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Abstract—1In this paper, a hybrid machine learning model is
applied to evaluate the relationship between random initial states
and the power system’s vulnerability to cascading outages. A cas-
cading outage simulator (CS), which uses off-line AC power flows,
is proposed for generating training data. The initial states are
randomly selected and the CS model is deployed for each initial
state, where power system generation and loads are adjusted
dynamically and power flows are redistributed to quantify the
vulnerability metric. Furthermore, the proposed hybrid machine
learning model deploys a combined Support Vector Machine
(SVM) classification and Gradient Boosting Regression (GBR) to
improve the learning precision. The classification model is trained
by SVM, which divides the data into two categories with and
without load shedding. Then, GBR is adopted only for the data
with load shedding to determine the relationship between input
power outage states and the vulnerability metric. The proposed
vulnerability analysis approach is applied to several test systems
and the results are analyzed.

Note to Practitioners—The power system vulnerability can be
quantified by cascading outage simulations. However, there are
two challenges: i) there are a huge number of possible initial
states and we cannot enumerate all these initial states for the
cascading outage simulation. Neither can we precisely quantify
the bus vulnerability. ii) The cascading outage simulation may
be time-consuming for large-scale power systems, which is
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challenging for the online application. To address the above
challenges, we expect to design a machine learning technique to
predict the power system vulnerability, which can train the model
in an offline way and then use it for the online application. Firstly,
since there is not enough operation data from practical power
systems, we develop a cascading outage simulator, using off-line
AC power flows, for generating synthetic training data. Secondly,
we observe that the training precision by directly applying the
regression model may be very poor because the output of the
machine learning model may take on an uneven distribution
concerning input parameters. Thus, we propose a hybrid machine
learning model with a combined classification and regression
method, where the classification model is employed to remove
the data without the load shedding, and the regression model
then determines the relationship between input power outage
states and the vulnerability metric. The proposed model and
method have been tested on several systems including a practical
large-scale Polish power system to show the effectiveness.

Index Terms— Machine learning, cascading outages, vulnera-
bility analysis, gradient boosting regression.

NOMENCLATURE

A. Indices and Sets

t Index for time intervals
Index for buses
Index for generators
Index for power loads
Index for islands
Index for training data
Index for test data
Index for iterations in GBR
Set of the buses
Set of the transmission
Set of the generators
Set of the islands

~.
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B. Parameter and Constants

r The ramp rate of generators
At The time interval for generation output ramping
U(;ef The voltage magnitude at the reference bus.

ngf The voltage angle at the reference bus.
wj The weight of the load shedding for load bus i

1545-5955 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on September 16,2022 at 20:06:27 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-7590-0172
https://orcid.org/0000-0002-4043-9427
https://orcid.org/0000-0002-2426-3660
https://orcid.org/0000-0002-2105-3051
https://orcid.org/0000-0002-8994-1688

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2

np; The allowable power factor at the load bus i

Uimi” (t) The lower bound of voltage magnitude at bus i

U™**(t)  The upper bound of voltage magnitude at bus i

F['**(t)  The transferred power limit on the line ij.

Pé’i The initial active power load at bus i.

Np Number of buses

Ntrain Number of training data

Ny Number of training data with load shedding

Ntest Number of test data

w,b The parameters of the hyperplane in SVM

y The nonnegative parameter in the kernel
function in SVM

C The parameter that controls the tightness of
margin in SVM

M The number of regression trees in GBR

u The learning rate for GBR

C. Functions and Variables

Py i(t) The active power generation at bus i and
time ¢

Pi(t) The active power load at bus i and time ¢

Qg.,i(t) The reactive power generation at bus i and
time ¢

01,i(1) The reactive power load at bus i and time ¢

Ui() The voltage magnitude of bus i at time ¢

0; (1) The voltage angle of bus i at time ¢

Py o(t) The generation output at the reference bus
and time ¢

P;’O(t) The active power flow solution at the refer-
ence bus

T;p The duration of generator ramping

rfgn The minimum time of T;p

st, (D) The active load power at bus i after the load
shedding

Qf,i(t) The reactive load power at bus i after the
load shedding

Fij(t) The power flow on the transmission line ij

Pff The final active power load at bus i.

Xn The n-th set of input data for generator
output and load level

n The n-th classification label referring to
whether the load shedding happens

Yn The n-th regression label for LOSS

K The kernel function for SVM

o(x) The feature space for SVM

Jr(xn) The model of k-th regression tree in GBR

L The loss function in GBR

Tkon The negative gradient for the k-th tree in
GBR

hi(x,, ay) The parameterized function for the k-th tree
in GBR

i The steepest descent direction of k-th regres-

sion tree in GBR

I. INTRODUCTION
ESILIENCE and vulnerability analysis for power sys-
tems is critical for system operation and dispatch. There
are many methods for vulnerability assessment of the power
system, such as the Monte Carlo simulation method, transient
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analysis method, and cascading outage simulation (CS) meth-
ods [1], [2]. Particularly, the CS method is considered an effec-
tive tool for tracking fault propagation and analyzing the power
system vulnerability to such incidents. Recent years have wit-
nessed several blackouts in electric power systems worldwide,
with substantial socioeconomic impacts. Many of these black-
outs were caused by local faults which then propagated by
triggering cascading outages in multiple geographical regions.

The mainstream of CS includes applications of the complex
network theory to power flow analysis. The complex network
theory treats a power system as a model with a large number
of components, considers interactions among corresponding
components, and analyzes its critical characteristics in regard
to cascading outages. In addition, the power flow analysis
method divides the continuous fault process into several stages
and calculates the power flow recursively to find the over-
loaded lines. However, most of these power flow-based CSs
only focus on the power flow redistribution, while lacking
comprehensive consideration for generation adjustment and
load shedding strategies. It results in a large error for the final
vulnerability evaluation results compared with practical cases.

Moreover, when some extreme events come, the operating
states of the power system (i.e., generator output and load
levels) may change before the cascading outage occurs. In dif-
ferent operating states, the locations of the vulnerable parts for
power systems are different [3]. It is very time-consuming and
impractical to conduct CS for all possible initial boundary con-
ditions in online applications. Therefore, we need to quickly
evaluate the vulnerability of system components in a stochastic
initial state before cascading outages. In this way, the oper-
ators can give priority to protecting and strengthening these
vulnerable critical components according to the prediction
results. To solve this problem, machine learning methods can
be employed to analyze the impacts of uncertainties on CS.

At present, machine learning methods have been success-
fully applied to power system studies, which mainly include
deep learning, reinforcement learning, neural networks, etc.
These methods were used to predict load curves [4], [5],
distributed generation forecasting [6], [7], fault diagnosis [8],
[9] energy management [10], [11]. Many of these practical
applications of machine learning methods can be modeled
as classification and regression problems. For these machine
learning algorithms, we can train the model in an offline way
and then use it for the online application.

However, few studies characterized the relationship between
random initial states and the vulnerability under CS. Besides,
there are two challenges: i) there are a huge number of possible
initial states and we cannot enumerate all these initial states
for the CS simulation. Neither can we precisely quantify
the bus vulnerability. Thus, we expect to use the machine
learning technique to predict the vulnerability of the power
system according to the input characteristics (i.e., uncertain
generator output and load level); ii) The CS simulation may
be time-consuming for large-scale power systems, which is
challenging for the online application. In contrast, the machine
learning method can be employed to solve these challenges.

Among these state-of-the-art machine learning methods,
Support Vector Machine (SVM) was developed in many
studies to provide a reliable solution with a large number
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of features for binary classification problems. Compared with
other advanced classification algorithms, SVM algorithm usu-
ally has a shorter training time and higher efficiency due
to its simple structure under the same prediction accuracy
requirements [12], [13]. Besides, with the development of
some advanced ensemble learning algorithms, Gradient Boost-
ing Regression (GBR) algorithm was widely used in various
data analyses of power systems and has been proved to
be more effective than other traditional machine learning
algorithms [14].

