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Abstract—This article investigates the problem of estimating 

actuator fault and states and controlling the bus voltage in direct 

current microgrids (DC MGs) with linear and nonlinear constant 

power loads (CPLs). It is considered that the DC MG states are not 

fully measurable and the utilized sensors are not ideal and noisy. 

Additionally, the actuator fault occurs and it is modeled as an 

additive term in the power system dynamics. These issues, 

including nonlinearities, un-measurable states, noisy measures, and 

actuator fault indispensably degrade the operation of the DC MG. 

To solve this issue, initially, a dual-extended Kalman filter (dual-

EKF) is suggested for the fault and state estimation. It decomposes 

the process of estimating the state and actuator fault to reduce the 

online computational burden. For the control purpose, a linear 

parameter varying (LPV) model predictive control (MPC) is 

suggested to regulate the current and voltage of the DC MG. It 

benefits the nonlinear system modeling of LPV representation and 

constrained-based design procedure of the MPC to result in an 

accurate and low online computational burden dealing with system 

constraints. By deploying the overall robust adaptive dual-EKF 

estimation-based LPV-MPC, there is no need to have any prior 

knowledge of all system states and actuator faults in prior.  The 

theoretical analysis and controller design are validated by 

numerical simulations on a typical islanded DC MG and 

comparisons are done with state-of-the-art estimation and control 

strategies. 

 

Index Terms—DC microgrid, constant power load, actuator 

fault, dual-extended Kalman filter, linear parameter varying 

representation, nonlinear model predictive control.  

 

 
 
 

NOMENCLATURE 

A. DC microgrid parameters 

𝑅                  Load resistance 

𝑃                     CPL power 

𝐶                Converter capacitance 

𝐿                        Converter inductance 

𝑉𝑒                      Source voltage 

𝑥1 = 𝑣𝑐                    Capacitor voltage 

𝑥2 = 𝑖𝐿                    Inductor current 

𝑢                Converter duty cycle 

𝑓𝑎              Actuator fault 

B. Dual-extended Kalman filter parameters 

𝑣𝑥  (𝑣𝑓) State (fault) system noise 

𝑄𝑥  (𝑄𝑓)                     State (fault) system variance 

𝑥 (𝑓)                      Estimation of state (fault) 

𝑃𝑥  (𝑃𝑓)                       Variance of state (fault) estimation 

𝐾𝑥  (𝐾𝑓)                    State (fault) Kalman gain 

C. LPV-MPC parameters 

𝜃1 (𝜃2)                     Lower (upper) bound of local region 

𝜎1 and 𝜎2                      Slopes of sectors 

𝛽1 and 𝛽2                       LPV time-varying parameters 

𝜉max (𝜉min)                    Upper (lower) bound of control input 

𝐽                     Cost function 

𝜎 and 𝜆                    Weights of cost function 

𝑤 Sequence of future reference 

𝑈 Sequence of future control inputs 

I. INTRODUCTION 

Direct current (DC) microgrids (MGs) facilitate transmitting 

and distributing DC power from distributed generation units, 

renewable energy sources, and energy storage devices to flexible 

DC loads. These small-scale MGs are becoming popular, because 

of high robustness, modest control, and desired proficiency in 

integrating DC sources such as photovoltaics and fuel cells [1].  
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Despite their merits, the DC MGs face three main challenging 

issues:  

i) DC MGs feed nonlinear constant power loads (CPLs), which 

can destabilize the DC MG by inserting a negative 

incremental resistant [2], [3]. 

ii) Practical DC MGs are not fully observable, as they require 

too many voltage and current sensors. Besides, the installed 

sensors are also not ideal and subjected to noise, which reduces 

the measurement reliability.  

iii) The controllable power electronic devices deployed in DC 

MGs may be subjected to faults that degrade the performance.  

The above-mentioned challenges influence the DC MG power 

system operation and must be considered in designing monitors 

and controllers. A few control and/or estimation approaches have 

been conducted to deal with these issues. 

