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Abstract—This paper proposes two novel strategies for determin-
ing the bilateral trading preferences of households participating in
a fully Peer-to-Peer (P2P) local energy market. The first strategy is
based on the matching between surplus power supply and demand
of participants, while the second is based on the distance between
them in the network. The impact of the bilateral trading preferences
on the price and amount of energy traded is assessed for the
two strategies. A decentralized fully P2P energy trading market
is developed to generate the results in a day-ahead setting. Besides,
a permissioned blockchain-smart contract platform is used for
the implementation of the decentralized P2P trading market on
a digital platform. Real data from a residential neighborhood, with
different varieties of distributed energy resources, located in the
city of Amsterdam, The Netherlands, is used for the simulations.
Results show that in the two strategies, the energy procurement cost
and grid interaction of all participants in P2P trading are reduced
compared to a baseline scenario. The total amount of P2P energy
traded is found to be higher when the trading preferences are based
on distance, which could also be considered as a proxy to enhance
energy efficiency in the network by encouraging P2P trading among
nearby households. However, the P2P trading prices in this strategy
are found to be lower than the first one. Further, a comparison is
made between two scenarios: with and without electric heating in
households. Although the electrification of heating reduces the total
amount of P2P energy trading, its impact on the trading prices is
found to be limited.

Index Terms—Distributed energy resources; peer-to-peer en-
ergy trading; bilateral trading preferences; local energy markets;
blockchain

I. INTRODUCTION

The increasing penetration rates of residential rooftop Pho-
tovoltaics (PV) panels as well as other Distributed Energy
Resources (DER), such as Electric Vehicles (EV), Battery Energy
Storage Systems (BESS) and Heat Pumps (HP), has led to
an increase in the number of prosumers, enhanced end-users
flexibility and opened up new market opportunities for different
stakeholders in the energy system [1]. Different self-consumption
policies have been adopted in different countries to enable
prosumers selling their energy back to the grid, such as Feed-in-
Tariffs (FiT) and net-metering. Such policies have had a positive
effect on the adoption of DER in residential energy systems.
However, at high penetration rates of DER, it would be favorable
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technically and economically to maximize the utilization of
locally produced energy at the demand side [2], [3].

Novel market designs, enabled by recent advancements in In-
formation and Communication Technologies (ICT), are emerging
as alternative solutions for coordinating prosumers locally, where
prosumers can directly trade energy with each other. These new
market designs are called Local Energy Markets (LEM), which
are typically end-users centered to enhance individuals’ choices
[4]. Different categories of LEM structures can be distinguished
in literature depending on their degree of decentralization. The
two main categories are fully Peer-to-Peer (P2P) and community-
based markets [4], [5].

In P2P markets, energy can be traded between end-users
directly following a predefined matching strategy. Using some
ICT-based platforms, such as blockchain with smart contracts,
there is technically no need for a centralized entity to manage
the trades [6]. One iconic study from the Brooklyn microgrid
implemented a P2P trading scheme, where supply and demand
bids are matched using a conventional merit-order dispatch and
the trading price is cleared for all participants [7]. While this
mechanism simplifies the management of trades in a community,
it is arguable that it does not exploit the full potential of P2P
markets. In fully P2P markets, trades are conducted bilaterally
and maximum financial independence, privacy and freedom of
choice should be guaranteed. Fully P2P market designs have
been explored recently in various studies [8], [9]. For instance,
in [9], a unified P2P market model has been formulated. This
scheme may be operated with both bilateral trades and a central-
ized pool market. A P2P market that incorporates joint energy
trading and uncertainty trading is proposed in [10]. In [11], a
bilateral trading mechanism is used for product differentiation
between participants, where a multi-bilateral economic dispatch
formulation is introduced and solved using consensus optimiza-
tion.

While interesting, these earlier studies do not provide concrete
strategies for building the bilateral trading preferences or an
assessment of their impact on the price and amount of energy
traded locally. The bilateral trading preferences of participants
could reflect, for instance, prosumers’ preferred returns for
exchanging their surplus locally generated energy or consumers
preferred source of energy. Therefore, the strategy according
to which bilateral trading preferences are designed is crucial
for actual implementation of P2P markets in residential energy
systems. There, the choice of preferred trading partners is
typically dependant on residents motives (e.g., environmental or
economic), personal relationships or their identity in a commu-
nity [12]. This could potentially enable participants with different
motives to have control over their energy exchange.
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This paper presents a decentralized fully P2P energy trading
market and proposes two different strategies for determining
the bilateral trading preferences of participants in the market,
as a new contribution to earlier studies. The first strategy is
based on the matching between surplus supply and demand of
participants, while the second is based on the distance between
them in the network. The first strategy could be considered as
an economic and market-based strategy, whereas the distance-
based strategy could also be considered as a proxy to enhance
energy efficiency in the network when performing P2P energy
trading. Further, the impact of the two strategies on the price
and amount of energy traded locally is assessed and compared.
Since advanced ICT are needed for the actual realization of fully
P2P markets, we demonstrate how the decentralized P2P energy
trading market could be implemented on blockchain as a digital
platform. Indeed, the use of blockchain with smart contracts
can enable the implementation of decentralized energy trading
mechanisms due to their inherent technical characteristics, such
as traceablility, immutability, automation and security.