Moreover, we have observed that the training precision by
directly applying the regression model is very poor due to the
following two reasons: 1) The number of features (i.e., bus
generation and load states) is generally high. Therefore, the
accuracy may suffer due to the over-fitting problem when con-
sidering a limited number of available training data. 2) Many
initial states will not lead to load shedding. Therefore, the
output of the machine learning model may take on an uneven
distribution concerning input parameters. To address the above
challenges, we propose a hybrid machine learning model
with a combined classification and regression method. SVM
algorithm is effectively employed for the classification with
and without load shedding categories under multidimensional
features. Then GBR regression prediction is carried out for the
data with load shedding. The main contributions of this paper
are summarized as follows:

(i) A CS is proposed based on off-line AC power flows

for the vulnerability analysis of each bus, which divides
the outage propagation process into multiple cascading
outage events (CEs). Meanwhile, the initial states are
randomly selected and the CS model is deployed for
each initial state to generate CS samples. Using CS,
power generation and loads are adjusted and power flows
are redistributed dynamically to mitigate any power
imbalances and quantify the vulnerability metric.
A hybrid machine learning model with the combined
classification and regression methods is proposed for bus
vulnerability analyses considering random initial states.
Here, the classification method is chosen by SVM, and
the regression method is chosen by GBR. A sequential
strategy is proposed in which the training data are clas-
sified into with and without load shedding categories.
Then, a regression model is applied for training with
load shedding data to predict the vulnerability metric in
random initial states.

The rest of the paper can be summarized as follows.
In Section II, we review the related work. Section III pro-
vides the details of the vulnerability analysis of cascading
outages where the simulation strategy for cascading outages
is proposed. Section IV designs a combined classification and
regression machine learning model for analyzing the impact of
stochastic inputs on vulnerability. Simulation results based on
CS and machine learning strategy are presented in Section V.
Section V has drawn the conclusions of this paper.

(i)

II. RELATED WORK

Based on the complex network theory, [15] proposed a
cascading outage model that concerned electrical load char-
acteristics. The result showed that the proposed model could

analyze network vulnerabilities more effectively. In [16], the
Galton-Watson branching process method was introduced in
CS to estimate the cascading outage process and the cor-
responding blackout size. A Lagrange-Good inversion-based
multi-type branching process method was proposed in [17] to
quantify the blackout propagation and analyze the interdepen-
dencies among different infrastructure systems.

In addition, power flow-based methods are also widely used
for CS analysis. Ref. [18] formulates an optimal power flow
problem for the cases of single and multiple generator failures
is addressed as an example, which could accurately capture the
outage propagation. DC power flow was used in [19] for CS
due to its efficiency and simplicity. Besides, [20] quantified the
interdependence of power and communication networks by an
interactive cascading model, indicating that a greater interde-
pendence would lead to a lower probability of power outages.
In [21], a Markovian-tree-based multi-timescale model was set
up for simulating cascading outages, and a forward-backward
searching strategy was employed to speed up the simulation.
In [22], a multi-time scale dynamic simulation model was
established with a sensitivity-based dispatch strategy. Ref. [23]
developed a novel distribution system restoration model in
response to multiple outages caused by extreme weather.

Other scholars studied CS via optimization and statistical
methods. A nonlinear convex optimization model solved by
saddle point dynamics was established in [24] for the pre-
diction of the cascading outage path, which could change
cascading outages by adjusting the injected power. Ref. [25]
proposed a dynamic programming model, focusing on identi-
fying key network branches and initial disturbances that caused
cascading outages. It also developed a key risk identification
algorithm based on the maximum value principle. Then,
risk constraints were introduced to describe the impact of
cascading outages in the economic dispatch model, and a
risk management optimization model was proposed in [26] to
balance economy and risk. Besides, a statistical method was
used to identify critical network devices based on large data for
cascading outages. Based on this idea, a state-outage network
model with empirical probabilities was formulated in [27] to
reduce the blackout risk resulting from cascading outages.

Furthermore, CS has immediate significance in components
vulnerability analysis. Ref. [28] used the kernel fuzzy C-means
method to predict the outage chain, which located key compo-
nents and interactions among cascading outages. To identify
key components and quantify corresponding impacts, [29]
established a probabilistic model to identify the propagation
patterns of cascading outages. Extending the above single-
layer network, a multi-layer interactive graph was proposed
in [30] to predict outage propagations and search mitigation
measures, which could more effectively identify the critical
components that affect propagations among layers.

Some efforts focused on contingency analysis by machine
learning methods. A fuzzy inference data fusion technique
that was not affected by fault types, fault resistance, and
data asynchronous was proposed in [31] to improve fault
location accuracy. Ref. [32] proposed a prediction method
based on machine learning to determine the impact of the
hurricanes, where components states were divided into damage
and operation for obtaining the decision boundary. A single
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classifier was trained in [33] by using the transient energy
function as input to the machine learning algorithm. In [34],
a novel reliability evaluation method for integrated power-gas
systems was proposed, where the Random Forest feature
selection method and Extreme Gradient Boosting regression
algorithm were employed. Ref. [35] suggested an online
detection model for cloud systems based on SVM, where
a systematic parameter-search method called SVM-Grid is
established to optimize parameters in the SVM algorithm.

However, due to the complexity of data structure, we often
need to improve the traditional machine learning algorithms to
solve the actual data analysis problem. In [36], a hybrid unsu-
pervised and supervised machine learning method-based clas-
sification system is suggested, which can be efficiently applied
to the inspection of related scanning electron microscope
images of the electrospun nanofiber. Ref. [37] utilized a mul-
tilayer perceptron and the suggested Dendritic Neuron Model
(DNM) for multiple application scenarios involving classifica-
tion, approximation, and prediction. The results showed that
the suggested DNM is effective and promising in address-
ing these problems. Ref. [38] combined SVM and Gaussian
process regression (GPR) to evaluate the vulnerability of the
equipment excited by transient electromagnetic disturbances.
Ref. [39] has introduced a hybrid machine learning method
and proved its effectiveness from the perspective of data
mining. In [40], the event-based load shedding (ELS) problem
was hierarchically modeled as a multi-output classification
subproblem for identifying the best shedding location and
a regression subproblem to predict the minimum shedding
amount. Ref. [41] applied the hierarchical classification and
regression approach to combine several machine learning
methods together to achieve better predicting performance.
To deal with the overfitting problem, [42] combined the
bound optimization approach with variation Bayesian infer-
ence to derive a novel L1 norm-based Extreme learning
machine. Moreover, a novel classification method was sug-
gested in [43] based on neighbor searching and kernel fuzzy
c-means approach, which can reduce the impact of parameters
uncertainties with dataset classification for the cyber-physical
system. In [44], a network attack detection method integrated
a flow calculation and deep learning was developed to process
high-speed network data and detect complex network attacks.
To overcome data imbalance problems in the machine learning
model, [45] proposes a weighted undersampling scheme for
SVM based on space geometry distance.

III. VULNERABILITY ANALYSES OF CASCADING OUTAGES
A. Cascading Outage Simulation

In cascading outage analysis, any alterations in types and
locations of initial outages could lead to different effects.
We consider that the outage of a bus or substation will trip
all the connecting lines. Accordingly, the power imbalance
will occur during cascading outages. Since the cascading
outages are propagated very fast, the optimal dispatch of
generators cannot be deployed effectively in real time. Hence,
the automatic generation control (AGC) along with possible
load shedding will be deployed to redistribute line flows.