The stability margin of DC MGs with CPLs is enhanced by 

active stabilizing techniques with linear and nonlinear control 

strategies [4], [5]. In contrast to linear control laws, such as the 

well-known proportional-integral (PI) and proportional-integral-

derivative (PID), nonlinear and advanced control approaches, 

including sliding mode [6], [7], backstepping [8], [9], and 

predictive [10], [11], result into global stabilization for the DC 

MG. Nevertheless, nonlinear controllers, which deploy Lyapunov 

stability to guarantee stability, need the information of the power 

system state vector in their laws. Thereby, they are commonly 

vulnerable to faults and/or noisy measurements. 

For the DC MG power systems subjected to a fault, some 

detection methods classified into data-driven and model-based 

methods are presented [12]. Compared to the former group, the 

latter classification has a lower online computational burden and a 

higher robustness level against noise. A high-gain Luenberger 

observer is designed based on the linearized representation of the 

nonlinear DC MGs with CPLs in [13]. By using the difference 

between the actual and estimation of the measurement output, a 

systemic approach to determine faults is presented. Nevertheless, 

faults are not reconstructed and the state vector is not estimated, 

accurately. In [14], a fusion mechanism to integrate the 

estimations of Kalman filters is presented to isolate the faulty 

sensors and determine the estimations precisely. Nevertheless, 

faults are not reconstructed. Sensor faults detection and state 

estimation can be utilized to monitor a power system. But high-

performance control actions rely on detecting and reconstructing 

actuator faults to compensate for them. In [15], the actuator and 

sensor faults were detected by developing a robust linear observer. 

However, the detected faults were not estimated. In [16], the issue 

of sensor and actuator faults for DC MGs with CPLs is solved by 

suggesting a Takagi-Sugeno fuzzy sliding mode observer. 

Nevertheless, the approach of [16] is applicable if some matrix 

rank conditions hold and transformations are found. This limits 

that approach’s applicability in facing complicated DC MGs.  

In [1], the dual-EKF approach is adopted and applied to the DC 

MG power system with a pre-given converter duty cycle. 

Although actuator faults are reconstructed in [1], the fault-tolerant 

control (FTC) of nonlinear DC MGs is not addressed.  

The occurring generator faults in an aircraft are detected and 

mitigated by a robust monitoring and controller technique in [17]. 

In [18], a hybrid AC/DC MG with faulty conditions is regulated 

by a passivity-based FTC approach. The common drawback of 

[17] and [18] is the lack of reconstructing actual faults and they 

are only tolerated. In [19], a typical DC MG with CPLs and several 

faults is considered and an FTC method is presented. Since CPL 

is controlled by an FTC, the overall FTC method of [19] is not 

suitable for complicated DC MGs with a high number of CPLs. 

Analyzing state-of-the-art methods determines that most of the 

control methods for DC MGs with CPLs are not robust against 

actuator faults or necessitate a complicated online implementation. 

This work develops a novel robust adaptive LPV-MPC for the 

class of islanded nonlinear DC MGs with noisy measurements and 

actuator faults. The main novelty of this work is deploying the 

instantaneous information of the actuator fault in the control law. 

The actuator fault as well as the system states are estimated online 

by a novel dual-extended Kalman filter (dual-EKF) method. By 

using the dual-EKF, not only the issue of actuator fault in the 

power system is involved to make the estimations more accurate, 

but also the actuator faults are precisely constructed. Then, all 

estimated information is deployed in the nonlinear LPV-MPC to 

optimally design the duty cycle of the DC/DC converter such that 

it regulates the voltage and current of the DC MG. The optimal 

control law is computed online in the presence of power system 

constraints. Since the DC MG with CPL and DC/DC converter is 

nonlinear, both the estimator and controller are nonlinear and 

effective in the presence of nonlinearity to assure large-signal 

stability. In this regard, the dual-EKF uses two separate EKFS 

applicable to nonlinear system dynamics. Also, the predictive 

controller is integrated with nonlinear LPV representation to 

improve the prediction action. The proposed approach is validated 

by performing numerical simulations. Several scenarios and 

comparative results are presented to demonstrate the advantages 

of the estimation and control methods.  