The applications of blockchain-smart contracts have recently
covered different domains, such as digital media [13], agriculture
supply chain [14], and IoT devices [15]. Besides, their appli-
cations to the area of smart grids have recently received an
increased attention, such as for secure and privacy-preserving
energy trading [16]–[18], microgrids management [19], crowd-
sourced energy system with optimal power flow in distribution
network [20], voltage regulation in active distribution networks
[21], privacy-preserving payments of EVs in Vehicle-to-Grid
(V2G) networks [22], balancing electricity transmission net-
works using EVs [23]. The applications and challenges of using
blockchain as a secure, distributed cyber infrastructure for the
future grid are discussed in [24]. A practical implementation of
blockchain in microgrids with local energy trading is presented
in [6], [7]. However, the formulated LEM does not consider
fully P2P energy trading with bilateral preferences. By using
the proposed blockchain-based fully P2P energy trading market
with different bilateral trading strategies, maximum freedom and
autonomy for end-users can be guaranteed, since it enables
them to incorporate their preferences in selecting their trading
partners and run the network without the need for a centralized
energy management entity. The contributions of this work can
be summarized as:

• A fully P2P energy trading optimization model for res-
idential energy systems with different varieties of DER
is presented. The model is decomposed and solved in a
decentralized manner.

• Two novel bilateral trading strategies are proposed for
calculating the trading preferences (i.e., coefficients). The
first strategy is based on the matching between demand and
surplus power supply of participants. The second strategy
is aimed to enhance energy efficiency by encouraging P2P
trading among nearby participants.

• A comprehensive implementation of the decentralized fully
P2P energy trading model on a permissioned blockchain-
smart contract platform is presented.

• An electric heating model is incorporated in the optimiza-
tion model to show the impact of heating electrification on
the results.

The rest of the paper is structured as follows. The system

design, assumptions and problem setup are presented in Sec-
tion II. Section III presents the decentralized formulation of the
fully P2P energy market. The two strategies for determining
the bilateral trading preferences are detailed in Section IV. In
Section V, the implementation of the P2P trading market model
on a permissioned blockchain platform is presented. Numerical
results and discussions are given in Section VI. Finally, the paper
is concluded in Section VII with several pointers to future work.

II. SYSTEM DESIGN AND ASSUMPTIONS

The study considers a residential energy community (i.e., or
a microgrid) that consists of a set of nodes N , indexed by
i = 0, 1, . . . , N . While a node might represent a household, a
building or any DER (e.g., a community battery) located in the
distribution network, this study focuses on households only1.
All households have a connection to the main grid and can
inject/withdraw power to/from the grid through that connection.
Part of their electricity demand is fixed and can be described
by a load profile. The baseload demand of household i at
timestep t ∈ T = {t0, t0 + ∆t, t0 + 2∆t, . . . , T} is denoted
P l
i,t, which is assumed to be deterministic in this study. The

power withdrawn/injected from/to the grid is denoted pg
i,t and

has an associated price represented by λbuy for buying energy
from the grid, and λsell for selling energy back to the grid (i.e.,
at a lower tariff). These price signals are assumed to be different
at each t and the same for all households in the community.
The cost function for each household i in timestep t can then be
formulated as:
Cg
i,t(p

g
i,t) = λbuy

t · [p
g
i,t]
− − λsell

t · [p
g
i,t]

+, ∀ i ∈ N , t ∈ T , (1)
where

[pg
i,t]

+ = max{pg
i,t, 0}, ∀ i ∈ N , t ∈ T , (2)

[pg
i,t]
− = max{−pg

i,t, 0}, ∀ i ∈ N , t ∈ T . (3)
A household can own a different variety of DER, such as

a PV system, an EV and/or a BESS. The amount of power
obtained from the PV system at t in i is denoted P pv

i,t, which is
assumed to be perfectly known and uncontrollable in this work.
The presence of EV and BESS yields additional constraints. An
EV is considered to be a flexible load where both the time and
quantity of the charging power pev

i,t can be controlled. The total
EV daily charging energy must equal to the EV daily energy
requirement Eev

i (see (4)). Furthermore, EV charging rate is
constrained within upper and lower charging limits. A binary
input parameter ωi,t is used in (5) to indicate the timeslots at
which the EV charging can be scheduled.

T∑
t=0

pev
i,t∆t = Eev

i , ∀ i ∈ N , (4)

ωi,tp
ev ≤ pev

i,t ≤ ωi,tpev, ∀ i ∈ N , t ∈ T . (5)
For the BESS, the net battery power pb

i,t is defined as the
difference between the discharging power pbd

i,t and the charging
power pbc

i,t, as:
pb
i,t = pbd

i,t − pbc
i,t, ∀ i ∈ N , t ∈ T . (6)

The State of Charge (SoC) of the battery is represented
by SoCb

i,t, and the efficiency of charging and discharging are
denoted ηb

c , ηb
d , respectively. The SoCb

i,t can then be determined
as:
SoCb

i,t = SoCb
i,t−1 + (ηb

cp
bc
i,t −

pbd
i,t

ηb
d

)∆(t), ∀ i ∈ N , t ∈ T . (7)

1In the rest of the manuscript, the terms "household" and "users" will be used
to represent a physical node in the network participating in P2P trading.
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pbd
i,t, p

bc
i,t and SoCb

i,t are all constrained within upper and lower
limits.

The impact of full electrification on the price and amount of
P2P traded energy will be assessed in this work. Therefore, Space
Heating (SH) in households is assumed to be delivered using
an HP, which is considered as a flexible load, while ensuring
end-users’ comfort. The following model is used to predict the
Coefficient of Performance (CoP) of the HP:

CoP t = a0 + a1∆T + a2∆T2, (8)
where ∆T is the temperature difference between the outside
environment and the supply temperature. The parameters a0, a1
and a2 are the HP model coefficients [3], [25].