Specifically, once a power imbalance occurs, the generator
and load will take the following actions, where Pg ;(t) is the
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power generation at bus i and time ¢ and Py, ;(¢) is the load
at bus j and time ¢:

1) Generation Output Ramping: Generators will adjust their
power outputs according to their respective ramp rates in the
following three cases:

Case 1 (Power Generation Increment): If the power gener-
ation is less than the load, i.e., Zf\i’l Py (1) < Zf\i’l P (1),
all generators will ramp up their outputs with a ramp rate r
at each time interval At.

Case 2 (Power Generation Decrement): If the power genera-
tion is larger than the load, i.e., ZlN:”] Py (1) = ZlN:”] P (),
all generators will ramp down their outputs with a ramp rate
r at each time interval Ar.

Case 3 (Fixing the Minimum and Maximum Limits): Once
the generation output of a generator reaches its minimum or
maximum value, it will remain generation unchanged.

2) Generator Tripping and Load Shedding: In Case 1,
load shedding will occur if the power imbalance exceeds
the available generation capacity increment. In this case, the
curtailment will start with less critical loads and continue until
the power balance is restored. In Case 2, if the power imbal-
ance exceeds the available generation capacity decrement, the
system will trip some of the generators sequentially. In this
case, the lowest priced generator will be tripped first and the
process will be continued until the load balance is restored.
At any point, if the generation is less than load the condition
will be shifted to Case 1.

3) Constrained Power Flow Model: The line flows in the
grid will be redistributed after any generation or load adjust-
ments. A constrained AC power flow model is set up for the
cascading outage analysis, which is described as

b (1) = 0}

Np
Py (t) = Pri (t) = Ui (t) D_U; (1) (Gij cos by (1)
j=1

[ U (1) = U(;ef,

+ Bij sin Hij (l‘))

Np
Qi (1) = Q1i (1) = Ui (1) D Uj (t) (Gyj sin 6 (¢)
j=1
— Bjj cos 0;; (t)) ieB/0, ijel

(la)
Poo(t—At) —rAt < Pyo(t) < Peo(t — At) +rAt
(1b)

The solution of the power flow equations (1a) will check
the constraint (1b) for power balance. If condition (1b) is
not satisfied, we will set P, o(¢) as in (Ic) and go to 2) for
generator ramping and potentially tripping and load shedding.

[ Py o(t — At) +rAt
Py (t) = Pgo(t — A1) > rAt
Py (1)
—rAt < Pyo(t) — Peo(t — At) <rAt
Pgo(t — At) —rAt
Pyo(t) = Pgo(t — At) < —rAt

Pg,O (t) =

(1)
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If condition (1b) is satisfied, the power balance will be
guaranteed and we can analyze the redistributed power flow
on each transmission line. Once the updated power flow on
any transmission line exceeds the corresponding transmission
capacity, the relays will trip overloaded lines.

4) Optimal Power Flow Model: 1If the power balance is
still not satisfied after a given number of time intervals, i.e.,
T°P, the load shedding will happen by the optimal power
flow. Since the generator ramping can be interrupted by a
new cascading outage event (CE) for island d, the duration
of generator ramping ij between two CEs can be expressed
as follows:

TP = min {T;j4}, deD )
ijell

T;j,« means that there is no overload line tripping online #j in
island d within Tj; 4 time. Since the load demand at different
buses may have different importance, the least important one
will be shed first until the system power balance is satisfied,
which gives the following optimal power flow model,

min 3" w; (P (1) — B}, () G
iell
Pgi(t) — P (1)

Np
=U; (I)ZUJ' ) (Gij cos8;j (t)+ B;j sin 0;; (l‘))
j=1

Qi (1) — Q;l (1)
N,

=U; (Z)ZU]' ®) (G,‘j sin6;; (t)— Bjj cos0;; (t))
j=1

ieB, ijel

(3b)
Pgi(t — At) —rAt < Py ; (1) < Py (t — At) +rAt,
ieG (30)
0< P <P, |0, <miP; ),
iel (3d)
UMM (1) < Ui (1) < UM (1), ieB (3e)
|Fyj )| < Fi*™ (@), ijel (3f)

5) Vulnerability Metric: For each given initial outage at
buses or substations, we simulate the cascading outage process
according to the above analysis. The load shedding ratio is
calculated for quantifying the system vulnerability [16], given
by

LOSSZZ(PZ?i_PI??)/zPI?i )

ieB ieB

B. Islanding Issue

In a CS, overload line tripping may lead to several islands.
Cascading outages can be propagated on each island indepen-
dently, and realize a steady state in the end. However, when
cascading outages propagate on each island, the response times
T;p for each island are different. To take a synchronization of
the cascading simulation for each island in the same CE, the

TABLE I
ISLANDING PROCEDURE

input Network topology Q
output  Nand (Qi,..., Q)
Step 1 Initialize N=1 and ¥=Q
Step 2 Visit an initial bus io in ¥ and set ®={}
Find all the buses connected to the bus io but haven’t
Step 3 been visited before, denoted as i11, i12,..., i1». Then, =@
U {in, i12,..., i1n};
Step 4 for each bus from 711 to i1x
Find all the buses connected to the bus i11t0 i1x
Step 5 but haven’t been visited before, denoted as i21,
i22,..., i2n. ©=OU {i21, i22,..., i2n};
Step 6 if (i21, i22,..., i24) is null
Step 7 stop;
Step 8 Else
Step 9 recursion (i21, i22,. .., i2n)
Step 10 End
Step 11 End
Step 12 Specify Qy=0
Step 13 if U[N,IQz =Q
Step 14 return
Step 15  Else
Step16 ~ N=N+land¥=0Q-[]J" ©,
Step 17 goto Step 2
Step 18  End

minimum time Tr‘:fi’n of TdsP is set as the simulation time step
to promote further propagation.

Specifically, we use the following steps to determine the
islands in CS. At first, we determine the number of islands
according to the flowchart in Table I, where either Depth-
First-Search or Breadth-First-Search method is employed in
Steps 3-9 for traversing the system topology by using recursion
[35]. Furthermore, islands are divided into three types: with
only generators, with only loads, and with both generators
and loads. For islands with only loads or generators, all loads
are curtailed and all generators are tripped out, respectively.
For islands with both generators and loads, we set a reference
bus at each island to balance generation with the load. In this
case, the generator with the largest capacity is often chosen
as the reference bus in the simulation. Then, CS is conducted
in which parallel computing techniques are used to accelerate
the simulation

C. Flowchart of CS

The CS flowchart of one bus outage is shown in Fig. 1 and
its detailed steps are summarized as follows:

Step 1: Set the initial outage and change the system topology
according to the system information and parameters.

Step 2: For each island with imbalanced power, deploy gen-
eration ramping and tripping and load shedding as necessary.

Step 3: Solve the constrained power flow model to check
the bus power balance. If the power is imbalanced, go to Step
2; otherwise, go to the next step.

Step 4: If the power balance is still not satisfied after the
time interval T;p the load shedding will happen by the optimal
power flow (3).
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Fig. 1. Flowchart of CS.

Step 5: For the balanced power flow solution, check the
overloaded transmission lines. If there is no overloaded line,
calculate the vulnerability metric; otherwise, trip all the over-
loaded lines and go to Step 2.

It should be noted that each bus needs its individual model
and the above CS flowchart only obtains one bus outage.
Therefore, we can repeatedly conduct the above flowchart with
each bus serving as the initial outage, and then we can obtain
the vulnerability metric of all buses.

