulation results of [18] 
considering the emission cost in the objective function 

Pe
i,t(MW) Pg,CHP

i,t (MW) Pg,GB
i,t (MW) Pgas

t,i (MW) Pe
i,t(MW) Pgas

i,t (MW) 

CM DM CM DM CM DM CM DM CM DM CM DM 

Hub 1 74.37 74.33 121.6 121 78.4 78.4 200 200 62.64 62.78 168.26 168.27 
Hub 2 105.31 105.25 167.2 167 107.8 107.8 275 275 87.72 87.73 233.46 233.45 
Hub 3 96.39 96.33 91.2 91 58.8 58.8 150 150 80.75 80.78 135.31 135.31 
Hub 4 163.50 163.40 106.4 106 68.6 68.6 175 175 135.3 135.3 159.93 159.92 
Hub 5 70.57 70.53 228 228 146.66 147 374.66 374.66 59.75 59.73 326.79 326.80 
Cost ($) 10,856 10,847 7318.9 7300 4147.1 4151.2 11.466 11,451.2 8467.8 8467.8 12,021 12,021 

Total cost 
CM: 22322 
DM: 22298.2 

CM:20488.8 
DM: 20488.8  

Fig. 5. Scenarios 1, 2, and 3 considered for the proposed energy trading in Study 2.A.  

Fig. 6. The various understudied energy hub structures considered in Study 2.A.  
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Fig. 7. Comparison of the effects of different structures of EHs on the purchasing input energy in Study 2.A. 
(a) Electrical power (b) Natural gas. 

Fig. 8. Scenarios 1, 2, 3 and 4 considered for the proposed energy trading in Study 2.B.  

Fig. 9. Comparison of the effects of different structures of energy trading in IEHs on the purchasing input energy in Study 2.B 
(a) Electrical Power (b) Natural Gas 
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Fig. 6. Figs. 7. (a) and 7. (b) shows the input purchasing energy (i.e., 
electrical and heating) for Scenarios 1, 2, and 3. In this study, all three 
defined MCESs are assumed to be involved in the proposed energy 
trading. The obtained results show the highest purchased power and 
natural gas, respectively in Scenarios 1 and 3. The exchanged electrical 
power is decreased in Scenario 2 compared to Scenario 1 although their 
heating trading is almost the same. The total purchasing electrical power 
is 607.8915, 481.7864, and 277.405 MW, respectively in Scenarios 1 to 

3. Moreover, 1378, 1237.3, and 2350 MW of natural gas are totally 
purchased from the upstream network. As a result, the total cost is 
decreased by 14,053$ in Scenario 2 compared to Scenario 1 (17904$), 
and Scenario 3 (27767$). 

-Study 2. B: In this study, a total of 5 trading scenarios were 
considered for IES’s structures according to Fig. 8. Herein, IES is a 
network of five energy hubs cooperatively trading electricity and heat-
ing energy. Fig .9 (a) and Fig. 9 (b) indicate the electrical power and 

Fig. 10. Sensitive analysis of proposed distributed framework with different initial points (a) Total energy mismatch (b) Power mismatch (c) Heating mismatch (d) 
Purchasing power (e) Purchasing heating energy. 

Fig. 11. Sensitive analysis of proposed distributed framework in Study 3 with different (a) electrical efficiency of CHP (b) heating efficiency of CHP (c) efficiency of 
transformer(d) efficiency of gas boiler. 
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Fig. 12. Sensitive analysis of proposed distributed framework in Study 3 with different (a) electrical efficiency of CHP (b) heating efficiency of CHP(c) efficiency of 
transformer(d) efficiency of gas boiler. 

Fig. 13. The scalability evaluation of economic power trading in Study 4 (a) Total purchasing power (b) Total purchasing natural gas (c) Exchanged electricity power 
(d) Exchanged heating energy. 
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natural gas purchased by participating hubs in each scenario. The total 
purchasing electrical power is obtained as 526.1250, 494.9209, 
519.0869, and 478.3303 MW, respectively in Scenarios 1 to 4. It is worth 
noting that 232.30, 180.90, 241.85, and 58.6684 MW of the total 
exchanged power are respectively achieved. 

