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Abstract—This paper addresses the topic of frequency 
regulation of a single-area power system connected to an electric 
vehicle (EV) aggregator over a non-ideal communication network. 
It is considered that the command control action is received by the 
EV aggregator with constant delay and the power system includes 
uncertain parameters. Due to the presence of uncertainties and the 
delay term, the frequency regulation problem is non-convex and 
hard to solve. The present approaches in the literature convert the 
non-convex control design problem into a convex problem with a 
set of Linear Matrix Inequalities (LMIs), which is conservative 
and in many cases results infeasibility. In this paper, an innovative 
iterative algorithm, called direct search, is employed for the time-
delayed system to design the unknown parameters of a pre-
assumed controller. The controller choice is not limited and 
various controllers’ structures can be assumed. Without loss of 
generality, a proportional-integral (PI) controller is designed. The 
novel direct search algorithm can determine a feasible solution 
whenever at least one solution lays in the design space. Hence, by 
selecting a wide design space, we can anticipate that the PI 
controller guarantees closed-loop stability. Numerical simulations 
are carried out to demonstrate the performance of the developed 
controller compared to the state-of-the-art approach. 
 

Index Terms—Load frequency control, electric vehicle 
aggregator, Lyapunov Krasovskii Functional (LKF), robust 
control, direct search algorithm, time delay. 

I. INTRODUCTION 

A. Motivation and background 
oad frequency control (LFC) is a key issue in power systems 
[1], which are vulnerable to the inconsistency of consuming 
and generating electrical power, specially the systems 

including several renewable energy sources.  
Emerging renewable and pollution-free sources offer the 

merit of reducing the environmental pollution and demerit of 
degrading power quality [2]. In this regard, the role of batteries 
and fast response generators is becoming increasingly 
important. On the other hand, emerging electric vehicles (EVs) 
and vehicle-to-grid (V2G) technology is a promising solution 
dealing with the degrading influence of renewable energy 
sources on the LFC system. EVs’ batteries are classified as fast 
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response elements in the LFC system. In comparison to 
conventional generators, by operating as both loads or 
generators, the EV batteries regulate the electric power of AC 
grids remarkably faster and enhance the dynamic performance 
of the LFC system [3]. 

Instead of connecting each of the EV units, EV aggregators 
are required. As their name suggests, they aggregate and control 
several EVs, which are available in the parking lots. The EV 
aggregators communicate with the power system and the LFC 
center by sending their status of available battery capacities and 
electric power, receiving the control commands to regulate the 
charging and discharging actions of the EVs [4].  

From a practical point of view, the EV aggregators use a 
communication network with low cost and bandwidth to transfer 
data. Therefore, the communication link is vulnerable to delays 
and missing data [5],[6]. These issues adversely affect LFC 
system performance and stability [7]. Hence, this paper studies 
the LFC of EV aggregators in the presence of delay via a less-
conservative approach compared to the present ones.  

B. Literature review 
The stability analysis for multi-area LFC systems in the 

presence of EVs, and taking into consideration time delays, has 
been addressed in [8], where the partial integral equation was 
utilized for the LFC system modeling with EVs, and afterward, 
a thorough quadratic LKF was formed as an inner product of 
the linear partial integral operator.  

Ref. [9] utilized a discrete LFC system with a fast response, 
which is directly developed using the sampled-data control and 
applied to a wind energy integrated power system. A discrete-
time approach was used in [10] for analyzing an LFC system 
associated with sampled data and time delay in the presence of 
prevalent generating units and storage systems. In this respect, 
a matrix uncertainty technique was employed to characterize 
the impact of time-varying delays.   

Ref. [11] developed a cooperative LFC system for a multi-
area power system being capable of successfully tackling the 
coordination issue of the LFC systems. A supplementary LFC 
mechanism has been introduced in [12] employing EVs and 
heat pump water heaters in the presence of a high penetration 
level of wind and solar power generation.  
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To tackle the robust stability of LFC systems, advanced 
control techniques emerged, some of them are sliding mode 
[13], event-triggered [14], and 휇-syntheis [2] approaches.  
The stability of an event-triggered LFC of time-delayed  
single-area and multi-area power systems has been addressed in 
[15], where the stability index is less conservative. In this 
respect, the delay-dependent stability condition is enhanced 
using a lifting method and a two-side looped Lyapunov 
functional. An event-triggered LFC system has been developed 
in [16] for a time-delayed power system to ensure the stability 
and H∞ index of the closed-loop system under deception 
attacks.  

A combined H2/H∞ has been developed in [17] for the LFC 
using the V2G capability of EVs to deal with time-varying load 
demand and volatile renewable power generation, besides the 
deadbands and time delays relating to the controller itself and 
EV aggregators. An adaptive fractional-order fuzzy PID 
controller has been designed in [18] for the LFC of an islanded 
renewable energies-penetrated microgrid. The proposed 
controller has been enhanced by embedding a metaheuristic 
optimization algorithm to tune the parameters. In this relation, 
the V2G capability of EVs was suggested to be employed.    

A sliding mode control mechanism was introduced in [19] 
for the LFC system of a multi-area power system, where a 
hybrid energy storage system was deployed to promote the LFC 
system. It was shown that the proposed framework could 
effectively handle the fluctuations occurring in the frequency 
and tie-line power due to load disturbances. Ref. [20] proposed 
a model-free control scheme using the sliding mode control for 
the secondary LFC of a time-delayed islanded microgrid in the 
presence of EVs. The proposed controller’s performance was 
fortified by applying a metaheuristic optimization algorithm 
named “the black hole method”. Ref. [21] developed a high-
order sliding mode control for a multi-area LFC system in the 
presence of non-linear sources.  