IV. VULNERABILITY ANALYSIS OF CASCADING OUTAGE
IN RANDOM INITIAL STATE BASED ON
MACHINE LEARNING

A. Feature Selection and Data Acquisition

The random initial power system states will require a
stochastic vulnerability analysis using pertinent scenarios.
In this paper, we consider the random initial states for gen-
erator output and load levels for the stochastic vulnerability
analysis. The power system parameters (e.g., resistances and
reactances of transmission lines) are considered fixed since
they have a minute influence on load losses in power system
cascading outages. Moreover, machine learning techniques
will be properly devised to analyze the impact of stochastic
inputs on vulnerability analysis. Since an N-k contingency
has a low probability, the corresponding historical data are
deemed limited. To obtain a sufficient number of training data,
we employ the simulation method depicted in Fig. 1 and apply
the following steps: 1) Choose a scenario with an arbitrary
generation output and load level within a certain range near
the rated power. 2) Perform the CS according to the flowchart
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Fig. 2. Schematic diagram of SVM.
in Fig. 1 and calculate the load shedding for the given initial
State.

Then, a hybrid machine learning model with the combined
classification and regression is designed. In this model, the
classification model by SVM is employed to judge whether
the cascading outage will result in any load shedding. Then,
the regression model using the GBR method is employed to
describe the relationship between input features and the output
indicator only for cases where load shedding is prescribed.

B. Support Vector Machine Classification

The SVM algorithm aims to classify the training data into
two sets of with and without load shedding. The approach
follows the principle of structural risk minimization for min-
imizing the deviation between actual and ideal outputs. SVM
applies a few support vectors to represent the data set [46],
and the kernel function of the original space is used to deal
with the nonlinear classification problem by mapping the input
variables into a higher-dimensional space.

The Nipgin training data {(x,, yn, zn)ln = 1,2, ..., Nyain}
are chosen for vulnerability analysis. Since the computational
error of LOSS is inevitable, a positive threshold is set to
determine the value of the classification label z,, such that
n=—1Lify, < 107°; otherwise zn, = 1. The SVM algorithm
will separate these data by a hyperplane wx +b = 0. As shown
in Fig. 2, Hy and H, are two planes parallel to a hyperplane
H, where the distance between them is called the classification
interval. They cross a small number of data points closest to H,
which are the support vectors. The hyperplane H separates the
two categories and the SVM classifier aims to find the optimal
hyperplane that maximizes the classification interval 2/||w| 12,
which is the same as minimizing [lw||?, stated as

1
min 5||a)||2 (52)

S.l. Zn (cuTx,, +b) >1, n=1,..., Nyain (5b)

To solve the nonlinear problem, it is necessary to introduce
the kernel function to map the data into a higher-dimensional
space, so that the data can be linearly separable. Here, the
kernel function K(xp,x,) is chosen as the Radial Basis
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Function (RBF) by

K (xp,5a) = exp (<7115 = 5l ) = (x,) 0 () (6)

Furthermore, the kernel SVM is formulated as

Nlrain
1
min [l +C 3 & (7a)
n=lI
Zn (wT(p (xn) +b) >1-E,
Sn >0, n=1,..., Niain (7b)

A larger C will lead to a tighter margin.

The performance of a binary SVM classification model
is usually assessed by the four values: true positive (TP),
true negative (TN), false positive (FP) and false negative
(FN). Then, the accuracy of the SVM classification model is
formulated as

| TP+TN ©
ccurac =
UracysVM = b TN £ FP + FN

C. Gradient Boosting Regression

Once the training data {(x,, yn, zn)ln = 1,2, ..., Nyain} 18
classified by SVM, the regression model is set up only for the
data with load shedding to find a latent function that maps
X, to y,. Assume that there are N; data with load shedding,
and giving {(x, yn,zn) Yz, = 1ln = 1,2, ..., Ny}. However,
the learning ability of a single decision tree may be weak
for regression, leading to poor generalization performance and
over-fitting problems. Hence, GBR uses several least squares
regression trees as base learners, fits the residual value of
the previous regression tree through the iterative method,
and finally adds the results of all regression trees to get the
final predicted value [47], which contains input features, three
splits, transformed features and integration of several trees.
As shown in Fig. 3, sequential improvement will be deployed
to enhance the regression trees, where each tree is to reduce
the residual and improve the performance by using information
from the previous trees.

A loss function L, (yn, f(xz)) = llyn — f(x,,)||% is defined
for the joint distribution of x, and y,, where the number of

regression trees is given. Initialize the model by a constant
value fo(x) as

Nx
fox) = argmin D" Ly (yu, f(xn)) )

fx) n=1

Apply M iterations to reduce the residual value along the
gradient descent direction of the loss function. For the k-th
tree, the negative gradient is defined as

OL(yn, f(xn))

of Con) o N

(10)

n=1,...

rkn = —I[ 1fCen)=fimt () s

Form a new training data set {(x,,rx,)|ln = 1,2,..., Ny}
and choose the parameterized function hy(x,, ax) to fit the
base regression tree as

Ns
ay = ar’% min z [rk,n — Bichi(xn, ak)] Y
Rk

Replace the negative gradient r¢ , by hy(x,, ar) and apply a
greedy-stagewise approach to approximate the k-th data space
by the (k-1)-th data space, leading to

S () = fr—1 () + pfrhi(x),

P is the steepest descent direction that is obtained by a line
search method as

0<u<l (12)

Ny
i = argmin D" L(yn, fi1(n) + BihaCons a))  (13)
k

n=1

It is observed that the number of trees M and the learning
rate u may affect the solution performance. Generally, the
training error is reduced with the increasing number of trees.
However, the generalization ability of the model will be weak-
ened if there is an excessive number of trees, and the prediction
performance of the model will be reduced due to the over-
fitting phenomenon. In order to address this problem, GBR
introduces the shrinkage to gradually approach the best result
with small steps to avoid the over-fitting problem. In general,
a smaller learning rate can improve the generalization ability
of the model.

In order to get a prediction model with high accuracy,
we employ the ten-fold cross-validation method. It means that
the data are randomly divided into ten parts, where nine are
randomly used as the training set, and one is applied as the
test set. Since the prediction models by using different selected
training sets are different, we need to scramble the samples
and reselect the training and testing set several times. Finally,
we choose the model with the highest accuracy as the final
prediction model.

Meanwhile, in order to determine the main parameters
affecting the SVM algorithm (i.e., y and C) and GBR algo-
rithm (i.e., M and w), this paper adopts the grid search method.
Firstly, determine all possible combinations of important para-
meters affecting the two algorithms within a certain range.
Then, train all possible parameter combinations by using the
corresponding classification and regression algorithm. Finally,
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Fig. 4. Flowchart of the proposed hybrid machine learning technique.

the parameter combination with the highest prediction accu-

racy is taken as the optimal parameters for the two algorithms.
The R-square coefficient is employed as the metric for the

accuracy of the GBR model, which is formulated as

Ntest )
Z (Ym - Yj,pre)

m=1
Ntest

Z (Ym —

m=1

m=1,2,...,Ntest

Accuracygpr = 1 —

5

ymean)2
(14)

Finally, since the proposed method is a sequential compu-
tation for the classification and regression, the final predic-
tion accuracy of the proposed method is the product of the
SVM classification accuracy and the GBR regression accuracy,
which can be determined as follows:

Accuracypegicion = Accuracygyy X Accuracyggr
5)

D. Flowchart of the Proposed Combined Classification and
Regression Machine Learning Model

A hybrid machine learning model with the combined SVM
classification and GBR regression method is proposed for the
power system vulnerability analysis on cascading outages in
the presence of random initial states. The detailed flowchart
is shown in Fig. 4 with the following four steps:

Step 1: Perform the data collection by CS for randomly
selected initial states. Apply data preprocessing, e.g., normal-
ization, to avoid numerical instability resulting from uneven
data quantities.