This article is continued as follows. In Section II, the dynamics 

of a typical DC MG with a buck converter, CPLs, linear loads, and 

actuator fault are presented. In Section III, the proposed  

dual-EKF-based LPV-MPC is discussed. In Section IV, 

comparative simulations are given and the results are discussed. In 

Section V, this work achievement is summarized and future works 

to extend the presented results are suggested.  

II. FAULTY DC MG WITH CPLS 

Typical DC MGs connect several energy sources, such as 

renewable, fully controllable, and storage to a wide variety of 

linear and nonlinear loads. These loads can be DC or AC and 

connected to the main bus via DC/DC converters or DC/AC 

inverters. A simplified DC MG is illustrated in Fig. 1. If the power 

electronic apparatus exactly regulates the receiving power to the 

loads, they act as nonlinear CPLs. 
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Fig. 1. DC MG system illustration. 

 

 

Without loss of generality, by incorporating all energy sources 

to construct a common fixed voltage source, using the Thevenin-

Norton theorem of the resistive loads at the DC side, and 

considering CPLs’ behavior at the input of converter or inverters 

connected to the DC side, a simplified DC MG schematic is 

achieved in Fig.  2. More precisely, it is assumed that the power 

generators are controlled properly and so their combination is 

simplified and results in a constant voltage level. The constant 

power source is connected to the DC bus via a buck converter, 

which should be controlled. Moreover, loads may operate at 

different voltage levels and should be connected to the DC bus via 

converters and inverters. By the means of the Thevenin-Norton 

theorem, their equivalent values are added to simplify the DC MG. 

 

 

Fig. 2. DC MG power system structure. 

 

 

This DC MG connects a DC source to 𝒦 CPLs, and 𝒥 RLs via 

a controllable DC/DC converter. Whereas the CPLs 𝑃𝐶𝑃𝐿𝑠 for  

𝑠 = 1, … ,𝒦 and resistive loads 𝑅𝑠 for 𝑠 = 1, … ,𝒥 are in parallel, 

they can be further simplified by a common resistive load (i.e. 𝑅) 

and CPL (i.e. 𝑃), as shown in (1) and (2). 

𝑅 = (𝑅1
−1 +⋯+𝑅𝒥

−1 )
−1
, 𝑃 = 𝑃𝐶𝑃𝐿1 +⋯+𝑃𝐶𝑃𝐿𝒦 . (1) 

The switching nature of the DC/DC buck converter can be 

described by an averaged model of the duty cycle in the interval  

0 ≤ 𝑢 ≤ 1. It is considered that the controllable DC/DC converter 

may operate with faults. This fault arises from any  

mal-functionality of power electronic devices. This influences the 

control command and degrades the closed-loop DC MG 

performance. Reminding (1) and involving the effect of fault on 

the controllable converter, the nonlinear averaged state-space 

representation for the DC MG of Fig. 2 can be obtained. Although 

the power converter behaves switch, based on some 

circumstances, the switching actions of the buck converter can be 

smoothed by a duty cycle and the overall power system is 

represented by an averaged model. As stated in [20], the averaged 

modeling method has high accuracy, if the natural frequency of 

the converter filter is much lower than that of the switching action. 

The dynamics of the DC MG power system are as follows: 

{
 
 

 
 𝑥̇1 =

1

𝐶
𝑥2 −

𝑥1
𝑅𝐶

−
𝑃

𝐶𝑥1
  

𝑥̇2 =
𝑉𝑒
𝐿
𝑢 −

1

𝐿
𝑥1 +

𝑉𝑒
𝐿
𝑓𝑎

𝑦 = 𝑥1                               

. (2) 

Where 𝑥1 = 𝑣𝑐 and 𝑥2 = 𝑖𝐿 are first state (capacitor voltage) and 

second state (inductor current), and 𝑓𝑎 is the actuator fault. The 

capacitance and inductance are 𝐶 and 𝐿, respectively and 𝑉𝑒  is the 

source voltage. As can be seen in (2), the measured state is 𝑥1.  