The obtained results show the highest power trading respectively in 
Scenarios 3 and 1. In Scenario 1, HUB#1 is only involved in energy 
trading. In this scenario, HUB#2, HUB#3, and HUB#4 are highly 
dependent on HUB#1 to provide their required demand (higher energy 

trading). Inversely in Scenario 4, all five EHs participate in energy 
trading. Nevertheless, the total exchanged electricity decreased by 
58.66 MW in Scenario 4. As a key result, the input purchasing carriers 
(both electricity and natural gas) are almost evenly distributed among 
all five energy hubs in this Scenario. This is also true for heating energy 
trading. Despite 1160.8 MW of purchasing natural gas, the lower heating 
trading is achieved in Scenario 1. Herein, 103.94, 226.1012, 254.4423, 
and 80.5032 MW of heating energy are totally exchanged among EHs, 
respectively in Scenarios 1 to 4. 

Fig. 14. The evaluation of economic power trading considering distribution losses in Study 5. A (a) Total purchasing power (b) Total purchasing natural gas (c) 
Exchanged electricity power (d) Exchanged heating energy. 

Fig. 15. The evaluation of economic power trading considering distribution network loss in Study 5. B (a) Total purchasing power (b) Total purchasing natural gas 
(c) Exchanged electricity power (d) Exchanged heating energy. 
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Study 3: Sensitivity analysis. 
In this study, a sensitivity analysis is first conducted varying the 

initial points. To do so, the main decision variables were initialized at 
three different scenarios (x = 0.x = 100 and x = − 100). Herein, the 
power and heating load demands are assumed to be equal to 150 MW 
and 140 MW in EHs. The obtained mismatch and energy inputs are 
shown in Fig. 10. 

After approximately 100 iterations, it can be found that the algo-
rithm and its main decision variables converge to a common value. 
Moreover, both electricity and heating mismatches converge to zero. 
The obtained results also show the independence of algorithm perfor-
mance on the initial parameters selection. 

In the following, the parameter sensitivity analysis is performed. To 
do so, the IEH is assumed to be a network of 5 similar MCESs with 
structure (b). We Study how the converter’s efficiency affects the pro-
posed energy trading as indicated in Fig. 11. Fig. 12 also shows the effect 
of these parameters on the purchasing input carriers (electricity and 
natural gas) and total obtained costs with various efficiencies. It is clear 
that the total traded power and heating dose not affected by the effi-
ciency of the gas boiler and electrical efficiency of CHP, respectively (see 
Fig. 11 (a) and Fig. 11 (d)). The exchanged heating and power energy is 
highly decreased by 83 MW and 70 MW as the heating efficiency of CHP 
increases. As a key result, the range of the heating and electrical effi-
ciencies of CHP significantly affects the traded heating and power, 

respectively. In this regard, an efficiency of 0.35 is determined as a 
critical point for CHP in energy trading. Furthermore, the purchasing 
electrical power and total operation cost are highly decreased in Fig. 12 
(d) as the electrical efficiency of CHP increases. Nevertheless, more 
natural gas is purchased from the upstream grid (an increase in the total 
cost of natural gas). In this regard, the impact of heating efficiency is 
ignorable (see Fig. 12 (b)). According to Fig. 12 (a), the gas boiler 
strongly affects the purchasing input energy carriers (both power and 
natural gas). As an important result, while the efficiency of the gas boiler 
increases the purchasing power, the total cost has decreased. 