A distributed observer-based control scheme has been 
designed in [22] for the LFC of a multi-area power system 
interconnected through high-voltage direct current (HVDC) 
lines. In this regard, every area of the system was equipped with 
a controller and the fleets of EVs were supposed to assist 
thermal units in facing stability issues arising from the varying 
load demand. The superior performance of the presented 
scheme was verified through a comparison made with the 
centralized observer-based controller for the mentioned system.  

More recently, the LFC issue under communication delay 
[3], [23]–[26] received much attention. An enhanced integral 
derivative-tilted control scheme has been designed in [27] for 
the LFC system of a multi-area power system taking into 
account various energy resources, both renewable and non-
renewable, and communication time delays, besides the 
governor deadband and other constraints.  

In [23], a proportional integral derivative (PID) was 
suggested for time-delayed LFC, and sufficient controller design 
conditions were re-formulated in terms of linear matrix 
inequality (LMI) constraints. In [24], a predictive method was 
suggested based on state-feedback to regulate the frequency in 
the presence of time-delayed control input. The controller design 
conditions are stated in terms of LMIs.  

A model predictive control-based scheme has been 
suggested in [28] for the LFC system of a distribution network 

with four energy hubs. In this respect, the fleets of EVs and 
home appliances as responsive loads have been used for the 
LFC. Ref. [29] suggested a distributed model predictive control 
scheme for a multi-area LFC system. The mentioned controller 
was based on the cooperation distributed economic scheme 
where the asymptotic stability was verified.  

A differential game-based cooperative control strategy was 
developed in [30] for the multi-area LFC system, where a more 
desired regulation capacity allocation was achieved compared 
to the prevalent PI and optimal control mechanisms.  

In [25], based on the Lyapunov stability theory and LMI, 
the stability delay margin of an LFC system was analyzed. The 
stability of multi-area LFC systems with EV aggregators and 
time delays has been studied in [25] using the LKF approach. 
To this end, two stability indices were obtained by employing 
the Bessel-Legendre inequality and model reconstruction 
method. The delay-dependent stability analysis has been carried 
out in [31] using the closed-loop models for a single-area LFC 
system in the presence of EVs, while the LKF technique was 
applied to propose two delay-dependent stability indices.  

In [26], the stability delay margin was investigated based on 
the frequency response of a LFC system by deploying a 
frequency sweeping test and the binary iteration algorithm.  
In [3], the stability analysis is performed based on the stability 
boundary locus. The effect of time-delay and control command 
participation on the PI controller gains was studied. In [32], a 
graphical method to compute stabilizing PI values is provided.  

Although such advanced control methods were successful in 
satisfying the desired performances, the computational burden 
and conservativeness of such techniques have been reported as 
their common drawbacks. Also, the effect of system 
uncertainties on the closed-loop time delayed LFC has not been 
studied, yet. 

C. Paper contribution 
This paper deals with the load frequency control (LFC) of 

single-area power system connected to an electric vehicle. For 
the uncertain time-delayed EV aggregator model, a robust PI 
controller is devised, being resilient against system 
uncertainties and time delays. The proposed approach for 
frequency regulation is based on the idea of direct searching. 
This idea generally consists of two methods, one for detecting 
the stabilizing point and one for detecting the undesired parts of 
the design space. The algorithm iteratively searches a given 
design space through a branch-and-bound technique whose 
strategies are based on omitting the undesired parts of the 
design space and checking the feasibility of some special 
points. The proposed algorithm is mathematically proved to 
have important performances including finite termination and 
feasibility convergence, for the first time. In fact, the proposed 
algorithm is able to find a stabilizer point for the mentioned 
system; however, the other existing methods do not guarantee 
the equivalent feasibility situation since they convert the non-
convex control design problem into a convex problem with a 
set of LMI conditions which is certainly not equivalent to the 
original problem. Finite termination and non-conservativeness 
are two major novelties of the proposed algorithm over the 
existing design controller methods.  

To show the merits of the suggested method, comprehensive 
numerical simulations are conducted and the effect of system 
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parameters and time delay value on the closed-loop stability 
margin and controller gains are studied. Finally, the results are 
compared with the existing approach.  

D. Paper structure 
This paper is continued as follows: In Section II, the LFC 

problem with EV aggregator and time delay is presented. In 
Section III, the proposed direct search algorithm to design the 
frequency controller is discussed. In this section, the existing 
approach based on LKF is presented. Then, the direct search 
approach for the LFC stabilization is presented. In Section IV, 
comprehensive simulations in various scenarios, in presence of 
time-varying delays, uncertainties and disturbances are 
conducted. Section V ends this paper by evoking some 
concluding remarks and future perspectives.  

II.  SINGLE-AREA LFC SYSTEM MODEL WITH EV 
AGGREGATOR 

EV aggregator units facilitate frequency regulation for EVs 
in parking lots. The EV aggregators are connected to control 
centers and receive the controller commands to inject or absorb 
electric power and allocate it among each of the participating 
EVs. To investigate the stability of the power system, a single-
area LFC system connected to an EV aggregator is considered. 
The schematic of a typical single-area LFC system including a 
generator, an EV aggregator, delay block, and the droop and PI 
controllers is drawn in Fig. 1. As can be seen in Fig. 1, 훥푓 is 
the deviation of power system frequency. 훥푃 , 훥푃 , and  훥푃  
are electrical output power, EV aggregator output power, and 
load disturbance, respectively.  

The sum of the powers will affect the power system 
frequency. 훥푋  and 훥푃  are the valve position and mechanical 
output power, respectively. Furthermore, 퐷 and 푀 are the 
damping coefficient and generator inertia constant, 푅 is the 
speed droop, 퐹 , 푇 , 푇 , and 푇  are the fraction of the total 
turbine power, the time constant of the governor, reheat and 
turbine, respectively, 훽 is the frequency bias factor, and 훼  and 
훼  are the participation factors.  