It is worth noting that the dynamics (2) are derived by 

considering the following assumptions: 

I) The DC/DC buck converter is modeled by the averaged model 

and its command input is the duty cycle.  

II) The source has a fixed voltage.  

III) The CPLs are modeled by current-controlled sources, which 

their current is related to their voltages and the constant 

power. 

IV) The additive term actuator fault is represented by an unknown 

input that appears in the model equation. 

Moreover, the additive fault and disturbances have a similar 

influence on the system [21]. The main difference is that 

disturbance inputs are known to exist. But faults should be 

detected. actuator fault is modeled as an additive term. Dealing 

with fault has two main steps [21]. I) Initially, the fault should be 

detected and the detection procedure should be robust against 

disturbance inputs to avoid wrong alarm. II) After a correct fault 

detection, fault reconstruction should be performed to monitor the 

system and control it. The focus of this work is on the second step 

of the fault-tolerant controller design.  

The key objective for the DC MG system (2) is to regulate the 

DC bus voltage in the presence of the actuator fault. In this regard, 

let the desired voltage reference be 𝑥1
∗. Therefore, the desired value 

for the inductor current and converter duty cycle in the fault-free 

environment can be calculated by letting 𝑥̇1 = 0, 𝑥̇2 = 0, and 𝑓𝑎 =

0, as follows: 

𝑥2
∗ =

𝑥1
∗

𝑅
+
𝑃

𝑥1
∗ , 𝑢

∗ =
𝑥1
∗

𝑉𝑒
. (3) 

Applying the change of variables  𝑥1 = 𝑥1 − 𝑥1
∗, 𝑥2 = 𝑥2 − 𝑥2

∗, 

and 𝑢̃ = 𝑢 − 𝑢∗, the dynamics (2) can be rewritten as follows: 

Battery 

Solar cell 

DC/DC C. 

DC/AC Con. Generator 

Resistive load 

DC/DC Con. 

Electric motor 

DC/DC Con. 

CPL 

DC bus 

𝐼𝐶𝑃𝐿1 

𝐼𝐶𝑃𝐿𝑘 

𝑅1 

𝑅𝑗  𝑣𝐶  𝐶  

𝑢 𝑢′ = 𝑢 + 𝑓𝑎 

𝐿 
Source 

Converter 
𝒥 RLs 𝒦 CPLs 

DC bus 

𝑉𝑒  

Faulty Actuator  
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{
 
 

 
 𝑥̇1 =

1

𝐶
𝑥2 −

𝑥1
𝑅𝐶

−
𝑃𝑥1

𝐶(𝑥1 + 𝑥1
∗)𝑥1

∗

𝑥̇2 =
𝑉𝑒
𝐿
𝑢̃ −

1

𝐿
𝑥1 +

𝑉𝑒
𝐿
𝑓𝑎                

𝑦̃ = 𝑥1                                               

. (4) 

Now, the control objective is to force the tracking errors in the 

dynamics (4) to reach zero. The dynamics (4) are continuous-time 

and have a nonlinear term ℎ(𝑥1) = 𝑥1/(𝑥1 + 𝑥1
∗), which 

complicates the design of the controller. To avoid such 

complexities, the representation is discretized by the forward 

Euler method, as follows: 

𝑥̇𝑖(𝑡0) = lim
𝑇→0

𝑥𝑖(𝑡0 + 𝑇) − 𝑥𝑖(𝑡0)

𝑇
≅
𝑥𝑖(𝑡0 + 𝑇) − 𝑥𝑖(𝑡0)

𝑇
. (5) 

Where 𝑇 is the discretizing sample. By setting the instance 𝑡𝑘 =

𝑡0 + 𝑘𝑇 with 𝑡0 is the initial time, one step of the Euler method 

from 𝑡𝑘 to 𝑡𝑘+1 will be 𝑡𝑘+1 = 𝑡𝑘 + 𝑇. For simplicity, define the 

time instances 𝑡𝑘 and 𝑡𝑘+1 as 𝑘 and 𝑘 + 1, respectively. Thereby, 

(4) is discretized as follows: 