Study 4: Scalability analysis 
One of the main advantages of the proposed method is its scalability 

for large-scale systems. In this study, it has been validated in systems at 
different scales (5, 20, and 30 EHs). As a key result, the proposed 
distributed algorithm is able to handle large-scale IES in a way that not 
only global optimal solution can be reached, but also the volume of 
computations can be lightened. It is notable that the proposed distrib-
uted algorithm can be completely executed at 0.0815 (s), 0.1318 (s), and 
0.1917 (s) or IESs with respectively 5, 20, and 30 MCESs. In this study, a 
network of 30 EHs in which all MCESs are involved in energy trading is 
only considered for more detailed discussion. The obtained simulation 
results are indicated in Fig. 13. Herein, the exchange energy of i-th 
MCES reflects the total power and heating energy traded between i-th 
MCES with the others and is supplied/consumed by i-th MCES. (See 
Fig. 14.) 

Study 5: Distributed consensus algorithm considering the power 
loss 

This subsection consists of two different studies, Study 5. A, Study 5. 
B. In study 5. A, the distribution network consists of five MCESs with 
structure (b). To handle the scalability, a large-scale IES (a network of 30 
MCESs) is also considered in Study 5.B. Fig. 15 shows the effect of losses 
on the energy flows in IEHs. The total loss is estimated as 5.6917 MW 
and 1175.4 MW, respectively for studies 5. A and 5. B. It can be found 
that the electricity and heating energy losses, significantly effect on the 
purchasing input energy in Study 5. B. For instance, the purchasing 
natural gas is increased by 600 MW in 5-th MCES. In this regard, the 
purchasing input energy is averagely increased by 7.8% and 8.53%, 
respectively for natural gas and electrical power considering the distri-
bution losses. Thus, considering distribution network loss is deemed 
inevitable in relatively large-scale IESs compared to Study 5. B. 
Considering line losses, the total power traded among multi-energy hubs 
is shown in Fig. 15 (c) and (d). It is worst nothing that the total costs of 
purchasing power and natural gas are respectively increased by 1.199×

107($) and 6.12450 × 106 ($) in Study 5. B. 

6.2. Case II 

In Case II, it is assumed that multiple wind turbines, PV systems, and 
solar thermals were installed in different energy hubs. Moreover, the 

Fig. 16. Results of the proposed robust consensus algorithm 
(a) Actual electrical demand (b) Actual power generation of WT (c) Actual 
power generation of PV (d) Actual heating energy generation of ST 

Fig. 17. Comparison results of the optimal and cooperative robust energy management of IEHs (a) electricity (b) heating.  
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electrical demand is also assumed to be uncertain. The efficiency of the 
proposed robust consensus-based algorithm is evaluated in this case 
compared with the deterministic assessment. Case II consists of two 
different studies, Study 1 and Study 2. To assess the effectiveness of the 
robust proposed framework, the daily optimal scheduling of IEHs 
(consisting of three MCESs) is simulated in Study 1 considering the 
worst-case uncertainty. Considering a large-scale IES consisting of (30 

MCESs), the scalability evaluation is discussed in Study 2. 
Study 1: daily optimal scheduling of IEHs under the worst-case 

uncertainty 
In this section, the optimal and robust energy trading in IEHs is 

simulated according to the present algorithm in Section 5 considering 
the worst-case uncertainty of RESs and electrical demand. It is worst 
noting that wi,t is assumed to be 0.5 in this study for each energy hub. 

Fig. 18. The scalability evaluation of economic power trading in Study 2 in case II considering the worst-case uncertainty (a) Total purchasing power (b) Total 
purchasing natural gas (c) Exchanged electricity power (d) Exchanged heating energy. 

Fig. 19. The obtained maximum uncertainty in Study 2 in case II (a) electrical demand (b) heating energy generation of ST (c) power generation of WT (d) power 
generation of PV. 
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The optimal simulation results are expressed in Fig. 16 and Fig. 17. 
Herein, the maximum increase in the electrical demand combined with 
the maximum decrease in the output power of RESs has been taken as 
the worst-case scenario in the simulation. The obtained maximum 
electrical demand has been indicated in Fig. 16 (a). To supply maximum 
uncertainty, higher power is exchanged among studied MCESs 
compared to the deterministic case. Since solar thermal is the only un-
certain resource, the exchanged heating energy doesn’t sufficiently 
change in the worst-case scenario. 