Step 2: Select proper parameters for the SVM classifier
and solve the optimization model (7) to determine the optimal
hyperplane for dividing the training data into two categories
with and without load shedding.

Step 3: Conduct GBR regression by selecting the proper
regression model parameters for M iterations using (9)-(13).
Based on the classification results, only the training data with
load shedding are collected for further regression.
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Fig. 5. CS for the initial outage at bus 6.

Step 4: Employ the cross-validation method to resample the
data set, evaluate the proposed machine learning model, and
quantify the relative error between predicted regression and
actual values.

V. CASE STUDIES
A. CS for the IEEE 39-Bus System

To investigate CS, the standard IEEE 39-bus system is
chosen with parameters available in MATPOWER [48]. The
following assumptions are considered in the simulation: 1)
The generator ramp rate r at each Atz is set as 5% of the
corresponding capacity. 2) The load with a larger capacity is
more important.

The CS results are shown in Fig. 5 and Table II, which
contain four cascading outage events (CEs). The initial outage
was at bus 6 where four lines connected to bus 6 (i.e., lines 10,
12, 13, 14) were tripped subsequently, splitting the system into
two islands with a LOSS of 0.0015%. One island contains only
one bus, i.e., 31, where the power balance is straightforward.
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TABLE II
ISLANDS AND LOSS oF CS

CEs Over.loaded .#Of Buses on each island LOSS (%)
Lines islands
1 10, 12, 2 31 0.0015
13,14 Others
31
2 9,19,23 3 10,11,12,13,32 0.0015
Others
31
3, 6,26, 10,11,12,13,32
3 27,30 4 318 0.0767
Others
31
10,11,12,13,32
3,18
1
4 1,2,16 8 1
939 0.1607
4,5,7,8
2,17,25,26,28,29,30,36,37
Others
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Fig. 6. LOSS for different initial outages.

The other large island has 37 buses, where we learn that active
flows on lines 9, 19 and 23 exceed rated values once we
recalculate the power flow. Accordingly, the 37-bus island is
further split into two islands, i.e., 5-bus and 32-bus islands,
leading to a 0.015% LOSS.

The cascading outages will continue to propagate in the
32-bus island, where lines 3, 6, 26, 27, and 30 are disconnected
and this 32-bus island is decomposed into 2-bus and 30-bus
islands with a LOSS of 0.0676%. Finally, by tripping lines 1,
2, and 16, the 30-bus island is split into 5 islands: single-bus,
2-bus, 4-bus, and 9-bus. This CE contributes to a 0.1607%
LOSS. The cascading outage will lead to 8 islands and a total
LOSS of 0.2404%. The main LOSS is derived from the third
and the fourth CEs, while the first and the second CEs only
contribute to 0.03% when the load at bus 9 is curtailed.

The LOSS for different initial outages is shown in Fig. 6,
where there are five CEs at most for buses 13, 14, and
32. Meanwhile, the initial outages at either load buses (e.g.,
17 and 26) or generator buses (e.g., 31 and 32) will lead to
cascading outages. Since a higher LOSS will lead to a higher
vulnerability, the initial outage at bus 6 in the test system
will result in the largest LOSS and the corresponding highest

9
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il 1 ..
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Fig. 7. Probability of LOSS for different initial states.

vulnerability. In contrast, initial outages at buses 5, 17, 19,
30, 33, 35, 36, and 37 do not lead to any load shedding,
so the vulnerability on these buses is very low. Besides, when
the initial outage occurs at buses 3, 4, 20, and 39, there is
only one CE but the LOSS is still large. This is because the
corresponding loads are large which will be curtailed after
the initial outage. For example, the load at bus 39 accounts
for 17.65%. Besides, the bus a larger number of CEs have a
higher vulnerability in general (e.g., buses 2, 6, 14, and 32).
According to the cumulative results of LOSS, the vulnerability
of each bus can be obtained corresponding to vulnerability
in this initial state, respectively. Then, the operators can take
some specific reinforcement measures for those vulnerable
critical buses of the power system.

B. Machine Learning for Vulnerability Analysis

The vulnerability analysis is performed by the proposed
hybrid machine learning method for different initial states.
Here, the 39-bus power system is utilized again and the data
sets are constructed by the following steps:

1) Data sets with 10,000 initial states are generated where
generator outputs and load levels are randomly changed
between 0.8 and 1.2 of the power ratings.

2) Use the proposed CS model for each data set to calculate
the vulnerability metric. Obtain the input features of
each data set x, (i.e., uncertain power and gas load
levels), classification labels z,, (i.e., whether the load
shedding happens), and regression labels y, (i.e., the
vulnerability metric LOSS).

3) Normalize the 10,000 data sets. Split them into a training
set and a testing set by the ten-fold cross-validation
method for the SVM classification.

4) Determine the optimal SVM parameters by the grid
search method as C = 0.8 and y = 1/30.

The LOSS distribution for different initial states is depicted
in Fig. 7, where certain buses (e.g., 5, 36, 38) have very
small LOSS and some other buses (e.g., 6, 39) have large
LOSS. Compared with that in Fig. 6 with a given initial state,
the LOSS may vary significantly under different initial states.
Therefore, initial states will have a major impact on LOSS.

Take buses 6 and 16 with the classification results shown in
Fig. 8, where only 10 feature vectors include 5 large generators
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Fig. 8. Classification of data sets in buses 6 and 16.

and 5 large loads due to the large feature dimensions. The
vertices of polygons represent the input features, and the points
with different colors represent different kinds of data. It can
be observed that it is feasible to classify the data and select the
data with LOSS#0 for the subsequent GBR regression training
because the data have obvious clusters. The output vectors are
in two categories of zero and non-zero LOSS. According to
the classification results, we adopt only the data sets with load
shedding for the GBR regression method, i.e., LOSS#0. For
bus 6, there are 7,656 data sets with LOSS#0, which are still
split into a training set and a testing set. The parameters are
set as learning rate 4 = 0.01 with the number of learners
M =09.

The precision of the proposed method is shown in Fig. 9.
The blue curve shows the accuracy of the first-step SVM
classification. The green curve represents the accuracy of the
second-step GBR regression by using the data with LOSS#0
after the SVM classification. The red curve represents the
accuracy of the hybrid machine learning method. The accuracy
of the proposed machine learning method (i.e. the red curve)
is the product of the SVM classification accuracy and the GBR
regression accuracy. Therefore, it will be lower than that of
individual ones.

It can be found that the minimum and average accuracies
of the SVM classification method are 94.35% and 96.91%,
respectively. The minimum and average accuracies of the
GBR regression method are 97.65% and 99.12 %, respectively.
Generally, the hybrid method has good performance and the
overall minimum and average accuracies are about 93.12% and
96.05%. In addition, there are several data sets with relatively
small LOSS values, which are intuitively on the boundary of
two categories. In this scenario, the SVM misclassification
may also happen.

All buses are traversed to train their corresponding predic-
tion model. For a certain initial state in the power system,
the proposed method is employed to rapidly predict the
vulnerability metrics of each bus under cascading outages.
Then, the buses with high vulnerability metrics are regarded
as the vulnerable critical components in this power system.

C. Comparisons of Large-Scale Systems

The direct GBR regression with the same parameters is
employed for comparison. The precision and computation time
are shown in Fig. 10. It is obvious that the proposed method
will increase the computation time since the additional SVM
classification is conducted. Generally, the computation time
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Fig. 10. Computation time and precision for the 39-bus system.