{
 
 

 
 𝑥̃1(𝑘 + 1) = 𝑥̃1(𝑘) + 𝑇 (

𝑥̃2(𝑘)

𝐶
−
𝑥̃1(𝑘)

𝑅𝐶
+

𝑃𝑥̃1(𝑘)

𝐶(𝑥̃1(𝑘) + 𝑥1
∗)𝑥1

∗)

𝑥̃2(𝑘 + 1) = 𝑥̃2(𝑘) + 𝑇 (
𝑉𝑒
𝐿
𝑢̃(𝑘) −

1

𝐿
𝑥̃1(𝑘) +

𝑉𝑒
𝐿
𝑓𝑎(𝑘))           

. (6) 

Furthermore, the nonlinear term ℎ(𝑥1) = 𝑥1/(𝑥1 + 𝑥1
∗) should 

be represented by an equivalent polytopic-LPV representation. 

The way of deriving the polytopic-LPV model is based on the 

sector nonlinearity method [22]. In this method, for each nonlinear 

term, two sectors are defined such that the nonlinear term is within 

those sectors. Then, based on the sectors, the polytopic-LPV 

model can be obtained. It is worth noting that generally, nonlinear 

terms are within two linear sectors. In this case, the sectors are 

selected in a local region. For the local region ℧ = {𝑥1| − 𝑥1
∗ <

𝜃1 ≤ 𝑥1 ≤ 𝜃2}, the nonlinear term is within two sectors 𝜎1𝑥2 and 

𝜎2𝑥2, as shown in Fig. 3. 

  
Fig. 3. Sector region of the nonlinear term ℎ(𝑥1) = 𝑥1/(𝑥1 + 𝑥1

∗). 

 

For the region ℧ = {𝑥1|  − 𝑥1
∗ < 𝜃1 < 𝑥1 < 𝜃2}, the slopes 𝜎1 

and 𝜎2 are calculated as follows: 

𝜎1 =
1

𝜃2 + 𝑥1
∗ ; 𝜎2 =

1

𝜃1 + 𝑥1
∗. (7) 

Reminding the sector nonlinearity approach, the nonlinear term 

ℎ(𝑥1) is represented as follows: 

ℎ(𝑥1) = 𝛽1𝜎1𝑥1 + 𝛽2𝜎2𝑥̃1. (8) 

Where 𝛽1 + 𝛽2 = 1, and: 

𝛽1 =
𝜎2𝑥1 − ℎ(𝑥1)

(𝜎2 − 𝜎1)𝑥1
, 𝛽2 =

ℎ(𝑥1) − 𝜎1𝑥̃1
(𝜎2 − 𝜎1)𝑥1

. (9) 

Substituting (8) into (4) results in a 2-vertex polytopic LPV 

model, as follows: 

{𝑥(𝑘 + 1) =∑𝛽𝑖{𝐴𝑖𝑥 + 𝐵1𝑢̃ + 𝐵1𝑓𝑎}

2

𝑖=1

. (10) 

Where 𝑥 = [𝑥1   𝑥2]
𝑇 and: 

𝐴1 =

[
 
 
 1 −

𝑇

𝑅𝐶
+
𝑇𝑃𝜎1
𝐶𝑥1

∗

𝑇

𝐶

−
𝑇

𝐿
1]
 
 
 
, 𝐴2 =

[
 
 
 1 −

𝑇

𝑅𝐶
+
𝑇𝑃𝜎2
𝐶𝑥1

∗

𝑇

𝐶

−
𝑇

𝐿
1]
 
 
 
, 

𝐵1 = [
0
𝑇𝑉𝑒
𝐿

]. 