The SH demand can be scheduled using a decision variable
qsh
i,t, which is generated by multiplying the thermal heat loss

of the building (U i) with the temperature difference between the
inside and outside environment at each t (see (9)). This approach
can add flexibility to the HP by setting the boundaries of the
SH demand profile flexibly since the maximum and minimum
temperature of the inside building environment (ki,tbuilding) are
configurable parameters of the problem.

qsh
i,t = U i(kbuilding

i,t − Tamb
t ), ∀i ∈ N , t ∈ T . (9)

The daily flexible electric SH supply should be equal to the
daily electric heat demand profile of the household (

∑T
t=1D

sh
i,t)

as:
T∑
t=1

qsh
i,t =

T∑
t=1

Dsh
i,t, ∀i ∈ N , t ∈ T . (10)

However, the above constraints result in an unbounded daily
SH demand profile, neglecting the comfort of the residents.
Therefore, the following constraint is applied to sustain comfort
levels and ensures that the inside temperature is within the range
of predefined minimum (Tbuilding,min

i ) and maximum (Tbuilding,max
i )

inside building temperatures, as:
T

building,min
i ≤ kbuilding

i,t ≤ T
building,max
i , ∀i ∈ N , t ∈ T . (11)

The amount of electricity provided by the HP is the SH
demand divided by the CoP of the HP at each t .

php
i,t =

qsh
i,t

CoPt
, ∀i ∈ N , t ∈ T . (12)

The following constraint ensures that the total amount of
power provided by the HP cannot be higher than its maximum
installed power.

0 ≤ php
i,t ≤ P

hp,installed
i , ∀i ∈ N , t ∈ T . (13)

For determining the maximum installed power of the HP
(P hp,installed

i ), the HP is sized to supply the annual peak of the
heat demand of i (Qpeak

i ) divided by the minimum expected CoP
(CoPmin) to provide sufficient heating during cold days.

The fast ramping rates of the HP are constrained as:
|php
i,t − p

hp
t−1,i| ≤ P

ramp,max
i , ∀i ∈ N , t ∈ T , (14)

where P iramp,max is the maximum ramp rate of the HP in i.
In P2P trading, every household can exchange an amount of

net power with other households in the network. The net power
exchange in i at t is denoted pi,t, whose positive value represents
a surplus power (i.e., can be sold), and negative value represents
a residual demand (i.e., need to be bought). The net power pi,t
is determined using an energy balancing formula as:
pi,t = pg

i,t + P pv
i,t + pb

i,t − P l
i,t − pev

i,t − p
hp
i,t, ∀ i ∈ N , t ∈ T . (15)

III. DECENTRALIZED FULLY P2P ENERGY TRADING

A. Market Design

A P2P market model, which is a special case of the unified
formulation proposed in [9], is used in this study. This model
allows the designation of a bilateral trading coefficient to every
individual trade. We assume that all households in the network
are rational and non-strategic market agents. The objective is to
minimize the overall costs in the network for all households N
over a time horizon T . This includes the costs (revenues) for
withdrawing (injecting) power to the grid as well as the costs
(revenues) of trading energy bilaterally with other households in
the network. The problem can be formulated as:

minimize
T∑
t=0

N∑
i=0

[
Cg
i,t(p

g
i,t) +

M∑
j=0

γij,t|dij,t|

]
, (16a)

subject to: (4)− (7), (9)− (15),

pi,t =
M∑
j=0

dij,t, [µi,t],∀ i ∈ N , t ∈ T ,

(16b)
Dt = −Dᵀ

t [Ξt],∀ t ∈ T , (16c)
In this formulation, M indexed by j represents the set of

trading partners of household i. Bilateral trading preferences
can be decided by a household owner using the parameter γij,t,
which is a bilateral trading coefficient imposed by i on the trade
with another household j, and dij,t is the quantity of energy
traded between i and j. The total amount of traded energy
between i and all other households at each t must be equal to the
net power of i at that t (determined in (15)) as ensured by (16b).
The dual variable µi,t associated to this constraint represents
the perceived energy price by i. The matrix Dt contains the
quantities of all bilateral trades in the network at each t and
the associated dual variable matrix Ξt contains the prices of all
trades at that t. The reciprocity of trading quantities as well as
of trading prices Ξ are ensured by (16c) at the optimal solution
of problem (16).

B. Decentralized Formulation

The general-form consensus optimization of the Alternating
Direction Method of Multipliers (ADMM) is chosen in this work
to decompose the centralized formulation in (16) into several
sub-problems and each household solves its corresponding sub-
problem separately and independently. The solution of those sub-
problems are then coordinated to come to a solution of the global
problem [26].

After solving its sub-problem locally, every household will
determine its own optimal local trading quantities schedule D,
which is treated as a coupling variable that corresponds to the
global variable C. Following [9], (C−Cᵀ)/2 = D is defined as
the average of the trading quantity proposed by i to j and the one
proposed by j to i. Consensus between households happens when
those trading values are equal which is guaranteed by ADMM at
optimality, since the considered optimization problem formulated
in (16) is convex [26]. In this formulation, the local private
energy information of each household (e.g., PV generation,
power demand, EV charging pattern) are not shared with the
network and remain private.

Using this consensus constraint, the fully decentralized aug-
mented Lagrangian for the bilateral trading model at each
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iteration k and for each household i can be formulated as:(
pg
i , Di

)k+1
= argmin

pg
i,Di

T∑
t=0

[
Cg
i,t(p

g
i,t) +

M∑
j=0

[
γij,t|dk+1

ij,t |+

(ρ/2)
(dkij,t − dkji,t

2
− dk+1

ij,t + ξkij,t/ρ
)2]]

(17)
subject to:
(4)− (7), (9)− (15) and (16b),

where ρ > 0 is the penalty parameter and ξ is the dual variable
that represents the price of each bilateral trade being updated in
each iteration k of the ADMM method, as:

ξk+1
ij,t = ξkij,t − ρ(dk+1

ij,t + dk+1
ji,t )/2. (18)

The consensus is obtained when the ADMM algorithm con-
verges, which is determined using the following conditions:∥∥rk∥∥

2
≤ εp,

∥∥sk∥∥
2
≤ εd, (19)

where r and s are the primal and dual residuals, and εp and εd
are the tolerances in the primal and dual residuals, which are
typically assigned a very low value [26].