TABLE III

COMPARISONS FOR VULNERABILITY ANALYSIS TIME
WITH DIFFERENT METHODS

Method 1 Method 2 Method 3
Test systems . . Training Predict
Time (s) Time (s) . .
time (s) Time (s)
14-bus system 313 43.8 46.7 0.739
39-bus system 39.7 76.9 47.6 0.593
57-bus system 69.3 90.6 48.1 0.763
118-bus system 98.4 123.5 51.2 0.839
300-bus system 128.0 2135 54.8 0.651
2383-bus system 3152 379.3 59.6 0.778

of the proposed method is less than half of that of the GBR
method. In addition, the precision of the proposed method
is improved significantly. In particular, the GBR regression
method will lead to a very poor precision, which is as low
as nearly 20% at some buses. In contrast, the precision of
the proposed method exceeds 90%. This is because different
initial states will lead to an uneven distribution of LOSS. It will
affect the learning performance. The proposed hybrid machine
learning method utilizes the classification to select non-zero
data sets for regression with an even data distribution of output
variables.

Furthermore, the application of the proposed method is
simulated for verification on several large-scale test sys-
tems including 14-bus, 39-bus, 57-bus, 118-bus, 300-bus, and
2383-bus systems [48]. Each test system adopts the same
simulation settings as the 39-bus system. The results are shown
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TABLE IV
COMPARISON OF THE PROPOSED METHOD WITH OTHER MACHINE LEARNING METHODS
14-bus system 39-bus system 57-bus system
Methods
Accuracy Training Time (s) Accuracy Training Time (s) Accuracy Training Time (s)

SVM+GBR 0.988 46.7 0.967 47.6 0.960 48.1

Logistic Regression+GBR 0.397 39.4 0.387 41.9 0.342 429
Random Forest+GBR 0.985 73.4 0.961 79.7 0.957 83.4
SVM+ Linear Regression 0.295 34.1 0.243 35.5 0.279 36.7
SVM+ Polynomial Regression 0.437 38.7 0.335 41.7 0.353 433
SVM+SVR 0.677 37.5 0.687 42.4 0.619 432

118-bus system 300-bus system 2383-bus system
Methods - — - -
Accuracy Training Time (s) Accuracy Training Time (s) Accuracy Training Time (s)

SVM+GBR 0.960 51.2 0.952 54.8 0.949 61.2

Logistic Regression+GBR 0.305 49.7 0.311 48.9 0.287 51.3
Random Forest+GBR 0.956 92.3 0.951 99.7 0.943 114.9
SVM+ Linear Regression 0238 39.2 0.223 42.7 0.205 52.1
SVM+ Polynomial Regression 0.368 45.6 0.335 58.9 0.298 57.5
SVM+SVR 0.628 46.9 0.578 49.7 0.433 58.3

80

[== svM+GBR == GBR =-&= SVM+GBR(Time) ==& =- GBR(Time)]|

Training Time (s)

14 39 57 118 300
K-bus Systems

2383

Fig. 11. Computation time and precision on large-scale test systems.

in Fig. 11. Here, the computation time increases slightly for
larger systems, while the precision is always higher than 90%.
This indicates that the machine learning method is not sensitive
to the system size and can also be applied to large-scale
systems. In contrast, the GBR regression method will always
demonstrate a low accuracy (i.e., smaller than 70%), which
decreases for larger systems. For the 2383-bus system, the
precision is only 30%.

Finally, to verify the advantages of the proposed method on
the vulnerability analysis under random initial states, the CS
model based on DC power flow mentioned in [19] (Method
1), the CS model proposed in Section III (Method 2), and
the hybrid machine learning model proposed in Section IV
(Method 3) are compared in terms of vulnerability analysis
time. The simulation settings are as follows: 1) Each method
calculates the average vulnerability analysis time for each
bus under five random sets of random initial states; 2) Each
test power system adopts the same simulation setting and
calculation methods of vulnerability metric in Method 1 and
Method 2. The results are shown in Table III.

It can be found that when the initial states of a power
system change, the average time of re-conducting CS for
the traditional model-driven Method 1 and Method 2 is
relatively long. In addition, with the scale of the power
system increasing, the time for Method 1 and 2 Method

also increases significantly (e.g. more than 6 minutes in the
2383-bus power system). In contrast, although the hybrid
machine learning-based Method 3 also needs about 1 minute to
train the prediction model, the training process can be carried
out offline. The online prediction time of Method 3 is no more
than Is, and it is hardly affected by the scale of power systems.
Therefore, the proposed hybrid machine learning method can
effectively predict the vulnerability to cascading outages of
the power systems in random initial states.

D. Comparisons With Other Machine Learning Methods

In order to verify the effectiveness of the proposed machine
learning method, some other classical machine learning
algorithms including two classification algorithms (Logis-
tic Regression and Random Forest Classification) and three
regression algorithms (Linear Regression, Polynomial Regres-
sion, and Support Vector Machine Regression) are employed to
generate six hybrid machine learning methods for the compar-
ison with the proposed method. Comparisons are investigated
on the six test systems. The average accuracy and training time
of all buses are shown in Table I'V.

It can be found the SVM 4 GBR leads to the highest
accuracy among all the hybrid machine learning methods.
In contrast, the SVM + Logical Regression has the lowest
accuracy. The reason is that the proposed model takes on
strong nonlinear characteristics and the Logical Regression
cannot well handle this nonlinear problem. Moreover, the
Random forest + GBR has similar accuracy as the proposed
SVM + GBR method. However, it is more complex and com-
putationally expensive than the SVM + GBR method. As a
result, this paper selects SVM + GBR as the hybrid machine
learning method to investigate the relationship between the
initial states and the vulnerability metric.

VI. CONCLUSION

This paper proposes a hybrid machine learning method
for the power system vulnerability analysis. Initial states are
randomly sampled and a cascading outage simulation for each
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initial state is proposed to quantify the vulnerability metric
and generate the training data. Furthermore, a hybrid machine
learning model with the combined classification and regression
is set up to characterize the relationship between the initial
states and the vulnerability metric. Simulation results suggest
that the proposed cascading outage simulation can effectively
deal with islands and reflect the power system vulnerability.
Moreover, the proposed hybrid machine learning model, which
applies a combined classification and regression method, can
achieve higher precision than a single regression model.

REFERENCES

[11 Y. Tan, Y. Cao, Y. Li, K. Y. Lee, L. Jiang, and S. Li, “Optimal
day-ahead operation considering power quality for active distribution
networks,” IEEE Trans. Automat. Sci. Eng., vol. 14, no. 2, pp. 425436,
Apr. 2017.

[2] L. Li, Q.-S. Jia, H. Wang, R. Yuan, and X. Guan, “A system-
atic method for network topology reconfiguration with limited link
additions,” J. Netw. Comput. Appl., vol. 35, no. 6, pp. 1979-1989,
Nov. 2012.

[3] T.Ding, Y. Lin, G. Li, and Z. Bie, “A new model for resilient distribution
systems by microgrids formation,” IEEE Trans. Power Syst., vol. 32,
no. 5, pp. 4145-4147, Sep. 2017.

[4] P. Liu, T. Ding, Z. Zou, and Y. Yang, “Integrated demand
response for a load serving entity in multi-energy market consid-
ering network constraints,” Appl. Energy, vol. 250, pp. 512-529,
Sep. 2019.

[5] W.Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, “Short-term
residential load forecasting based on LSTM recurrent neural network,”
IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 841-851, Jan. 2019.

[6] H. Zang, L. Cheng, T. Ding, K. W. Cheung, Z. Wei, and G. Sun,
“Day-ahead photovoltaic power forecasting approach based on deep
convolutional neural networks and meta learning,” Int. J. Electr. Power
Energy Syst., vol. 118, Jun. 2020, Art. no. 105790.

[71 H. Zang et al., “Hybrid method for short-term photovoltaic power
forecasting based on deep convolutional neural network,” IET Gener.
Transm. Distrib., vol. 12, no. 20, pp. 4557-4567, Nov. 2018.