Study 2: Scalability analysis 
In Study 2, IEH is considered as a network of 30 EHs. Herein, it is 

assumed to that the wind turbines were highly installed in HUB#11, 
HUB#3, HUB#6, HUB#9, HUB#12, HUB#15, HUB#18, HUB#21, 
HUB#24 and HUB#20, the PV systems were installed in HUB#1, 
HUB#5, HUB#10, HUB#15, HUB#20, HUB#25 and HUB#30, and the 
solar thermals were installed in HUB#24, HUB#27, HUB#30, and 
HUB#11. Moreover, the electrical demand is also assumed to be un-
certain. Fig .18 (a) and Fig. 18 (b) indicate the purchasing of electrical 
power and natural gas in Study 2. It is worst nothing that the worst-case 
uncertainty is also taken into account in this study (wi,t = 0.1). 

While the total purchasing input energy is expected to be decreased 
in Study 2 (due to RESs), the numerical results show an increase in the 
input energies compared to case I with no RESs (Fig. 13). Compared to 
the deterministic case, the total purchasing power is respectively 
increased by 6.5 while the input natural gas does not strongly be affected 
by the uncertainty. In other words, the proposed algorithm can 
compensate for the obtained worst-case uncertainty by an increase 
(11%) in the total exchanged electrical power compared to the deter-
ministic case. As a key result, the proposed distributed algorithm is able 
to handle large-scale IES with a lightened volume of computational 
burden. It is worst-noting that the proposed robust consensus-based al-
gorithm has been completely executed at 0.20 (s) and 0.53 (s) respec-
tively for the defined small (5 MCESs) and large-scale IESs (30 MCESs). 
In this regard, maximum uncertainty is achieved for RES power gener-
ation and electrical load according to Fig. 19. 

7. Conclusion 

In this study, a novel hybrid distributed IGDT/consensus algorithm 
has been proposed for the risk-averse cooperative optimal operation of a 
large-scale IEHS. Considering the strong energy coupling, the optimal 
energy trading has been modeled as a distributed consensus algorithm to 
improve the system’s overall efficiency. Considering distribution 
network losses, this paper also proposes a new realistic lambda-based 
iterative algorithm for the optimal coordination of IEHs. 

By taking the proposed consensus algorithm, the total operation cost 

is decreased by 18.65% compared to the individual scheduling of EHs 
neglecting the interconnection. The simulation results have been 
compared to the centralized approach. As a key characteristic of the 
proposed method, scalability has been validated in IEHs at different 
scales in two different cases, with and without uncertainty. The running 
time can be lightened by 0.53 (s) and 0.1917 (s) in a large-scale IEHs 
with 30 energy hubs. The sensitive analysis also reveals how the 
distributed algorithm performance is affected by the initial parameter 
selection. The different structures of EHs have also been analyzed on the 
optimal energy trading mechanism. Purchasing input energy can be 
averagely increased by 8% affected by distribution network losses in 
large-scale IES. Nevertheless, the impact of network losses is ignorable 
in an IEHS with five energy hubs. As a key result, the worst-case un-
certainty led to an increase in electrical power trading by 11% compared 
to the deterministic case. Considering a high uncertainty budget, the 
total operation cost can be even higher than case I with no RESs. In 
future works, the CHP’s feasible region can be integrated into the pro-
posed distributed model. How the proposed distributed method is sus-
ceptible to cyber-attacks will also be investigated in future works. 
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Appendix A 

To evaluate the convergence of the studied proposed consensus algorithm, the main decision variables in k + 1-th iteration can be rewritten in the 
general form as (A.1) and (A.2) 

Eg(k+ 1) = B1,gλ1(k+ 1)+B2,gλ2(k+ 1)+ αg (A.1)  

Ee(k+ 1) = Beλ1(k+ 1)+ αe (A.2) 

Where, λ1, λ2, αg and αe are the column stack vectors of λ1,i, λ2,i, − βe
i /2αe

i and − βe
i /αe

i . Also, Be, B1,g and B2,g are calculated as (A.3)-(A.5). 