IV. BILATERAL TRADING STRATEGIES

A matrix of bilateral trading coefficients Γ is defined, which
contains all bilateral trading coefficient values between any
household (i ∈ N ) and its peers (j ∈ M) in the network. This
matrix can be used to indicate preferred trading partners and
enable product differentiation [11]. According to the formulation
in (17), the smaller the value of γij,t, the more favorable the
associated trade with household j. In this section, different
strategies for setting up the matrix Γ are proposed.

A. Supply-Demand Matching Strategy (ST1)

In this strategy, the bilateral trading coefficients are built based
on the matching between power demand and surplus PV power
generation of households. In this regard, the willingness of i to
trade at t is proportional to the magnitude of its expected deficit
demand or surplus PV generation (i.e., P li,t − P

pv
i,t). Following

this strategy, it is assumed that households with a surplus power
are more likely to trade energy with households with a power
deficit, and vice versa. This strategy could be adopted to create
a bilateral trading market where an economic mechanism is
prioritized. In order to reflect these assumptions in the bilateral
trading coefficients, several steps are taken.

First, the expected net budget matrix P net is determined which
contains the net power of all households (i.e., N rows indexed
by i) across all timesteps (i.e., T indexed by t). From this matrix,
two new matrices P buy and P sell are defined, which contain
the amount of net power that each household wants to sell or
buy, respectively, at every timestep. Then, each row in P buy

and P sell is normalized according to the maximum deficit and
surplus budget in that row, respectively. After that, matrices Γb,rel

and Γs,rel are created, which represent the relative willingness
of households to buy or sell energy. Parameter χ represents
the maximum baseline value for bilateral trading coefficients.
Using Γb,rel and Γs,rel, the final 3D matrix of bilateral trading
coefficients Γ is then identified.

At the maximum value of γij,t = χ, households i and j are
considered to be very unlikely trading partners. χ is set at a high
value, meaning that all bilateral trading coefficients have a value

Algorithm 1: ST1: Supply-demand matching strategy.

1 foreach household i ∈ N do
2 P li ← power demand profile
3 P pv

i ← PV generation profile

4 Build the net budget matrix P net (N x T ):
P net = P pv − P l

5 Split P net in two matrices P buy and P sell, where each
element in these matrices is defined as:

pbuy
i,t =

{
0 if pnet

i,t ≥ 0

pnet
i,t if pnet

i,t < 0
(20)

psell
i,t =

{
pnet
i,t if pnet

i,t > 0

0 if pnet
i,t ≤ 0

(21)

6 Set the maximum coefficients baseline value (χ)
7 Normalize each row in P buy and P sell using P

buy
max and

P
sell
max, as:

Γb,rel =
χ

2

P buy

P
buy
max

(22)

Γs,rel =
χ

2

P sell

P
sell
max

(23)

8 Build the 3D matrix of bilateral trading coefficients Γ
based on Γb,rel and Γs,rel, as:

γij,t =


χ if γs,rel

i,t , γ
s,rel
j,t > 0

χ if γb,rel
i,t , γ

b,rel
j,t > 0

χ− (γb,rel
i,t + γb,rel

j,t + γs,rel
i,t + γs,rel

j,t ) otherwise
(24)

of anywhere between 0 and χ. The procedure in ST1 is detailed
in Algorithm 1.

B. Distance-based Matching Strategy (ST2)

The other proposed strategy for matching between households
is based on their distance to each other in the network. The
distance here represents the number of connections between
households. For instance, a directly connected households have
distance of unit 1. Clearly, the distance between households
depends on the topology of the network, which is assumed to
be known in this strategy. Generally, households are connected
to distribution networks, which typically have a radial topology.
Hence, the network can be represented as a multi-way tree (i.e., a
decision tree that can have more than two children). This strategy
is more focused on reducing long-distance electricity flows
through the lines, potentially enhancing energy efficiency in the
network by encouraging P2P trading among nearby households.

The first step in this strategy is to build the N x N child and
parent matrices based on the network topology. The neighbours
of a particular household i can be regarded as the parent and
children of that household. A household j that is closer to the
root in the tree is called the parent of i, while i is called the
child of j. After that, two separate vectors are created, vp and
vc, each of which contains the list of all parents and children in
the network, respectively. Finally, the distance between each two
households i ∈ N and j ∈ N in the network (dij) is calculated
using a recursive function findDist(i, j). Descriptions of the
ST2 algorithm and the findDist(i, j) function are provided in
Algorithm 2.
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Algorithm 2: ST2: Distance-based matching strategy.

1 Receive the network topology
2 Build the N x N child and parent matrices based on the

network topology
3 Identify the children and parents IDs of each household

and store them in two separate vectors (vp and vc)
4 Find and store the distance dij between each two

households (i ∈ N and j ∈ N ) in the network using the
findDist(i, j) function

5 Function findDist(i, j):
dij ← 0 (initial value of the distance);
if i == j then

return dij (a household’s distance to itself is
zero);

else if vpi == j || vpj == i then
return dij+1 (one household is a parent of the
other);

else if vpi == vpj then
return dij+2 (households are children of the
same parent);

else
n← max(vpi, vpj)
m← min(i, j)
if vpn == m then

return findDist(vpn,m) (m is a
grandparent of n);

else if vpm == n then
return findDist(vpm, n) (n is a grandparent
of m);

else
return findDist(n,m) + 1 (other cases);

End Function
6 Set the trading coefficients based on distance:
7 foreach i ∈ N do
8 foreach j ∈ N do
9 γij ← dij = findDist(i, j)