The PI controller gains are 퐾  and 퐾 . The control signal is 
fragmented among the generator and the EV by 훼  and 훼  and 

transmitted to the EV through the communication networks 
with the delay 휏. As can be seen in Fig. 1, a communication 
delay between the controller and the generator is not 
considered, because it is ignorable compared to the EV link.  

The objective is to choose PI controller gains 퐹 = 퐾 ,퐾  
for regulating the frequency. This issue is influenced by the 
communication delay 휏 and the participation factor vector  
훼 = [훼 ,훼 ] . If these parameters are not involved in the 
design procedure, the overall stability will be compromised.  

It should be noted that the participation factors and the 
communication delay are supposed to be uncertain parameters. 
The region of these parameters should be determined at the 
beginning. The participation factors’ region is denoted by  
Ω = [0.7,1] × [0,0.3] in this paper and the delay parameter is 
considered to belong to [0, 휏̅], in which 휏̅ is a given known 
parameter. Based on Fig. 1, the characteristic equation can be 
written as follows: 

푞(푠,퐹,훼, 휏) = 푃(푠,퐹,훼) +푊(푠,퐹,훼)푒  (1) 

where 푃(. ) and 푊(. ) are polynomials with real coefficients in 
terms of system parameters, as follows: 
푃(. ) = 푝 푠 + 푝 푠 + 푝 푠 + 푝 푠 + 푝 푠 + 푝 푠 + 푝  (2) 

푊(. ) = 푤 푠 +푤 푠 +푤 푠 +푤 푠 + 푤  (3) 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧
푝  = 푀푅푇 푇 푇 푇                                                              
푝 = 퐷푅푇 푇 푇 푇 +푀푅(푇  푇 푇 + 푇 푇 푇                
+푇 푇 푇 + 푇 푇 푇                                                              
푝 = 퐷푅 푇 푇 푇 + 푇 푇 푇 + 푇 푇 푇 + 푇 푇 푇       
+푀푅 푇 푇 + 푇 푇 + 푇 푇 + 푇 푇 + 푇 푇 + 푇 푇  
푝 = 퐹 푇 푇 + 훼 훽푅퐾 퐹 푇 푇                                      
+푀푅 푇 + 푇 + 푇 + 푇                                                   
+퐷푅 푇 푇 + 푇 푇 + 푇 푇 + 푇 푇 + 푇 푇 + 푇 푇   
푝 = 퐷푅 푇 + 푇 + 푇 + 푇 +푀푅 + 퐹 푇                  
+푇 + 훼 훽푅 퐾 푇 +퐾 퐹 푇 +퐾 퐹 푇 푇              
푝 = 퐷푅 + 1 + 훼 훽푅 퐾 +퐾 푇 +퐾 퐹 푇               
푝 = 훼 훽푅퐾                                                                           

 (4) 

Fig. 1. The schematic of a single area LFC system. 
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⎩
⎪
⎪
⎨

⎪
⎪
⎧
푤 = 훼  훽푅퐾 퐾 푇 푇 푇                                   
푤 = 훼  훽푅퐾 (퐾 푇 푇 +퐾 푇 푇                  

+퐾 푇 푇 + 퐾 푇 푇 푇 )
푤 = 훼  훽푅퐾 (퐾 푇 +퐾 푇 + 퐾 푇              

+퐾 푇 푇 푇 + 퐾 푇 +퐾 푇 푇 )
푤 = 훼  훽푅퐾 퐾 + 퐾 푇 +퐾 푇 +퐾 푇
푤 = 훼  훽푅퐾 퐾                                               

 (5) 

The LFC power system parameters are given in Table I. 
Using 푧 = 푒 , the characteristic equation can be written as 
푞(푠,퐹,훼, 푧) = 푃(푠,퐹,훼) + 푊(푠,퐹,훼)푧. This characteristic 
polynomial is a two-variate polynomial that is a function of 
both 푠 and 푧. In the next section, an algorithm is proposed that 
can design the controller parameters for the two-variate 
polynomial. 

 
TABLE I: EV AGGREGATORS’ NOMINAL VALUES WITH UNCERTAINTY 

BOUNDS 

Parameter Value Parameter Value 
푇  0.2  푠 푅 1.11  퐻푧/푝.푢.푀푊 
푇  0.3 s 퐾  1    푠 
푇  12  푠 푀 8.8 

푇  0.1 s 퐷 1 

퐹  1.6 훼  ∈ [0.7   1] 
훽 21 훼  ∈ [0   0.3] 

III. PROPOSED APPROACH FOR EV STABILIZATION 
EVALUATION 

In this section, the proposed direct search approach for the 
EV stabilization evaluation is presented. The direct search idea 
considers a solution space (primary design space) for the 
unknown controller parameters and includes two methods, one 
for detecting the stabilizing point (given in subsections A and 
B), and one for detecting the undesired parts of the design space 
(given in subsection C). Based on the theories for detecting a 
stabilizing point and undesired points, the algorithm 
systematically and iteratively considers sub-spaces within the 
design space, checks the stability status of the corner points of 
the considered sub-space and the whole space, and decides 
whether the whole sub-space is undesired which should be 
omitted from the design space instantly, or a feasible point is 
found in one of the corners which is surely the solution. By 
checking various sub-spaces in the whole design space, we will 
be able to be assured about the closed-loop stability of the 
design space points in the presence of system uncertainties and 
time delay terms.  