Be(k+ 1) = diag
[ηtrans,1

2αe
1
,

ηtrans,2

2αe
2
,…,

ηtrans,n

2αe
n

]

(A.3)  

B1,g = daig
([ηGB,1

2αg
1
,

ηGB,2

2αg
2
,⋯,

ηGB,n

2αg
n

])

(A.4)  

B2,g = daig
([

r1

2αg
1
,

r2

2αg
2
,⋯,

rn

2αg
n

])

(A.5) 
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ri = ηGB,i + ηh,GT,i × ηHE,i (A.6) 

The consensus variables (λ1,λ2) is updated in any iteration according to (A.7) and (A.8). 

λ1(k+ 1) = P λ1(k)+ εΔPe(k)+ εΔPg(k) (A.7)  

λ2(k+ 1) = P λ2(k)+ εΔPe(k)+ εΔPg(k) (A.8) 

The electrical and heating imbalances are expressed as follows: 

ΔPe(k+ 1) = QΔPe(k) − (Ee(k + 1) − Ee(k) ) (A.9)  

ΔPg(k+ 1) = QΔPg(k) −
(
Eg(k+ 1) − Eg(k)

)
(A.10) 

If x(k − 1) =

⎡

⎢
⎣

λg(k − 1)
ΔPg(k − 1)
ΔPe(k − 1)

⎤

⎥
⎦, x(k) can be calculated as the following matrix equation in (A.11) by combining (A.1)- (A.10) together, where, W(k) is 

defined as a matrix that relies on the cost coefficient and P and Q matrices. Thus, W(k) is independently calculated in any iteration as (A.13). 

x(k) = W(k)× x(k − 1) (A.11)  

x(k) =

⎡

⎢
⎣

λg(k)
ΔPg(k)
ΔPe(k)

⎤

⎥
⎦, x(k − 1) =

⎡

⎢
⎣

λg(k − 1)
ΔPg(k − 1)
ΔPe(k − 1)

⎤

⎥
⎦ (A.12)  

W =

⎡

⎢
⎣

P εI εI
Bg(I − P) Q − εBg − εBg

Be(I − P) − εBe Q − εBg

⎤

⎥
⎦ (A.13)  

Theorem 1. The convergence of the proposed consensus algorithm will be guaranteed if lim
k→∞

x(k) exists for ∀x(0) < ∞. 

lim
k→∞

x(k) = lim
k→∞

wkx(0) = x* (A.14)  

Lemma1: The consensus algorithm converges to an optimal point if the absolute value of the largest eigenvalue of W is smaller than 1. 

Proof: Considering w = UΛU− 1, the lim
k→∞

x(k) in (A.14) can be rewritten as (A.15). 

lim
k→∞

wkx(0) = lim
k→∞

(
UΛU− 1)kx(0) (A.15) 

Where, U and Λ are matrices of eigenvectors and eigenvalues of W, respectively. Thus, considering Λk as (A.16), lim
k→∞

Λk should be finite to guarantee 

lim
k→∞

x(k) = x* according to the (A.14). lim
k→∞

Λk < ∞ means that the absolute value of the largest eigenvalue is smaller than 1. 

Λ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Λk
1 0 0 0

0 Λk
2 0 0

⋮
0

⋮
0

⋮ ⋮
… Λk

n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(A.16) 

Win (A.13) can be decomposed to the M and N matrices as follows: 

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

P 0 0 0

0 P 0 0

Be(I − P)

B1,g(I − P)

0

B2,g(I − P)

Q − εBe

− εB1,g − εB2,g

0

Q − εB1,g − εB2,g

⎤

⎥
⎥
⎥
⎥
⎥
⎦

N =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 εI εI

0 0 εI εI

0

0

0

0

0

0

− εB

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(A.17) 