Comparing the dynamics (6) and (10) reveals that the polytopic-

LPV model comprises linear state-space models 𝐴𝑖𝑥 + 𝐵1𝑢̃ +

𝐵1𝑓𝑎, which are aggregated with nonlinear scalars 𝛽𝑖 . Thanks to 

this structure of polytopic-LPV system, it is possible to use linear 

control methods for nonlinear systems. In the following, a novel 

nonlinear control law is proposed for the power system case study. 

III. DUAL EKF-BASED LPV-MPC CONTROLLER  

A common way of dealing with nonlinearities in the power 

system is to use a Lipchitz-based MPC [23]. However, the 

conservativeness increases. Another and improved method is by 

using the discrete-time LPV representation (10), a polytopic LPV-

MPC with a finite-time prediction can be designed. The dynamics 

(10) consider the fault term 𝑓𝑎, which future value is not known in 

practice. Its future values can be assumed to be constant and its 

present value can be considered as a biased term. In this regard, 

the polytopic LPV-MPC design approach of [24] is applicable. 

The following theorem provides the LPV-MPC control design 

procedure. 

Theorem 1 (Polytopic LPV-MPC) [24]. Consider the 

polytopic LPV system: 

{
  
 

  
 𝑥(𝑘 + 1) =∑𝛽𝑖𝐴𝑖𝑥(𝑘)

𝑟

𝑖=1

+∑𝛽𝑖𝐵𝑖𝑢(𝑘)

𝑟

𝑖=1

+∑𝛽𝑖𝐸𝑖

𝑟

𝑖=1

= 𝐴𝛽𝑥(𝑘) + 𝐵𝛽𝑢(𝑘) + 𝐸𝛽             

𝑦(𝑘) =∑𝛽𝑖𝐶𝑖𝑥(𝑘)

𝑟

𝑖=1

= 𝐶𝛽𝑥(𝑘)                                     

, (11) 

ℎ(𝑥1)  

𝜃1 

𝜃2 

𝜎1𝑥̃1 
𝜎2𝑥1 

𝑥1  
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and the input constraint: 

𝜉min(. ) < 𝑢(. ) < 𝜉max(. ), (12) 

and the cost function over the finite-time prediction and control 

intervals 𝑁𝑝 and 𝑁𝑢: 

𝐽(𝑁𝑝, 𝑁𝑢) =∑𝛿(𝑗)[𝑦̂(𝑘 + 𝑗|𝑘) − 𝑤(𝑘 + 𝑗)]2

𝑁𝑝

𝑗=1

+∑𝜆(𝑗)[𝑢(𝑘 + 𝑗 − 1)]2

𝑁𝑢

𝑗=1

. 

(13) 

Where 𝑦̂(𝑘 + 𝑗|𝑘) is the 𝑗-step ahead prediction of the output, 

𝑤(𝑘 + 𝑗) is the future reference, and 𝛿(𝑗) and 𝜆(𝑗) are coefficients 

of the tracking error and the energy effort.  

The following LMI-based optimization problem assures the 

sub-optimum solution of the LPV-MPC controller: 

min  𝐽∗ 

subject to: 

[
𝐽∗ − 𝐺 −𝐾𝑇𝑈 +𝑈𝑇𝐾𝑇 𝑈𝑇

𝑈 𝐻−1
] > 0 (14) 

[ 𝐼
−𝐼
] 𝑈 < [

Ξ𝑚𝑎𝑥
−Ξmin

] (15) 

Where: 

Θ = 

[
 
 
 
 

𝐶𝛽𝐵𝛽 … 0

𝐶𝛽𝐴𝛽𝐵𝛽 … 0

⋮ ⋱ ⋮

𝐶𝛽𝐴𝛽
𝑁𝑝−1𝐵𝛽 … 𝐶𝛽𝐴𝛽

𝑁𝑝−𝑁𝑢𝐵𝛽]
 
 
 
 

, 

Ψ = [

𝐶𝛽𝐴𝛽
⋮

𝐶𝛽𝐴𝛽
𝑁𝑝
] 𝑥(𝑘) +

[
 
 
 
 
 
 

𝐶𝛽

𝐶𝛽(𝐼 + 𝐴𝛽)