Also, in this section we prove that the proposed algorithm 
has important performances including finite termination 
(proved by Theorem 4) and feasibility convergence (proved by 
Theorem 5) for the first time. In fact, compared to the other 
existing methods that do not guarantee the equivalent feasibility 
situation because they approximate the overall non-convex 
problem with a set of LMI conditions, the proposed approach 
presents a non-conservative methodology for solving the 
controller design problem of the uncertain time-delay system in 
section II.   

A. Lyapunov Krasovskii Functional based design algorithm 
This subsection presents a method to find an appropriate 

design vector that stabilizes the LFC power system through a 
Lyapunov Krasovskii idea. Firstly, Theorem 1 proposes a set of 
conditions to assess the stability of the closed loop LFC power 
system for a given design point. The proposed conditions are 
not entirely convex due to the existence of coupling terms 
between the design and Lyapunov parameters. Secondly, an 
algorithm is presented to solve the conditions of Theorem 1 
through grouping the free variables in two separate steps in each 
iteration to decouple the bilinear terms in these conditions and 
solve the LKF approach through LMIs. 

Theorem 1 [33]. The given design point 퐹 = [퐾 퐾 ]  
asymptotically stabilizes the LFC system if there exist positive 

definite matrices 푃 =
푃 푃 푃
∗ 푃 푃
∗ ∗ 푃

, 푄 , 푄 , 푄 , 푅 , 푅 , 푈 ,  

and 푈  and also matrices 푇 , 푇 , 푇 , 푌 , 푌 , and 푌  with 
appropriate dimensions such that they hold the following LMIs 
for 휏 ∈ {0, 휏̅} and 훼 ∈ 휕 (Ω) 

∀푖 ∈ {1,2, … ,푁}:  

⎣
⎢
⎢
⎢
⎡퐸 퐴 (퐹,훼) 푆

휏̅
푁 푌

∗ −푆 0

∗ ∗ −
휏̅
푁푅 ⎦

⎥
⎥
⎥
⎤

≤ 0 (6) 

∀푖 ∈ {1,2, … ,푁}:  

⎣
⎢
⎢
⎢
⎡퐸 퐴 (퐹,훼) 푆

휏̅
푁 푇

∗ −푆 0

∗ ∗ −
휏̅
푁푅 ⎦

⎥
⎥
⎥
⎤

≤ 0 (7) 

where some of the above matrices are defined here: 

퐸 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
퐸 퐸 퐸 퐸 퐸 퐸
∗ 퐸 퐸 퐸 퐸 퐸
∗ ∗ 퐸 퐸 퐸 퐸
∗ ∗ ∗ 퐸 퐸 퐸
∗ ∗ ∗ ∗ 퐸 퐸
∗ ∗ ∗ ∗ ∗ 퐸 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (8) 

퐸 = 푠푦푚(푃 퐴(퐹.훼) + 푃 ) + 푄 + 푄 + 푄 −

휏 푈 − 푈    
(9) 

퐸 = −푃 + 푃 ,퐸 = 푃 퐴 (퐹.훼),퐸 = −푃  (10) 

퐸 = 퐴(퐹.훼) 푃 + 푃 + 휏 푈    (11) 

퐸 = 퐴(퐹.훼) 푃 + 푃 +
휏̅
푁 푈  (12) 

퐸 = −푄 − 2푅 + 푌 + 푌 ,퐸 = −푌 + 푇 + 푌  (13) 

퐸 = −푇 + 푌 ,퐸 = −푃 + 푃 +
2
휏 푅  (14) 

 퐸 = −푃 + 푃  (15) 

퐸 = −푄 + 푠푦푚(푇 − 푌 ),퐸 = 푇 − 푇 − 푌  (16) 

퐸 = 퐴 (퐹.훼) 푃 ,퐸 = 퐴 푃  (17) 

퐸 = −푇 − 푇 − 푄 ,퐸 = −푃 ,퐸 = −푃  (18) 

퐸 = −푈 −
2
휏 푅 ,퐸 = 0,퐸 = −푈  (19) 
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퐴(퐹.훼)

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−
푝
푝 −

푝
푝 −

푝
푝 −

푝
푝 −

푝
푝 −

푝
푝 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (20) 

퐴 (퐹,훼)

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−
푤
푝 −

푤
푝 −

푤
푝 −

푤
푝 −

푤
푝 0⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (21)  

푆 = 휏 푅 +
휏̅
푁 푅 +

1
4 휏 푈 +

1
2

(휏 − 휏 )푈  (22) 

퐴 (퐹,훼) = [퐴(퐹,훼) 0 퐴 (퐹,훼) 0 0 0] (23) 

푌 = [0 푌 푌 푌 0 0] (24) 

푇 = [0 푇 푇 푇 0 0] (25) 
where 휕 (Ω) contains the corner points of the design space for 
훼  and 훼 , 푁 is a given number, 훺 is the considered uncertain 
space. 

Remark 1. It should be noted that the conditions of Theorem 
1 given in (6-7) cannot be directly solved considering the design 
vector 퐹 contains free variables. It is mainly because these 
conditions are not affine functions of the free variables which 
means they are not LMI. The crossing terms between unknown 
variables make them Bilinear Matrix Inequalities (BMIs). 

To solve (6-7), the P-K design algorithm is exploited based 
on Theorem 1. The algorithm trees to solve the conditions in 
consecutive iterations such that two steps are performed in each 
iteration. In the first step, conditions (6-7) are solved under the 
assumption of the design vector 퐹 is fixed and known to obtain 
the Lyapunov variables. In the second step, conditions (6-7) are 
solved for known Lyapunov parameters to achieve the control 
variables in 퐹. These steps are repeated in each iteration and the 
algorithm continues to reach a feasible solution. 

It should be noted that the above iterative algorithm does not 
guarantee convergence to a feasible point. Obviously, we may 
encounter some cases where a stabilizing point exists, but the 
algorithm cannot find the solution. To overcome this problem, 
an equivalent stabilization condition is proposed in the next 
sub-section. The algorithm can guarantee finding a feasible 
point if it exists. 