The eigenvalues of M are the union of the eigenvalues of P, Q, Q − εBeand Q − εB1,g − εB2,g. The eigenvalues of P and Q are Λ1 = Λ2 = 1 and the rest 
eigenvalues lie in the open unit disk on the complex plane. The largest eigenvalues of Q − εBeand Q − εB1,g − εB2,g are smaller than 1acccording to 
Lemma 2. 
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Lemma 2. According to Weyl’s inequality, the maximum eigenvalue of Q − εBe is equal to the sum of eigenvalues of Q and − εBe. This fact can be also used 
for determining the maximum eigenvalue of Q − εB1,g − εB2,g. 

max[Λ(Q − εBe) ] = Λ(Q)+Λ( − εBe) (A.18)  

The eigenvalue of Q is equal to 1. since Λ(Q) + Λ( − εBe) ≤ 1 and Λ(Q) + Λ
(
− εB1,g − εB2,g) ≤ 1 then the largest eigenvalues of Q − εBeand Q −

εB1,g − εB2,g will be smaller than 1. So, it can be concluded that lim
k→∞

x(k) = x* due to lim
k→∞

Λk < ∞ based on lemma l and lemma 2. 

References 

[1] Wei L, Xiaolong J, Hongjie J, Yunfei M, Tao X, Xiandong X, et al. Decentralized 
optimal scheduling for integrated community energy system via consensus-based 
alternating direction method of multipliers. Appl Energy 2021;302:117448. 
https://doi.org/10.1016/j.apenergy.2021.117448. 

[2] Daryan A, Sheikhi A, Zadeh A. Peer-to-peer energy sharing among smart energy 
hubs in an integrated heat-electricity network. Electr Pow Syst Res 2022;206: 
107726. https://doi.org/10.1016/j.epsr.2021.107726. 

[3] Kazemi M, et al. Participation of energy storage-based flexible hubs in day-ahead 
reserve regulation and energy markets based on a coordinated energy management 
strategy. Int Trans Electric Energy Syst 2022. https://doi.org/10.1155/2022/ 
6481531. 

[4] Zhang X, et al. Economic energy management of networked flexi-renewable energy 
hubs according to uncertainty modeling by the unscented transformation method. 
Energy 2023;278:128054. https://doi.org/10.1016/j.energy.2023.128054. 

[5] Liu T, Zhang D, Wu T. Standardized modelling and optimization of a system of 
interconnected energy hubs considering multiple energies electricity, gas, heating, 
and cooling. Energ Conver Manage 2020;205:112410. https://doi.org/10.1016/j. 
enconman.2019.112410. 

[6] Thang V, et al. Stochastic optimization in multi-energy hub system operation 
considering solar energy resource and demand response. Int J Electric Power 
Energy Syst 2022;141:108132. https://doi.org/10.1016/j.ijepes.2022.108132. 

[7] Xinhui L, et al. A robust optimization approach for optimal load dispatch of 
community energy hub. Appl Energy 2020;259:114195. https://doi.org/10.1016/ 
j.apenergy.2019.114195. 

[8] Zhuoya S, et al. Distributionally robust dispatching of multi-community integrated 
energy system considering energy sharing and profit allocation. Appl Energy 2022; 
321:119202. https://doi.org/10.1016/j.apenergy.2022.119202. 

[9] Gu S, et al. Day-ahead market model based coordinated multiple energy 
management in energy hubs. Solar Energy 2023;262:111877. https://doi.org/ 
10.1016/j.solener.2023.111877. 

[10] Norouzi M, et al. Bi-level fuzzy stochastic-robust model for flexibility valorizing of 
renewable networked microgrids. Sustain Energy Grids Networks 2022;31:100684. 
https://doi.org/10.1016/j.segan.2022.100684. 

[11] Zhang Y. Linearized stochastic scheduling of interconnected energy hubs 
considering integrated demand response and wind uncertainty. Energies 2018;11: 
2448. https://doi.org/10.3390/en11092448. 