⋮

∑ 𝐶𝛽𝐴𝛽
𝑖

𝑁𝑝−1

𝑖=0 ]
 
 
 
 
 
 

𝐸𝛽 , 

𝐻 = 𝛩𝑇𝛥𝛩 + 𝛬, 𝐾 = (𝛹 −𝑊)𝑇𝛥𝛩, 

𝐺 = (𝛹 −𝑊)𝑇𝛥(𝛹 −𝑊), 

𝑊 = [𝑤(𝑡 + 1)   𝑤(𝑡 + 2) …   𝑤(𝑡 + 𝑁𝑝)]
𝑇
, 

Δ = diag{𝛿(1), 𝛿(2),…𝛿(𝑁𝑝)},  

Λ = diag{𝜆(1), 𝜆(2),… , 𝜆(𝑁𝑝)},   

𝑈 = [𝑢(𝑘)  𝑢(𝑘 + 1) …   𝑢(𝑘 + 𝑁𝑢 − 1)]
𝑇, 

 𝛯𝑚𝑎𝑥 = [𝜉𝑚𝑎𝑥(𝑘),… , 𝜉𝑚𝑎𝑥(𝑘 + 𝑁𝑢)]
𝑇, 

 𝛯𝑚𝑖𝑛 = [𝜉𝑚𝑖𝑛(𝑘),… , 𝜉𝑚𝑖𝑛(𝑘 + 𝑁𝑢)]
𝑇, 

(16) 

and diag{. } is the diagonal matrix, and 𝐼 is the identity matrix. 

As can be seen in Theorem 1, the system (11) contains a biased 

term 𝐸𝛽 and its value affects the control law based on (24). Besides 

the controller law use the information of the state vector 𝑥(𝑘). 

Reminding that the control objective for the tracking error 

dynamics (10) is to stabilize the error states to zero, to apply 

Theorem 1 on the power system dynamics (10), it should be 

considered in (11) that: 

𝐸𝛽 = 𝐵1𝑓𝑎, 𝐶𝛽 = 𝐼, 𝑊 = 0. (17) 

Using Theorem 1, the future sequence of control input 𝑈 is 

calculated online and the present control input is the first array of 

𝑈, (i.e. 𝑢̃(𝑘) = 𝑈(1)). On the other hand, the actuator fault and 

the whole states are not measurable in practice, because they 

require several sensors to be installed. Therefore, it is logical to 

estimate the power system states and actuator fault. Among all 

possible deterministic and stochastic nonlinear estimators, in this 

paper, the dual-EKF algorithm is deployed. The algorithm for 

implementing the LPV-MPC of Theorem 1 is given in Fig. 4. 

 

 
Fig. 4. LPV-MPC implementation. 

 

The dual-EKF algorithm is systematic and highly robust against 

noisy measurements and mildly robust against system parameters 

and unknown dynamics. It also outperforms the accuracy and 

computational burden of a conventional EKF, by using two  

EKFs that estimate the state vector and actuator faults in parallel 

[25], [26]. To deal with the estimation issue of the actuator fault 𝑓𝑎 

in (10), its dynamic is required. Though in practice, fault behavior 

cannot be explicitly modeled and the time-derivative of the 

actuator fault is not known. Therefore, it is considered that: 

𝑓𝑎(𝑘 + 1) = 𝑓𝑎(𝑘). (18) 

The relation (18) assumes that the actuator fault is constant, 

which is in harmony with the LPV-MPC controller. As considered 

The control input is the first 

column of 𝑈.  

Find the sequence of control 

input law 𝑈.  

N
ex

t step
 

Solve the optimization problem 

of Theorem 1.  

Gather system states and faults. 

Initialization: 
Choose the cost function weights, 

control constraints, and desired 

voltage bus. 
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in (17), it is assumed that in the instance of design of the control 

law, the actuator fault behaves constantly to predict the future 

system behavior. 