[8] H. Li, G. Hu, J. Li, and M. Zhou, “Intelligent fault diagnosis for
large-scale rotating machines using binarized deep neural networks
and random forests,” IEEE Trans. Autom. Sci. Eng., vol. 19, no. 2,
pp. 1109-1119, Apr. 2022, doi: 10.1109/TASE.2020.3048056.

[9] C. Yang, B. Gunay, Z. Shi, and W. Shen, “Machine learning-based
prognostics for central heating and cooling plant equipment health
monitoring,” IEEE Trans. Autom. Sci. Eng., vol. 18, no. 1, pp. 346-355,
Jan. 2021.

[10] Z. Zhang et al., “A review of technologies and applications on ver-
satile energy storage systems,” Renew. Sustain. Energy Rev., vol. 148,
Sep. 2021, Art. no. 111263.

[11] K. Ojand and H. Dagdougui, “Q-learning-based model predictive
control for energy management in residential aggregator,” [EEE
Trans. Autom. Sci. Eng., vol. 19, no. 1, pp. 70-81, Jan. 2022, doi:
10.1109/TASE.2021.3091334.

[12] W. M. Lin, C. H. Wu, C. H. Lin, and F. S. Cheng, “Detection and
classification of multiple power-quality disturbances with wavelet mul-
ticlass SVM,” IEEE Trans. Power Del., vol. 23, no. 4, pp. 2575-2582,
Oct. 2008.

[13] L. S. Moulin, A. P. A. Da Silva, M. A. El-Sharkawi, and R. J. Marks, II,
“Support vector machines for transient stability analysis of large-scale
power systems,” IEEE Trans. Power Syst., vol. 19, no. 2, pp. 818-825,
May 2004.

[14] D. Upadhyay, J. Manero, M. Zaman, and S. Sampalli, “Gradient boosting
feature selection with machine learning classifiers for intrusion detection
on power grids,” IEEE Trans. Netw. Service Manag., vol. 18, no. 1,
pp. 1104-1116, Mar. 2021.

[15] F. Wenli, L. Zhigang, H. Ping, and M. Shengwei, “Cascading failure
model in power grids using the complex network theory,” IET Gener,
Transmiss. Distrib., vol. 10, no. 15, pp. 3940-3949, Nov. 2016.

[16] J. Qi, I. Dobson, and S. Mei, “Towards estimating the statistics of
simulated cascades of outages with branching processes,” IEEE Trans.
Power Syst., vol. 28, no. 3, pp. 3410-3419, Aug. 2013.

[17] J. Qi, W. Ju, and K. Sun, “Estimating the propagation of interdependent
cascading outages with multi-type branching processes,” IEEE Trans.
Power Syst., vol. 32, no. 2, pp. 1212-1223, Mar. 2017.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Q. Kang, M. Zhou, J. An, and Q. Wu, “Swarm intelligence approaches to
optimal power flow problem with distributed generator failures in power
networks,” IEEE Trans. Autom. Sci. Eng., vol. 10, no. 2, pp. 343-353,
Apr. 2013.

J. Yan, Y. Tang, H. He, and Y. Sun, “Cascading failure analysis with DC
power flow model and transient stability analysis,” IEEE Trans. Power
Syst., vol. 30, no. 1, pp. 285-297, Jan. 2015.

Y. Cai, Y. Li, Y. Cao, W. Li, and X. Zeng, “Modeling and impact analysis
of interdependent characteristics on cascading failures in smart grids,”
Int. J. Elect. Power Energy Syst., vol. 89, pp. 106-114, Jul. 2017.

R. Yao et al., “Risk assessment of multi-timescale cascading outages
based on Markovian tree search,” IEEE Trans. Power Syst., vol. 32,
no. 4, pp. 2887-2900, Jul. 2017.

R. Yao, S. Huang, K. Sun, F. Liu, X. Zhang, and S. Mei, “A multi-
timescale quasi-dynamic model for simulation of cascading outages,”
IEEE Trans. Power Syst., vol. 31, no. 4, pp. 3189-3201, Jul. 2016.

T. Ding, Z. Wang, W. Jia, B. Chen, C. Chen, and M. Shahidehpour,
“Multiperiod distribution system restoration with routing repair crews,
mobile electric vehicles, and soft-open-point networked microgrids,”
IEEE Trans. Smart Grid, vol. 11, no. 6, pp. 4795-4808, Nov. 2020.

C. Zhai, H. Zhang, G. Xiao, and T.-C. Pan, “A model predictive approach
to protect power systems against cascading blackouts,” Int. J. Electr.
Power Energy Syst., vol. 113, pp. 310-321, Dec. 2019.

H. Zhang, C. Zhai, G. Xiao, and T. Pan, “Identifying critical risks of
cascading failures in power systems,” IET Gener., Transmiss. Distrib.,
vol. 13, no. 12, pp. 2438-2445, Jun. 2019.

R. Yao, K. Sun, F. Liu, and S. Mei, “Management of cascading outage
risk based on risk gradient and Markovian tree search,” IEEE Trans.
Power Syst., vol. 33, no. 4, pp. 4050-4060, Jul. 2018.

L. Li, H. Wu, Y. Song, D. Song, and Y. Liu, “Quantify
the impact of line capacity temporary expansion on blackout
risk by the state-failure—network method,” IEEE Access, vol. 7,
pp. 183049-183060, 2019.

Y. Pan, F. Mei, C. Zhou, T. Shi, and J. Zheng, “Analysis on integrated
energy system cascading failures considering interaction of coupled
heating and power networks,” IEEE Access, vol. 7, pp. 89752-89765,
2019.

J. Qi, K. Sun, and S. Mei, “An interaction model for simulation and
mitigation of cascading failures,” IEEE Trans. Power Syst., vol. 30, no. 2,
pp. 804-819, Mar. 2015.

W. Ju, K. Sun, and J. Qi, “Multi-layer interaction graph for analysis and
mitigation of cascading outages,” IEEE J. Emerg. Sel. Topics Circuits
Syst., vol. 7, no. 2, pp. 239-249, Jun. 2017.

Z. Jiao and R. Wu, “A new method to improve fault location accuracy in
transmission line based on fuzzy multi-sensor data fusion,” IEEE Trans.
Smart Grid, vol. 10, no. 4, pp. 4211-4220, Jul. 2019.

R. Eskandarpour, A. Khodaei, and J. Lin, “Event-driven security-
constrained unit commitment with component outage estimation based
on machine learning method,” in Proc. North Amer. Power Symp.
(NAPS), Sep. 2016, pp. 1-6.

J. Geeganage, U. D. Annakkage, T. Weekes, and B. A. Archer, “Appli-
cation of energy-based power system features for dynamic security
assessment,” [EEE Trans. Power Syst., vol. 30, no. 4, pp. 1957-1965,
Jul. 2015.

S. Li, T. Ding, C. Mu, C. Huang, and M. Shahidehpour, “A machine
learning-based reliability evaluation model for integrated power-gas
systems,” [EEE Trans. Power Syst., vol. 37, no. 4, pp. 2527-2537,
Jul. 2022, doi: 10.1109/TPWRS.2021.3125531.

P. Zhang, S. Shu, and M. Zhou, “An online fault detection model and
strategies based on SVM-grid in clouds,” IEEE/CAA J. Autom. Sinica,
vol. 5, no. 2, pp. 445456, Mar. 2018.

C. Ieracitano, A. Paviglianiti, M. Campolo, A. Hussain, E. Pasero,
and F. C. Morabito, “A novel automatic classification system based on
hybrid unsupervised and supervised machine learning for electrospun
nanofibers,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 64-76,
Jan. 2021.