[12] Rezaei S, Ghasemi A. Stochastic scheduling of resilient interconnected energy hubs 
considering peer-to-peer energy trading and energy storages. J Energy Storage 
2022;50:104665. https://doi.org/10.1016/j.est.2022.104665. 

[13] Li Y, Li T, Zhou J, Huang B. Double-consensus based distributed optimal energy 
management for multiple energy hubs. Appl Sci 2018;8:1412. https://doi.org/ 
10.3390/app8091412. 

[14] Qu M, Ding T, Jia W, Zhu S, Yang Y, Blaabjerg F. Distributed optimal control of 
energy hubs for Micro-integrated energy systems. in IEEE transactions on systems, 
man, and cybernetics: systems 2021; 51: 2145. https://doi.org/10.110 
9/TSMC.2020.3012113. 

[15] Xiaodi W, Youbo L, Chang L, Junyong L. Coordinating energy management for 
multiple energy hubs: from a transaction perspective. Int J Electric Power Energy 
Syst 2020;121:106060. https://doi.org/10.1016/j.ijepes.2020.106060. 

[16] Mu C, Ding T, Qu M, Zhou Q, Li F, Shahidehpour M. Decentralized optimization 
operation for the multiple integrated energy systems with energy cascade 
utilization. Appl Energy 2020;280:115989. https://doi.org/10.1016/j. 
apenergy.2020.115989. 

[17] Xu D, Wu Q, Zhou B, Li C, Bai L, Huang S. Distributed multi-energy operation of 
coupled electricity, heating, and natural gas networks. IEEE Trans Sustain Energy 
2019;11:2457. https://doi.org/10.1109/TSTE.2019.2961432. 

[18] Javadi MS, Nezhad AE, Jordehi AR, Gough M, Santos SF, Catalão JP. Transactive 
energy framework in multi-carrier energy hubs: a fully decentralized model. 
Energy 2022;238:121717. https://doi.org/10.1016/j.energy.2021.121717. 

[19] Wei Z. Two-stage stochastic decentralized low-carbon economic dispatch of 
integrated electricity-gas networks. Energy 2023:128325. https://doi.org/ 
10.1016/j.energy.2023.128325. 

[20] Eladl Abdelfattah A, et al. Distributed optimal dispatch of smart multi-agent energy 
hubs based on consensus algorithm considering lossy communication network and 
uncertainty. CSEE J Power Energy Syst 2023. https://doi.org/10.17775/ 
CSEEJPES.2023.00670. 

[21] Valipour E, Nourollahi R, Taghizad-Tavana K, Nojavan S, Alizadeh AA. Risk 
assessment of industrial energy hubs and peer-to-peer heat and power transaction 
in the presence of electric vehicles. Energies 2022;15:8920. https://doi.org/ 
10.3390/en15238920. 

[22] Huang Y, Xu J, Gao S, Lee KY, Wang D, Wang B. Incomplete information oriented 
optimal scheduling of multi-energy hub systems with thermal energy storage. 
J Energy Storage 2021;42:103062. https://doi.org/10.1016/j.est.2021.103062. 

[23] Ahmadi SE, et al. Decentralized bi-level stochastic optimization approach for multi- 
agent multi-energy networked micro-grids with multi-energy storage technologies. 
Energy 2022;245:123223. https://doi.org/10.1016/j.energy.2022.123223. 

[24] Chen F, Deng H, Chen Y, Wang J, Jiang C, Shao Z. Distributed robust cooperative 
scheduling of multi-region integrated energy system considering dynamic 
characteristics of networks. Int J Electric Power Energy Syst 2023;145:108605. 
https://doi.org/10.1016/j.ijepes.2022.108605. 

[25] Hou G, Jian X. Distributionally robust chance-constrained economic dispatch of 
multi-area electricity–gas–heat integrated energy systems. Electr Pow Syst Res 
2023;217:109090. https://doi.org/10.1016/j.epsr.2022.109090. 