B. Equivalent stabilization condition for LFC system  
The main idea of this section is to directly search a primary 

design space through an iterative algorithm. The design space 
is divided to some simplexes. Then, one is considered as the 
active simplex and the algorithm checks its stability status. If it 
is completely infeasible which assures no feasible point is 
inside the simplex, it is deleted from the design space and the 
algorithm continues its search in the remained parts of the 
design space. 

Assume that we have a primary design space as the boundary 
of the area shown in Fig. 2. In the literature, there are some 

heuristic approaches such as Genetic Algorithm (GA) or 
Particle Swarm Optimization (PSO) that search the design 
space for a stabilizing solution. However, they do not have any 
convergence proof. Our algorithm does surely have a 
convergence proof. The idea is to divide the design space into 
some simplexes. Then, check the stability status of the corner 
points of the simplex. Through them, we can understand 
whether the whole simplex is infeasible or not. If the simplex is 
infeasible, it is omitted. If one of the corner points is a 
stabilizing point, it is the solution and the algorithm stops. 
Otherwise, the simplex should be divided to two smaller ones 
and the search continues in the new-generated simplexes. A 
sample design space is shown in Fig. 2. The colored simplexes 
are surely infeasible and they are omitted. The white ones are 
still needed to be searched.  

 
Fig. 2. Deleting the undesired simplexes from the design space. The feasible 
response can be inside the white simplexes. 
 

Fig. 2 demonstrates that the algorithm iteratively shrinks the 
primary design space to find an appropriate stabilizer point for 
the system. In each iteration, it checks the stability situation of 
each corner point of the generated simplexes. Hence, it is 
needed to employ a condition to evaluate whether a sample 
design point is able to stabilize the system or not. In the 
following, theorem 2 is given for checking the stability 
condition of a sample point in the design space. 

Theorem 2. The given design point 퐹 = [퐾 퐾 ]  
stabilizes the LFC system if and only if 푞(푠,퐹,훼, 푧) =
푃(푠,퐹,훼) +푊(푠,퐹,훼)푧 does not have any root whose real 
part is positive and its imaginary part is larger than ( ) for 
훼 ∈ Ω and 푧 on the boundary of the unit circle in the complex 
plane. 

Proof. It is apparent that the existence of a root with positive 
real part un-stabilizes the closed loop system. Thus, it suffices 
to prove the stability of the system under the condition that the 
root imaginary part is larger than ( ). It is clear that 
푞(푠,퐹,훼, 푧) equals to 푞(푠,퐹,훼, 휏) considering 푧 = 푒  that 
means the characteristic polynomial 푞(푠,퐹,훼, 휏) does not have 
any root in the Right Half Plane (RHP) part of the complex 
plane for all 훼 ∈ Ω and 휏 ∈ [0, 휏̅]. If  휏휔 > arg(푧), the 
condition is not satisfied. This fact implies the closed loop 
system is stable for the pre-considered given design point 퐹.□ 

Remark 2. It is notable that the considered design point 
stabilizes the closed loop system if and only if the assumptions 
of Theorem 2 are satisfied. This means that Theorem 2 is an 
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equivalent theorem, while Theorem 1 was not an equivalent one 
and imposes some conservativeness. 

Remark 3. It is worth mentioning that the conditions of 
Theorem 2 cannot be evaluated by the common solving 
algorithms due to their nonlinearities and non-convexities. It is 
mainly because it must be checked that whether polynomial 
푞(푠,퐹,훼, 푧) has any roots in the specific region for all 훼 ∈ Ω 
and unit value complex number 푧. 

To cope with the nonlinearity of the condition of Theorem 2, 
the exposed edges theorem [34] is exploited which is fully 
explained in Theorem 3  

Theorem 3. The given design point 퐹 = [퐾 퐾 ]  
stabilizes the LFC system if and only if 푞(푠,퐹,훼, 푧) =
푃(푠,퐹,훼) +푊(푠,퐹,훼)푧 does not have any root with positive 
real part whose imaginary part is larger than ( ) for 푧 on the 
boundary of unit circle and 훼 on the exposed edges of Ω. 

Proof. Polynomial 푞(푠,퐹,훼, 푧) affinely depends on the 
uncertain parameters 훼. Due to this fact and the exposed edges 
theorem, boundary of the roots of a parametric polynomial such 
as 푞(푠,퐹,훼, 푧) belongs to the roots of the exposed edges of the 
uncertain space which is Ω for 푞(푠,퐹,훼, 푧). It is apparent that 
the parametric polynomial 푞(푠,퐹,훼, 푧) has no root inside the 
specific region of the theorem for all 훼 ∈ Ω once it has no root 
at the exposed edges of the uncertain space. 

Theorem 3 states that the given design point 퐹 stabilizes the 
LFC system if polynomial 푞(푠,퐹,훼, 푧) does not have any non-
Hurwitz root whose imaginary part is larger than ( ) for 훼 on 
the exposed edges of the uncertain space which are the edges of 
the Ω .  

Paper [35] develops a factual methodology to assess the 
existence of a root inside any compact region of the complex 
plane for a given line segment between two particular points of 
the design space. This methodology enables us to assess the 
conditions of Theorem 3 through an appropriate algorithm. 