10 Return the final bilateral trading coefficients matrix Γ

V. IMPLEMENTATION OF P2P ENERGY TRADING MARKET
ON BLOCKCHAIN

A. Blockchain Platform Selection

By adopting blockchain and smart contracts technologies,
the decentralized P2P energy trading formulation, presented in
Section III-B, can be implemented in a secure, verifiable and
automated manner. The IBM Hyperledger Fabric (HLF) [27]
is chosen in this study as a permissioned blockchain platform.
Multiple blockchain platforms were analyzed based on literature
and experts’ opinions and experience, such as EnergyCoin [28],
Ethereum [29], [30] and HLF [31]. The HLF ended up as the
most suitable solution for the decentralized fully P2P market due
to its ability to support smart contracts while at the same time
offering a better performance compared to other platforms due
to its unique consensus protocol. One of its main characteristics
is that it is a permissioned blockchain which, for P2P energy
trading applications, appears as an advantage since it is necessary

to know the identify of the households participating in energy
trading. Besides, the HLF brings a lot of customization options,
one of which is that it allows changing the block creation
configuration in the runtime, therefore adapting the speed of
transactions depending on the situation within the system. The
HLF provides smart contract support in the form of Chaincode
that can be written using the most popular programming lan-
guages (i.e., Go, Java or NodeJS) [27], [31].

B. Components of the Considered HLF Organization

The P2P HLF organization considered in this study is made of
the following components: Peers2 (i.e., each has a state database
and a blockchain database), a Certificate Authority (CA), a CA
Database, a Chaincode container on top of each Peer and an
Orderer. The considered HLF organization is depicted in Fig. 1.

Peers are components that host ledgers (i.e., a blockchain
database and a state database) and a smart contract (i.e., Chain-
code). Each Peer within the organization is mutually synchro-
nized (i.e., containing the same data). The CA is a component
responsible for validating the identity of permissioned users (i.e.,
households) which join the blockchain network by issuing and
revoking digital certificates that will be used as identifiers for
households when communicating with the HLF. The P2P trading
Chaincode algorithm is a program that runs on each HLF Peer
and represents a logical interface between a household and the
HLF. The Orderer (i.e., the Ordering Service) is a component
responsible for creating blockchain blocks and ensuring that once
a Peer receives a block, it is guaranteed to be final and correct.

The P2P trading service represents a household’s energy
management system that runs the ADMM local optimization
problem (i.e., formulated in Section III-B). A Hyperledger SDK
is used in order to communicate with the HLF organization. The
Hyperledger SDK is called by the P2P trading service in order
to register and retrieve a certificate from the CA, as well as to
create and send a transaction proposal that will be processed
within the HLF organization.

C. Chaincode Information and Consensus Protocol

Each HLF Peer has the same version of P2P trading Chaincode
algorithm which, besides being an interface between a user and
the Hyperledger, plays a vital role in the consensus mechanism.
In each iteration of the ADMM algorithm, the role of the P2P
trading Chaincode in this work is to store the trading quantity
pairs for each household and construct the bilateral trading
quantities matrix (i.e., the matrix D described in Section III),
which will be retrieved back by each corresponding household.
For both storing and fetching, in order to invoke the Chaincode,
each user has to include a valid certificate that was already
issued by the CA. The P2P trading Chaincode is benchmarked
according to the number of P2P trading users (i.e., execution time
required for constructing the bilateral trading quantities matrix).
The outcome is presented in Table I, which shows a reasonable
execution time by the Chaincode for the considered P2P trading
application.

The HLF consensus protocol is divided into three phases: i)
Endorsement phase, ii) Ordering phase, and iii) Validation phase.
In the Endorsement phase, a user’s transaction proposal is being

2The term "Peer" here refers to a component of the HLF. It is important to
distinguish this term from the "peer" used in P2P trading to represent a household
or user in the network.
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(a) Households communication with the HLF organization.

(b) Consensus protocol for each household within the considered HLF organization.

Fig. 1. The HLF-based P2P energy trading network architecture.

sent to one or more endorsing Peers. Since each Peer contains
a P2P trading Chaincode algorithm, endorsing Peers verify the
user’s certificate issued by the CA and transaction proposal
inputs and return an endorsement response which consists of
endorsing peers signatures and a read/write set that is created
from the Chaincode execution on the current version of the
ledger. In the Ordering phase, endorsement responses are being
passed to the Ordering Service, which then creates a blockchain
transaction. This transaction is stored within a blockchain block
which is eventually sent to the Leader Peer (i.e., Peer 0 in
Fig. 1). The Leader Peer further propagates the block to the
other Peers in the organization via the Gossip protocol. In the
Validation phase, all Peers validate the transaction based on the
endorsement policies, and check if there were any changes on
the ledger related to the read/write set since it was generated.
If valid, a transaction is committed and this will finally create a
mutually synchronized and updated state databases between all
Peers in the organization [27], [31].

When having an Ordering Service composed of multiple HLF
organizations, there is an option for a distributed Ordering
Service implementation (e.g., with the Raft Crash Fault Tolerant

TABLE I
CHAINCODE EXECUTION TIME FOR CONSTRUCTING THE

BILATERAL TRADING QUANTITIES MATRIX (D).

Number of users N 10 30 50 70 100 150
Chaincode execution time (sec) 0.114 0.161 0.245 0.457 0.879 1.787

(CFT) mechanism) [32]. This is required when users from
different HLF organizations perform P2P trading between each
other. However, in our study, we assume that all users in the
permissioned P2P energy trading network belong to the same
HLF organization.

D. Implementation

The first step of the implementation is to initialize the HLF
network. Once the network is up and running, the simulation of
P2P trading can start. For each household participating in P2P
trading, a user related to that household is created and registered.
Its certificate is then retrieved from the CA. The implementation
procedure following the consensus protocol is illustrated in Fig. 1
(b) and described below in more details.