[26] Chen F, Chen Y, Deng H, Lin W, Shao Z. Distributed robust operation of integrated 
energy system considering gas inertia and biogas–wind renewables. Int J Electric 
Power Energy Syst 2023;151:109123. https://doi.org/10.1016/j. 
ijepes.2023.109123. 

[27] Gao J, Shao Z, Chen F, Chen Y, Lin Y, Deng H. Distributed robust operation strategy 
of multi-microgrid based on peer-to-peer multi-energy trading. IET Energy Syst 
Integrat 2023. https://doi.org/10.1049/esi2.12107. 

[28] Nikmehr N. Distributed robust operational optimization of networked microgrids 
embedded interconnected energy hubs. Energy 2020;199:117440. https://doi.org/ 
10.1016/j.energy.2020.117440. 

[29] Binetti G, Davoudi A, Lewis FL, Naso D, Turchiano B. Distributed consensus-based 
economic dispatch with transmission losses. IEEE Trans Power Syst 2014;29(4): 
1711. https://doi.org/10.1109/TPWRS.2014.2299436. 

M. Azimi et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.apenergy.2021.117448
https://doi.org/10.1016/j.epsr.2021.107726
https://doi.org/10.1155/2022/6481531
https://doi.org/10.1155/2022/6481531
https://doi.org/10.1016/j.energy.2023.128054
https://doi.org/10.1016/j.enconman.2019.112410
https://doi.org/10.1016/j.enconman.2019.112410
https://doi.org/10.1016/j.ijepes.2022.108132
https://doi.org/10.1016/j.apenergy.2019.114195
https://doi.org/10.1016/j.apenergy.2019.114195
https://doi.org/10.1016/j.apenergy.2022.119202
https://doi.org/10.1016/j.solener.2023.111877
https://doi.org/10.1016/j.solener.2023.111877
https://doi.org/10.1016/j.segan.2022.100684
https://doi.org/10.3390/en11092448
https://doi.org/10.1016/j.est.2022.104665
https://doi.org/10.3390/app8091412
https://doi.org/10.3390/app8091412
https://doi.org/10.1109/TSMC.2020.3012113
https://doi.org/10.1109/TSMC.2020.3012113
https://doi.org/10.1016/j.ijepes.2020.106060
https://doi.org/10.1016/j.apenergy.2020.115989
https://doi.org/10.1016/j.apenergy.2020.115989
https://doi.org/10.1109/TSTE.2019.2961432
https://doi.org/10.1016/j.energy.2021.121717
https://doi.org/10.1016/j.energy.2023.128325
https://doi.org/10.1016/j.energy.2023.128325
https://doi.org/10.17775/CSEEJPES.2023.00670
https://doi.org/10.17775/CSEEJPES.2023.00670
https://doi.org/10.3390/en15238920
https://doi.org/10.3390/en15238920
https://doi.org/10.1016/j.est.2021.103062
https://doi.org/10.1016/j.energy.2022.123223
https://doi.org/10.1016/j.ijepes.2022.108605
https://doi.org/10.1016/j.epsr.2022.109090
https://doi.org/10.1016/j.ijepes.2023.109123
https://doi.org/10.1016/j.ijepes.2023.109123
https://doi.org/10.1049/esi2.12107
https://doi.org/10.1016/j.energy.2020.117440
https://doi.org/10.1016/j.energy.2020.117440
https://doi.org/10.1109/TPWRS.2014.2299436

	Optimal and distributed energy management in interconnected energy hubs
	1 Introduction
	1.1 Motivation
	1.2 Literature review
	1.3 Research gaps
	1.4 Contributions
	1.5 Paper organization

	2 General proposed framework
	2.1 MCES modelling

	3 Cooperative optimal energy management for IEHs
	4 Proposed iterative consensus-based heuristic framework considering energy loss
	4.1 Inner loop: distributed consensus algorithm
	4.2 Outer loop: losses updating

	5 Proposed robust hybrid IGDT/consensus algorithm
	6 Simulation results
	6.1 Case I
	6.2 Case II

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	Appendix A
	References