C. Direct search-based algorithm 
The original direct search algorithm [35] is applicable for 

stability analysis with any number of controller design 
parameters, and it is adopted for the LFC system of Section II. 
Since the PI controller of the LFC comprises two gains 퐾  and 
퐾 , the design space is turned into a two-dimensional triangular 
space, as shown in Fig. 3(a). To check a feasible solution  
Fig. 3(a), we start with checking the stability of the corner 
points based on the idea of the previous subsection, as shown in 
Fig 3(b). For each of these points, one has a solution vector 퐹 =
퐾    퐾  for 푖 = 1,2,3 that should be obtained by evaluating 

these corner points in 푞(푠,퐹,훼, 푧) defined in Theorem 3. Then, 
three polynomials are obtained that should be checked to have 
any inappropriate root in terms of the assumptions of Theorem 
3, as follows. 

푞 (푠,퐹 ,훼, 푧) for 푖 = 1,2,3 (26) 
For the admissible ranges of 푇 and 훼, the stability of 

polynomial 푞 (푠,퐹 ,훼, 푧) should be checked [36]. This stage is 
called checking method 1 (CM1). The CM1 can be done by 
checking the polynomial roots. If all of its roots have negative 
real values, the polynomial and its corresponding closed-loop 
system are stable. If for any of the points 퐹 , the roots of 

푞 (푠,퐹 ,훼, 푧) = 0 have negative real parts, that point is a 
feasible solution and the controller is designed. Otherwise, we 
need to proceed with the direct search algorithm.  

In the next step, we are sure that the corner polynomials are 
infeasible and none of them can stabilize the characteristic 
polynomial of the closed loop system. We want to check 
whether the whole simplex is infeasible or there may be a 
feasible solution inside the simplex. For this aim, the stability 
of the edges of the triangular space should be checked. Since 
the places of the corner points are known, it is a simple task to 
find the representation of the edges. The edge or line segment 
representation can be obtained by the convex combination of its 
corresponding corner points 퐹  and 퐹 , using (27). 

Fig. 3. Each step of the direct search iteration algorithm. 
 

퐹 = 훾퐹 + (1 − 훾)퐹  for 푖 < 푗 = 1,2,3 and 
 0 ≤ 훾 ≤ 1 (27) 

As can be seen in Fig. 3(c), for each edge 퐹  for  
푖 < 푗 = 1,2,3, three sets of polynomials with respect to the  훾 
value are obtained, as follows:  

푞 푠,퐹 ,훼, 푧, 훾  for 푖 < 푗 = 1,2,3 (28) 
Now the stability of polynomials (28) is checked. This step 

is called checking method 2 (CM2). If none of the polynomials 
in (28) have pure imaginary roots, then the whole simplex is 
infeasible and we cannot find any solution to the problem [37]. 
Otherwise, there may still be a feasible solution in the active 
simplex. In this step, the current simplex is halved with respect 
to its largest edge, as shown in Fig. 3(d). Then, for one of the 
randomly selected sub-simplexes (i.e. (I) or (II)), the new active 
simplex space is chosen and the net integration is performed. If 
a feasible solution cannot be found in the active simplex (for 
instance, i.e. (I) in Fig (3d)), then the other apace will be 
checked (for instance, i.e. (II)) and the algorithm continues. 

The details of the steps CM1 and CM2 and the convergence 
proof can be found in [35]. The overall iterative algorithm is 
given in Fig. 4. It should also be noted that the algorithm shrinks 
the triangles till their areas are larger than a prespecified 
threshold denoted by 훿. Fig. 4 demonstrates the step-by-step 
theoretical method needed for designing the controller. It 
should be noted that by employing our proposed approach, the 
overall controller is of a PI type and it can be easily 
implemented in practice. 

퐾  

퐾  

Initial simplex 
(Design space) 

(푎) 

퐾  

퐾  
(푏) 

Corner points (1) 

(2) (3) 

퐾  

퐾  

Edges 
푭ퟏퟐ 

푭ퟐퟑ 
푭ퟏퟑ 

(푐) 

퐾  

퐾  

Choose new active 
simplex space 

(I) 
(II) 

(푑) 
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D. Performances of the proposed algorithm 
The proposed algorithm has some advantages that are 

discussed in this subsection. It will be shown that the algorithm 
has finite number of iterations and it converges to a feasible 
solution inside the primary design triangle under some slight 
conditions. These advantages are separately presented in the 
sequel.  

Theorem 4. Direct search-based algorithm will terminate 
in  in which 푣  is the area of the primary design triangle. 

Proof. Notice that, the algorithm continues until there exists 
a triangle whose area is larger than 훿 which is a given threshold 
over the areas of the tringles. Through this mechanism, it is 
clear that the algorithm will surely stop once there is no 
acceptable triangles to be checked. It means the number of the 
algorithm’s iterations cannot exceed  based on the mentioned 
fact. 

Theorem 5. The proposed algorithm reaches a stabilizer 
point whenever there exists a feasible region inside the primary 
design triangle whose area is larger than 훿. 

Proof. Based on the steps of the algorithm, it checks the 
corner points of all generated triangles till it finds a feasible 
solution or there is not any acceptable triangle to be checked.  
Since, it has been supposed that there exists a feasible region 
whose area is larger than 훿, the algorithm will surely reach a 
triangle that its intersection with the premised feasible region is 
not empty. Hence, the algorithm surely finds a feasible point 
inside the mentioned feasible region in one of its iterations. 

Theorems 4 and 5 prove that the algorithm terminates in a 
finite number of iterations and converges into a feasible region 
if it exists. The algorithm finitely converges a feasible solution 
once there is a feasible region with a suitable area.  

 

IV.  SIMULATION RESULTS 
 In this section, the closed-loop stability of the LFC system 

is evaluated and the effect of system uncertainties and time 
delay value on the stability in the (퐾  ,퐾 )-plane is investigated. 
Also, the PI controller gain regions for which the closed-loop 
system is stable will be obtained. Finally, validation studies 
employing time-domain simulations are given. 