1) A user sends a transaction proposal, via its HLF SDK, to
a random endorsing Peer that contains the following: (i.e.,
beginning of the Endorsement phase):

a) A Chaincode method information used for sending trad-
ing quantities.

b) The user trading quantities data: its ID and a matrix
(N xT ) of all users in the network for each timestep.

c) A certificate related to that user.
2) The endorsing Peer checks whether the transaction proposal

is valid (i.e., contains the information mentioned in the first
step), and simulates the P2P trading Chaincode algorithm.
It returns an endorsement response back to the HLF SDK
of the user.

3) An invocation proposal, which contains the transaction and
the endorsement response, is sent to the Orderer to generate
a blockchain block with the trading quantities transaction
(i.e., beginning of the Ordering phase).

4) The Orderer sends a new blockchain block to the Leader
Peer (e.g., Peer 0 in Fig. 1).

5) Using the Gossip protocol, the block is propagated to
the other Peers, which validate the transaction signatures
based on the endorsement policies (i.e., beginning of the
Validation phase).

6) If valid, a transaction is committed and each Peer performs
the following:

a) Appends a new block within the blockchain database.
b) Updates the state database with a set of trading quantity

pairs (State DB in Fig. 1). After the update, there will be
multiple trading quantity pairs related to a user (i.e., one
for each participating user in the network). For example,
if there are 21 households, there will be 21 pairs related
to the sending user. A sending user paired with itself with
a zero trading quantity.

The information related to the simulation of the optimization
algorithm on the HLF organization (e.g., trading coefficients,
max number of iterations for ADMM, trading quantity pairs,
etc) can be found in the state DB and the blockchain DB
within each Peer. However, the local private energy information
of each household (e.g., PV generation, power demand, EV
charging pattern) are not shared with the organization and remain
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Fig. 2. Topology and distribution of households and DER in the considered
residential network.

private. After the simulation finishes, all the optimization results
(e.g., number of iterations required, optimal trading quantities,
optimal trading prices, optimal power schedules of flexible load,
total trading cost and grid cost as well as the total time until
convergence) can be stored in an output folder in a .csv format,
which are then used to present the results in the next section.

VI. NUMERICAL EVALUATION AND DISCUSSIONS

A. Case Study and Simulation Setup

A realistic case study is considered to evaluate the proposed
blockchain-based P2P energy trading market model and compare
the different proposed strategies. The simulation uses actual
hourly baseload and PV output power generation data of N=21
households who participated in an energy community pilot in
the city of Amsterdam, The Netherlands. Only two households
in this community own an HP for electric heating. Hence, the
hourly electric heating demand and hourly ambient temperature
of those two households are used to generate that data for the
rest of the households in the community (i.e., for simulation
scenarios with electric heating).

The topology of the network used to calculate the distance
between households in ST2 is presented in Figure 2, which
also shows the number of prosumers (i.e., 11 households) and
the number of households with EV (i.e., 8 households). Those
prosumers have a PV capacity between 2-5 kWp. A time-of-use
price signal is used from the day-ahead market clearing prices of
the European Power Exchange (EPEX), The Netherlands [33].
In all scenarios, the FiT for prosumers is assumed to be 50% of
the electricity price at that time (i.e., λsell = 0.5λbuy). The average
EV daily charging requirement (Eev) is set at 7.06 kWh, which
is based on the average daily distance travelled by passenger
cars in The Netherlands [34]. The EV charging limits are set at
pev = 1.7 [kW] and pev= 0 [kW] and their charging hours (ωi)
are randomly pre-defined, with some households preferring to
charge during the day and others during the night. The ownership
of BESS is assumed to be by prosumers. The parameters of the
BESS in the simulations are assumed to be as follows: SoCb

min=
20%, SoCb

max=80% and ηb
c =ηb

d=0.943.
Regarding the parameters values of the electric heating model,

the HP model coefficients in Eq. 8, a0, a1 and a2, are specified on
5.06, -0.05 and 0.00006, respectively [25]. The building thermal
heat loss is calculated based on the characteristics of an average
insulated Dutch house and set as U= 0.1 [W m-2 K-1]. The
minimum and maximum building temperatures are specified as
T ibuilding,min= 18 °C and T ibuilding,max=21 °C. The ramp rate power
of the HP is set as P iramprate,max= 2 [kW].

The IBM HLF blockchain network v1.4.3 is implemented on a
local machine with Mac OS and is used to run the decentralized
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Fig. 3. Grid price, average PV generation and power demand of the N=21
households in the selected day.

P2P energy trading model for the N=21 households. Python 3
and CVXPY are used to model the optimization problems, while
SCS is used for solving them [35]. The stopping criteria (i.e.,
residuals) in the ADMM algorithm are set at 0.002.

B. Results Discussion

The objective of this study is to assess the impact of trading
coefficients on the performance of the P2P energy trading be-
tween households and to compare that with a baseline scenario.
This performance is assessed with regard to economic indicators
and the scheduling of power flows. Another objective is to show
how that performance changes when households use electricity
for heating. The assessment is performed for a selected spring
day using the data described in Section VI-A and visualized in
Fig. 3.

Fig. 4 depicts the values of the bilateral trading coefficients
calculated according to the two strategies defined and discussed
in Section IV. These values are calculated for the selected day
and network and will be used in the numerical evaluation. The
higher the coefficient value between two households, the less
likely a P2P trading will happen between them. The differences
between the two figures are apparent in terms of the magnitude
and distribution of trading coefficient values. In Fig. 4 (a),
the coefficient value between any two households at a given
timeslot depends on the matching between their surplus PV
generation and demand, as described in Algorithm 1. Therefore,
it is clear to notice the differences between values in this strategy.
Algorithm 1 sets coefficient value between any household and
itself at maximum (i.e., see the counterdiagonal values in Fig. 4
(a)), as no trading can take place between a household and itself.
The coefficient values in ST1 are averaged over the day in Fig. 4
(a) for the sake of visualization in one day. Differently, in ST2 the
coefficient values are time independent and are solely based on
the distance between households in the network. In Algorithm 2,
the distance between any household and itself is set at zero (i.e.,
see the counterdiagonal values in Fig. 4 (b)), which will also
prevent trading between any household and itself in ST2.