S. Gao, M. Zhou, Y. Wang, J. Cheng, H. Yachi, and J. Wang, “Den-
dritic neuron model with effective learning algorithms for classification,
approximation, and prediction,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 30, no. 2, pp. 601-614, Feb. 2019.

Y.-H. Chen et al., “Vulnerability assessment of equipment excited by dis-
turbances based on support vector machine and Gaussian process regres-
sion,” IEEE Trans. Electromagn. Compat., vol. 63, no. 1, pp. 103-110,
Feb. 2021.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on September 16,2022 at 20:06:27 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1109/TASE.2020.3048056
http://dx.doi.org/10.1109/TASE.2021.3091334
http://dx.doi.org/10.1109/TPWRS.2021.3125531

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: MODEL AND DATA DRIVEN MACHINE LEARNING APPROACH

[39] S.-W. Ke and C.-W. Yeh, “Hierarchical classification and regression
with feature selection,” in Proc. IEEE Int. Conf. Ind. Eng. Eng. Manag.
(IEEM), Macao, China, Dec. 2019, pp. 1150-1154.

Q. Li, Y. Xu, and C. Ren, “A hierarchical data-driven method for event-
based load shedding against fault-induced delayed voltage recovery in
power systems,” IEEE Trans. Ind. Informat., vol. 17, no. 1, pp. 699-709,
Jan. 2021, doi: 10.1109/T11.2020.2993807.

S. Li, T. Ding, W. Jia, C. Huang, J. P. S. Catalao, and F. Li,
“A machine learning-based vulnerability analysis for cascading failures
of integrated power-gas systems,” IEEE Trans. Power Syst., vol. 37,
no. 3, pp. 2259-2270, May 2022.

X. Shi, Q. Kang, J. An, and M. Zhou, “Novel L1 regularized extreme
learning machine for soft-sensing of an industrial process,” IEEE Trans.
Ind. Informat., vol. 18, no. 2, pp. 1009-1017, Feb. 2022.

L. Liu, A. Yang, W. Zhou, X. Zhang, M. Fei, and X. Tu, “Robust
dataset classification approach based on neighbor searching and kernel
fuzzy c-means,” IEEE/CAA J. Autom. Sinica, vol. 2, no. 3, pp. 235-247,
Jul. 2015.

H. Zhang, Y. Li, Z. Lv, A. K. Sangaiah, and T. Huang, “A real-time
and ubiquitous network attack detection based on deep belief network
and support vector machine,” IEEE/CAA J. Autom. Sinica, vol. 7, no. 3,
pp. 790-799, May 2020.

Q. Kang, L. Shi, M. Zhou, X. Wang, Q. Wu, and Z. Wei, “A distance-
based weighted undersampling scheme for support vector machines and
its application to imbalanced classification,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 29, no. 9, pp. 41524165, Sep. 2018.

F. Deng, S. Guo, R. Zhou, and J. Chen, “Sensor multifault diagnosis
with improved support vector machines,” IEEE Trans. Autom. Sci. Eng.,
vol. 14, no. 2, pp. 1053-1063, Apr. 2017.

J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Ann. Statist., vol. 29, no. 5, pp. 1189-1232, Oct. 2001.

R. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, “MAT-
POWER: Steady-state operations, planning, and analysis tools for power
systems research and education,” IEEE Trans. Power Syst., vol. 26, no. 1,
pp- 12-19, Feb. 2010.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Hongji Zhang (Student Member, IEEE) received the B.S. degree from the
School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, China,
in 2022, where he is currently pursuing the M.S. degree. His major research
interests include energy system and power system resilience.

Tao Ding (Senior Member, IEEE) received the B.S.E.E. and M.S.E.E. degrees
from Southeast University, Nanjing, China, in 2009 and 2012, respectively,
and the Ph.D. degree from Tsinghua University, Beijing, China, in 2015.
From 2013 to 2014, he was a Visiting Scholar with the Department of
Electrical Engineering and Computer Science, The University of Tennessee,
Knoxville, TN, USA. From 2019 to 2020, he was a Visiting Scholar with
the Robert W. Galvin Center for Electricity Innovation, Illinois Institute of
Technology. He is currently a Professor with the State Key Laboratory of
Electrical Insulation and Power Equipment, School of Electrical Engineering,
Xi’an Jiaotong University. His current research interests include electricity
markets, power system economics and optimization methods, and power
system planning and reliability evaluation. He is also an Editor of IEEE
TRANSACTIONS ON POWER SYSTEMS, IEEE POWER ENGINEERING LET-
TERS, IET Generation, Transmission & Distribution, and CSEE JPES.

13

Junjian Qi (Senior Member, IEEE) received the B.E. degree in electrical
engineering from Shandong University, Jinan, China, in 2008, and the Ph.D.
degree in electrical engineering from Tsinghua University, Beijing, China,
in 2013. He was a Visiting Scholar with Iowa State University, Ames,
IA, USA, in 2012; a Research Associate with the Department of EECS,
The University of Tennessee, Knoxville, TN, USA, from 2013 to 2015; a
Post-Doctoral Appointee with the Energy Systems Division, Argonne National
Laboratory, Lemont, IL, USA, from 2015 to 2017; and an Assistant Professor
with the Department of Electrical and Computer Engineering, University of
Central Florida, Orlando, FL, USA, from 2017 to 2020. He is currently an
Assistant Professor with the Department of Electrical and Computer Engineer-
ing, Stevens Institute of Technology, Hoboken, NJ, USA. His research interests
include cascading blackouts, microgrid control, cyber-physical systems, and
synchrophasors. He was a recipient of the NSF CAREER Award in 2020, and
the Best Paper Awards from IEEE TRANSACTIONS ON POWER SYSTEMS,
IEEE PES General Meeting, and IEEE ISGT Asia. He is also an Associate
Editor of IET Generation, Transmission & Distribution and IEEE ACCESS.

Wei Wei (Senior Member, IEEE) received the B.Sc. and Ph.D. degrees in
electrical engineering from Tsinghua University, Beijing, China, in 2008 and
2013, respectively. From 2013 to 2015, he was a Post-Doctoral Research
Associate with Tsinghua University, where he is currently an Associate
Professor. He was a Visiting Scholar with Cornell University, Ithaca, NY,
USA, in 2014; and a Visiting Scholar with Harvard University, Cambridge,
MA, USA, in 2015. His research interests include applied optimization and
energy system economics.

Joao P. S. Catalao (Fellow, IEEE) received the M.Sc. degree from the
Instituto Superior Técnico (IST), Lisbon, Portugal, in 2003, and the Ph.D.
and Habilitation for Full Professor (Agregacdo) degrees from the University
of Beira Interior (UBI), Covilha, Portugal, in 2007 and 2013, respectively.
He is currently a Professor with the Faculty of Engineering, University of
Porto (FEUP), Porto, Portugal; and a Research Coordinator with INESC TEC.
He was the Primary Coordinator of the EU-funded FP7 project SINGULAR
(Smart and Sustainable Insular Electricity Grids Under Large-Scale Renew-
able Integration), a 5.2-million-euro project involving 11 industry partners.
His research interests include power system operations and planning, power
system economics and electricity markets, distributed renewable generation,
demand response, smart grid, and multienergy carriers.

Mohammad Shahidehpour (Life Fellow, IEEE) received the Honorary
Doctorate degree from the Polytechnic University of Bucharest, Bucharest,
Romania, in 2009. He is currently a University Distinguished Professor,
a Bodine Chair Professor, and the Director of the Robert W. Galvin Center
for Electricity Innovation, Illinois Institute of Technology, Chicago, IL, USA.
He is a member of the U.S. National Academy of Engineering, and a fellow of
the American Association for the Advancement of Science and the National
Academy of Inventors.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on September 16,2022 at 20:06:27 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1109/TII.2020.2993807


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