Consider the design space and determine it as the active simplex 

Test the corner polynomials of the active simplex for a possible 
feasible point 

Is the simplex total infeasible? 

Any feasible point? 

Eliminate it from the design space 

Still any  
undetermined point in the 

design space? 

Fig. 4. The flowchart of the overall algorithm.  

Halve the largest edge of the simplex & 
generate two sub-simplexes 

Choose active simplex 
among the two 
generated ones 

It is the solution 

Stop 

Start 

No feasible solution 

Yes 

Yes No 

Yes 

No 

No 

Consider uncertain characteristic polynomial 푞(푠, 퐹,훼, 푧) 

CM2 

CM1 

퐾 = [퐾 ,퐾 ] 
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A. Scenario 1 (Effect of system uncertainties on the stability 
region) 

In this scenario, to show the impact of the system 
uncertainties on the closed-loop stability, the time delay values 
are fixed by 휏 = 0.5 and 1 and two ranges for the participation 
factors 훼  and 훼  are considered as shown in Table II. 
Deploying the direct search and Lyapunov Krasovskii based 
algorithm, Figs. 5 and 6 are obtained. Indeed, these figures are 
provided to compare the ability of these algorithms to stabilize 
the LFC power system. In these figures, the blue and magenta 
regions show the feasible regions of the direct search and LKF-
based algorithms, respectively. 

As can be seen in Figs. 5 and 6, by approaching the range of 
훼  to one and 훼  to zero, the stability region is enlarged because 
when 훼  tends to zero, the effect of EV aggregator with delay 
term is decreased. This relaxes the stability analysis and eases 
finding a feasible solution. So, a larger stability range is 
obtained. Also, the regions of Figs. 5(a) and 6(a) are a subregion 
of those in Figs. 5(b) and 6(b), respectively. 

Figs. 5 and 6 also show the feasible regions of the LKF- 
based algorithm. As can be seen from them, the feasible regions 
of this algorithm fully belong to the feasible regions of the 
direct search-based algorithm. This means that the direct 
search-based algorithm can stabilize the LFC power system 
better than Lyapunov Krasovskii based one. This result is 
formerly confirmed by Theorem 5, which shows that the direct 
search algorithm is able to find a feasible solution once a slight 
condition is satisfied; however, this phenomenon cannot be 
generally guaranteed by the Lyapunov Krasovskii algorithm. 

 

 
(a) 

 
(b) 

Fig.  5.  Stability regions for 흉 =  ퟎ. ퟓ: (a). 휶ퟎ = [ퟎ.ퟕ,ퟏ], 휶ퟏ = [ퟎ,ퟎ.ퟑ],  
(b). 휶ퟎ = [ퟎ.ퟗ, ퟏ], 휶ퟏ = [ퟎ,ퟎ.ퟏ].  

 
(a) 

 
(b) 

Fig. 6. Stability regions for 흉 =  ퟏ: (a). 휶ퟎ = [ퟎ.ퟕ,ퟏ], 휶ퟏ = [ퟎ,ퟎ.ퟑ],  
(b). 휶ퟎ = [ퟎ.ퟗ, ퟏ], 휶ퟏ = [ퟎ,ퟎ.ퟏ]. 
 

TABLE II. THE PARAMETERS OF LFC SYSTEM IN SCENARIO 1. 
Figure number 휏 훼  훼  

5(a) 0.5  푠 [0.7,1] [0,0.3] 
5(b) 0.5 s [0.9,1] [0,0.1] 

6(a) 1  푠 [0.7,1] [0,0.3] 
6(b)  1  푠 [0.9,1] [0,0.1] 

 
It should be emphasized that the LKF-based algorithm does 

not find any feasible solution for the uncertain case  
Ω = [0.7,1] × [0,0.3]. It means that the feasibility performance 
of this algorithm depends on the size of the uncertain space, 
which is another drawback of this algorithm. Notice that, the 
other parameters in these simulations are supposed to be the 
same, except the size of the uncertain space, to be able to 
directly focus on the effect of system uncertainties. 
B. Scenario 2 (Effect of time delay on the stability region) 

In a similar manner to Scenario 1, to show the impact of the 
time delay on the closed-loop stability, in this scenario, the 
system uncertainty range is fixed by 훼 = [0.9,1] and  
훼 = [0,0.1]. On the other hand, two values for the time delay 
are chosen as 휏 = 0.5 and 휏 = 1.5, as summarized in Table III. 

Utilizing the direct search algorithm of Section III, Fig. 7 is 
achieved which reveals that the time delay adversely affects the 
stability region. Although the obtained region for 휏 = 1.5 is 
smaller than that of 휏 = 0.5, Fig. 7(a) is not a subset of  
Fig. 7(b). This can be inferred that the time delay affects the 
stability region nonlinearly, which is also evident from (1).  
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(a) 

 
(b) 

Fig.  7. Stability regions for EV aggregator participation factors 휶ퟎ =
[ퟎ.ퟗ,ퟏ], 휶ퟏ = [ퟎ,ퟎ. ퟏ], (a). 흉 = ퟎ. ퟓ, (b) 흉 = ퟏ.ퟓ. 

TABLE III. THE PARAMETERS OF LFC SYSTEM IN SCENARIO 2. 
Figure number 휏 훼  훼  

7(a) 0.5  푠 [0.9,1] [0,0.1] 
7(b) 1.5 s [0.9,1] [0,0.1] 

Based on Fig. 7, the direct search algorithm is more able to 
stabilize the EV aggregator over the Lyapunov Krasovskii 
based algorithm for the special case 휏 = 1.5. It is another 
numerical evidence for the better feasibility performance of the 
direct search algorithm that is previously assured by the 
convergence analysis of the algorithm.  