The economic performance parameters assessed in this study
are the P2P trading prices and financial costs for households
when buying/selling energy either from/to the main grid or
from/to other households. For instance, Fig. 5 compares the P2P
clearing price in the two strategies. For the two strategies, further
comparison is made in this figure between scenarios with and
without electric heating in households. The prices shown are
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(a) Bilateral trading coefficients in ST1 (surplus-demand
matching).
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(b) Bilateral trading coefficients in ST2 (distance-based
matching).

Fig. 4. Bilateral trading coefficient values in ST1 (i.e., averaged in a day) and
ST2 (i.e., fixed based on bus location).

weighted with the trading quantity for each household at each
time slot.

Fig. 5 shows that during daytime hours, when trading is most
likely to take place, the average internal trading price is always
lower than the grid import price, yet higher than the grid FiT.
Compared to ST1, energy trading in ST2 is distributed over
more hours of the day and more households are participating in
P2P trading. In ST1, some households’ preferred trading partners
could be infeasible due to the technical constraints in the model.
On the other hand, the P2P trading price in ST2 is lower than
ST1. This can be explained by the strategy used to build the
trading coefficients. In ST1, the coefficients in some hours could
take a high value if there is no good matching between the
surplus and demand values of some pairs of households, and
hence no energy trading will happen at that hours. In ST2, the
coefficients for neighboring households always take a low value
whether or not they have a good matching between their surplus
and demand values. This might drive neighboring households to
trade more energy and at a lower price even though there might
be a better match with a further household in the network. ST2
in this case can represent a scenario in which there is a social
connection between households in a network, or could also be
considered as proxy to enhance energy efficiency.

Same pattern appears in the scenario with electric heating (i.e.,
Fig. 5 (c) and (d)). However, the amount of trading in those
scenarios is less due to the increased local demand resulted
from flexible electric heating and, hence, the less amount of
surplus energy available for P2P trading. It is observed that some
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(a) P2P trading prices ST1.
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(b) P2P trading prices ST2.
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(c) P2P trading prices ST1 (with
electric heating).
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(d) P2P trading prices ST2 (with
electric heating).

Fig. 5. Weighted average P2P energy trading prices between all households in
the selected day: Following ST1 (a)/(c) and ST2 (b)/(d), without/with electric
heating.

households in this scenario, in the two strategies, do not trade
energy at all (e.g., households 0, 19, 14 and 7 in ST1). Those
households are identified to be prosumers and their surplus PV
power is used entirely for their flexible electric heating demand.
Further, Fig. 5 shows that the impact of electric heating on the
trading price magnitude is rather limited.

Fig. 6 shows the distribution of the total power exchange
of all households over the day in all strategies and scenar-
ios. A comparison is made with a baseline scenario in which
only grid interaction takes place (i.e., without P2P trading).
The figure shows that in all P2P trading scenarios, almost all
surplus PV energy is exchanged locally, due to the higher P2P
selling price than the FiT. Fig. 6 confirms that in ST2 the
total power traded between households is higher than ST1. As
noted before, the model is driven by the trading coefficient
values in this strategy (i.e., low between neighboring households)
which affect the P2P trading results. Only a little amount of
energy (e.g., 12.96 kWh) is injected to the grid in ST1 (i.e.,
without electric heating scenario). More numerical details can be
read in Table II, which summarizes the results for total power
imported from and injected to the grid and total P2P energy
exchange between households. Further, it compares the costs for
consumers only in all scenarios and shows how the P2P trading
can have the potential in reducing the energy procurement costs
for consumers in the network. In scenarios with electric heating,
a higher power demand can be observed. However, other than
the reduced amount of surplus energy available for trading, it can
be concluded, based on Fig. 6 and Table II, that the inclusion of
electric heating does not largely affect the pattern of P2P energy
trading between households.

The results in Fig. 6 and Table II show that P2P trading
of locally produced renewable energy can help in reducing
the interaction with the main grid, resulting in a more effi-
cient and sustainable use of energy. Besides the economic and
technical benefits of P2P trading, the proposed market model
with different bilateral trading strategies is important for real-
world implementation since it enables participants to incorporate
their preferences in selecting their trading partners (e.g., social
or environmental), guaranteeing maximum independence and
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(b) P2P-ST1.
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(c) P2P-ST2.
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(d) Baseline (e-heating).
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(e) P2P-ST1 (e-heating).
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(f) P2P-ST2 (e-heating).

Fig. 6. Total power exchange of all households without P2P trading (a)/(d), P2P
trading ST1 (b)/(e), P2P trading ST2 (c)/(f), without/with electric heating.

freedom of choice.
Based on the results, ST2 provides both economic and tech-

nical efficiency benefits. This strategy enables more households
to participate in P2P energy trading during more hours of the
day, as shown in Fig. 5, while at the same time considering the
technical efficiency in the network (i.e., avoiding long-distance
electricity flows through the lines). Besides, it resulted in a better
utilization of locally produced PV energy within the community,
as observed in Fig. 6 and Table II. In addition, ST2 needs to be
calculated only once, as long as the participating households in
P2P trading are the same in the network, giving it a further
computational benefit over ST1. For instance, the time needed
to calculate the coefficient matrix (Γ) in ST2 on a local machine
was 0.031 sec for N=21 users and 13.22 sec for a random sample
of N=200 users.