C. Scenario 3 (Effect of both uncertainty and time delay 
compared to the state-of-the-art approaches) 

In this scenario, the impact of both uncertainty and time 
delay on the stability region of the closed loop system is 
compared to two state-of-the-art approaches presented in [38] 
and [39].  Considering the EV aggregator participation factors 
(parameter uncertainties) 훼 = [0.9,1], 훼 = [0,0.1],  and the 
upper bound of time delay as 휏 = 0.8, as it is clear from Fig. 8 
and Fig. 9, the stability region of closed loop system obtained by 
the direct search algorithm (blue stability region)  has been 
compared with the other previous methods (purple stability 
spaces). Based on Fig. 8  and 9, the direct search algorithm is 
capable to find a larger stability region for the EV aggregator 
than Method 1 and method 2.  According to these figures, the 
two previous methods have the same stability region because 
most of the Lyapunov-based methods are less sensitive to the 
delay and more sensitive to its derivative. 

 
Fig.  8. Comparison of the stability regions of the proposed method and the 
Method 1 in [38] with parameter uncertainty  휶ퟎ = [ퟎ.ퟗ,ퟏ], 휶ퟏ = [ퟎ,ퟎ. ퟏ], and 
upper bound of delay 흉 = ퟎ.ퟖ. 

 
Fig.  9. Comparison of the stability regions of the proposed method and the 
Method 2 in [39] with parameter uncertainty  휶ퟎ = [ퟎ.ퟗ,ퟏ], 휶ퟏ = [ퟎ,ퟎ. ퟏ], and 
upper bound of delay 흉 = ퟎ.ퟖ. 

The computational burden of the proposed method and these 
two state-of-the-art approaches with upper bound of time delay 
휏 = 0.2, 휏 = 0.4,  휏 = 0.8, in the presence of corners of 
uncertainty 훼 = [0.9,1], 훼 = [0,0.1], are compared in Fig. 
10.  According to Fig. 10, it is clear that, the computational 
burden of the direct search method is less than the other 
methods. The proposed algorithm is able to find a stabilizer 
point for the mentioned system equivalently; however, the 
existing LKF-based methods  do not guarantee the equivalent 
feasibility situation since they convert the non-convex control 
design problem into a convex problem with a set of LMI 
conditions which is certainly not equivalent to the original 
problem. Therefore, taking both factors (conservativeness and 
computational burden) into account, the direct search algorithm 
is more beneficial in finding the design parameters. 

 
Fig. 10. Comparison of the computational burden of the proposed method with 
two other methods. 
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D. Scenario 4 (Time-domain closed-loop model simulation) 
To show the effectiveness of the proposed approach, for 

selected PI controller gain 퐾 = 1.5,퐾 = 0.5 from Fig. 7(b) 
which illustrates the stability region with upper bound of time 
delay 휏 = 1.5 in the presence of uncertainty 훼 = [0.9,1], 훼 =
[0,0.1], the closed-loop model input and system output 
evolutions are provided. The load power variation is set as 
Δ푃 = 0.2. Fig. 11 shows that the system is robust against load 
power changes and a time-delayed EV aggregator. Considering 
the PI controller 퐾 = 2,퐾 = 0.8 based on the results obtained 
in Fig. 7(b), the effects of variable time delay with upper bound 
휏 = 1.5  and the different disturbances on the Electric Vehicle 
Aggregator are evaluated and the results are shown in Fig. 12.  

Table IV demonstrates norms 2 and ∞ of the system output 
and the designed control input in presence of various 
disturbances. The conclusion that can be drawn from Table IV 
is that, considering the random disturbance, the norm 2 of the 
control signal is bigger than the norms of the other assessed 
disturbances, indicating that the control signal has made more 
effort to stabilize the system output. In addition, the variation 
of the sinusoidal disturbance compared to zero is more than 
those of the other disturbances leading to a higher norm 2 of 
system output compared to other cases.   

UTPUT SYSTEM PERFORMANCE IN PRESENCE OF OV. ITABLE 
VARIOUS DISTURBANCES  

Types Disturbances ‖푦‖  ‖푦‖  ‖푢‖  ‖푢‖  
1 Step 0.0222 0.1143 1.0025 7.8943 
2 Sinusoidal 0.0236 0.8060 1.4126 6.6582 
3 Random 0.0229 0.2208 1.3377 12.8048 

(a) 

(b) 

(c) 
Fig. 11. The closed-loop system simulation of Scenario 3. (a). Time Delay 
variation, (b). Control input, (c) System Output. 

 (a) 

(b) 

(c) 
Fig. 12. The closed-loop system simulation. (a) Disturbance variation, (b). Time 
Delay variation, (c) System Output. 

Fig. 12(c) indicates the response of the system for four 
corner points of the uncertainties. The EV aggregator is robust 
against the disturbances, uncertainties and the time delay and 
the frequency can be regulated. 

V. CONCLUSION 
In this paper, the challenges of connecting an EV aggregator 

to a single-area LFC system with non-ideal delay 
communication network were examined. The polynomial 
characteristic equation of the closed-loop system controlled by 
a PI controller was obtained. Then, a numerical iterative direct 
search algorithm was provided to determine a feasible solution 
for the controller gains that assure the robust closed-loop 
stability against system uncertainties. Several scenarios were 
considered to show the impact of time delay and uncertainties 
in EV aggregator parameters on single-area LFC stability and 
frequency response. It was proven and shown by simulations 
that the direct search algorithm is able to find the stability 
region in presence of uncertainties and delay, equivalently. 
Briefly, this approach is useful in finding infeasible points inside 
the design space that should be omitted instantly and discovering 
the feasible ones, which can stabilize the system in presence of 
uncertainty and time delay. For future work, considering 
optimal controller design for the EV aggregator is suggested. 
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