Regarding the blockchain implementation, we have used the
HLF as a permissioned blockchain solution. The P2P trading
service in each household, which contains an ADMM local
optimization solver, communicates with the HLF organization
without sharing the local private energy information of each
household. The HLF offers the most suitable blockchain con-
figurations for the considered case study of P2P energy trading
within a single energy community or neighborhood, where a
single-organization light consensus protocol is sufficient for
running the network [32]. However, for larger networks with
P2P energy trading between households belonging to multiple
blockchain organizations, the blockchain implementation needs
to be tested for efficiency of communication and execution speed.
In such bigger networks of multiple organizations, the security
and smart contract vulnerabilities also become very important
to consider. For instance, a malicious organization running the
ordering service might be able to impact the order in which the
transactions are ordered in a block, which can favor transactions
from one organization over those from others or deny service
to some organizations. However, the potential impact is limited
because controlling the Ordering Service in HLF is not sufficient
to get an invalid transaction added to the ledger [32]. A security
analysis and the potential threats and attacks in blockchain-based
authentication scheme have been recently discussed in [15], [36],
and a similar analysis could also be considered in blockchain-
based P2P energy trading markets in the future.

Another important challenge in P2P energy markets is to
guarantee fairness between energy trading partners. In literature,

TABLE II
NUMERICAL RESULTS FOR ENERGY EXCHANGE AND

PROCUREMENT COSTS. THE VALUES ARE SUMMED FOR ALL
THE HOUSEHOLDS.

Without electric heating All electric
Scenario Baseline ST1 ST2 Baseline ST1 ST2
All households grid import costs (e) 28.8 25.45 25.01 55.49 54.0 53.56
Consumers only grid import costs (e) 23.12 16.34 14.22 36.83 32.97 32.27
Consumers only P2P trading costs (e) - 5.97 6.37 - 4.19 2.94
Consumers only total costs (e) 23.12 22.31 20.59 36.83 37.16 35.21
Total P2P energy exchange (kWh) - 37.48 61.81 - 26.64 31.45
Total grid imports (kWh) 165.04 131.2 123.4 302.17 282.43 281.15
Total grid injection (kWh) -51.92 -12.96 0.0 -26.93 -0.07 -0.13

there exist different definitions for preserving fairness in P2P
energy trading. For instance, game theory has been used to
analyze fairness in energy pricing or profit allocation among
heterogeneous trading partners [37]–[39]. In [40], fairness is
considered in a way that P2P participants reserve market pay-
ments are set to be proportional to the uncertainty in their
renewable energy generation. On the other hand, P2P energy
trading systems could be prone to unfair or malicious behavior
from energy buyers or sellers and should be protected against
that (i.e., to guarantee that an energy buyer will receive the right
amount of energy after paying energy fees to an energy seller, or
to verify that the energy buyer is honest about its claims). Such
behavior can lead to significant consequences and discourage the
participation in P2P energy markets. A blockchain-based timed
commitments fairness mechanism has been recently proposed in
[41] to solve this issue and enable energy traders, who do not
trust each other, to assure fair purchases in a P2P environment.
The proposed mechanism implies having a smart contract that is
responsible for distributing a valid token-based payment from an
energy purchaser to an energy seller once the timed commitment
expires. This mechanism provides energy trading systems with
the ability to detect fraud and provide fairness to trading partic-
ipants. Another possible solution for this challenge is to have a
financial settlement mechanism a posteriori on the blockchain, in
a similar fashion to the financial settlement mechanism proposed
for community-based markets in [5]. The smart contract can also
be used here to preserve that and assign penalties on incomplete
trades and guarantee fairness a posteriori. However, this also
implies granting the smart contract access to meter-readings of
participants in P2P markets to detect how much energy each
participant has sent or received in each bilateral trade. The
deviation from the commitment is not restricted to malicious
behavior and could also be related to the uncertainty in renewable
energy generation.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, two strategies for implementing bilateral trad-
ing coefficients on a blockchain-based P2P energy market are
proposed. Besides providing benefits, such as the indication
of preferred trading partners and product differentiation, it is
shown that the proposed platform can provide reduced costs for
households as well as reduced overall energy imports from the
main grid, increasing efficiency and potentially reducing strain
on the grid. The results showed that both ST1 and ST2 strategies
provide these benefits. However, the paper recommends ST2
since it enables more households to participate in P2P energy
trading during more hours of the day, while at the same time
considering the technical efficiency in the network. This strategy
resulted in a better utilization of locally produced PV energy
within the community. In addition, ST2 needs to be calculated
only once, giving it a further computational benefit over ST1.
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Furthermore, an outline is provided for integrating the trading
platform with a Hyperledger blockchain organization, which
is especially useful for its customizability and reliability. By
using the proposed P2P trading platform that can accommodate
different bilateral trading strategies and functions on blockchain,
maximum freedom and autonomy for end-users can be guaran-
teed.

For future research, the performance of ST1 and ST2 need
to be further assessed for different network configurations in
terms of topology, consumption patterns and scale. Besides, the
Hyperledger blockchain implementation needs to be tested for
multiple-organization settings to assess efficiency, scalability and
security aspects. In addition, the proposed day-ahead P2P energy
trading market needs to be extended for real-time market oper-
ation, where a verifiable fairness mechanism on the blockchain
or a fair a posterior financial settlement mechanism needs to be
defined. This is important in order to make sure that all agreed
P2P energy trading transactions between households in the day-
ahead phase are delivered in the next day for the agreed price.
Addressing the stochastic nature in PV generation, grid price
and power demand in a real-time operation is also among the
important challenges that we aim to address in a future work. In
such a future study, the need for a higher resolution input data
is apparent.
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