To develop the dual-EKF, which is based on a Jacobian matrix, 

the dynamics (10) and (18) are augmented and represented as 

follows: 

{
  
 

  
 [
𝑥(𝑘 + 1)
𝑓𝑎(𝑘 + 1)

] = [
Ψ𝑥𝑥(𝑘) Ψ𝑥𝑓
Ψ𝑓𝑥 Ψ𝑓𝑓

] [
𝑥(𝑘)
𝑓𝑎(𝑘)

]                

                                           + [
𝐵𝑥
𝐵𝑓
] 𝑢(𝑘) + [

𝑣𝑥(𝑘)
𝑣𝑓(𝑘)

]

𝑦(𝑘) = [𝐶𝑥    0] [
𝑥(𝑘)
𝑓𝑎(𝑘)

] + 𝑤(𝑘)                        

. (19) 

Where 𝑣(𝑘) = [𝑣𝑥
𝑇(𝑘), 𝑣𝑓

𝑇(𝑘)]
𝑇

 and 𝑤(𝑘) are Gaussian white 

noises ℊ standing for the system and measurement noises, 

respectively, characterized by with mean vector and variance 

matrix, as follows: 

[
𝑣𝑥(𝑘)
𝑣𝑓(𝑘)

]~ℊ (0, [
𝑄𝑥 0
0 𝑄𝑓

]) (20) 

𝑤(𝑘)~ℊ(0, 𝑅𝑤) (21) 

Also, the Jacobian matrices are as follows:  

Ψ𝑥𝑥(𝑘) = [
1 +

−𝑇

𝑅𝐶
+

𝑃𝑇

𝐶(𝑥̃1(𝑘)+𝑥1
∗)2

𝑇

𝐶

−
𝑇

𝐿
1
], Ψ𝑥𝑓 = [

0
𝑇𝑉𝑒

𝐿

], 

Ψ𝑓𝑓 = 1,  Ψ𝑓𝑥 = [0  0], 𝐵𝑥 = [0  
𝑇𝑉𝑒

𝐿
]
𝑇

, 𝐵𝑓 = 0,  

𝐶𝑥 = [1 0]. 

(22) 

Based on the augmented Jacobian matrix-based state-space 

representation (19), the following algorithm summarizes the dual-

EKF implementation. 

Algorithm 1 (Dual-EKF) [1]: The dual-EKF algorithm 

comprises an offline initialization and online recursive parts:  

1. Initialize the state and actuator fault filters’ parameters. 

𝑥+(0), 𝑃𝑥
+(0), (23) 

𝑓+(0), 𝑃𝑓
+(0), 

𝜕𝑥̂+(0)

𝜕𝑓
. (24) 

Where 𝑥+(. ) and 𝑓+(. ) are the estimations of the states 𝑥(. ) and 

𝑓𝑎(. ), 𝑃𝑥
+(. ) and 𝑃𝑓

+(. ) are the covariance matrices of the 

estimation errors, and 
𝜕𝑥̂+(.)

𝜕𝑓
 is the interaction of the filters.  

2. Update the state and actuator fault filter with respect to 

time. 

{
𝑥−(𝑘) = Ψ𝑥𝑥(𝑘)𝑥

+(𝑘 − 1)                         

𝑃𝑥
−(𝑘) = Ψ𝑥𝑥(𝑘)𝑃𝑥

+(𝑘 − 1)Ψ𝑥𝑥
𝑇 (𝑘) + 𝑄𝑥

, (25) 

{
 

 
𝑓−(𝑘) = 𝛹𝑓𝑓𝑓

+(𝑘 − 1)                  

𝑃𝑓
−(𝑘) = 𝛹𝑓𝑓𝑃𝑓

+(𝑘 − 1)𝛹𝑓𝑓
𝑇 +𝑄𝑓

𝜕𝑥̂−(𝑘)

𝜕𝑓
= Ψ𝑥𝑥(𝑘)

𝜕𝑥̂+(𝑘−1)

𝜕𝑓
+Ψ𝑥𝑓   

. (26) 

3. Update the state and actuator fault filter with respect to 

measurement. 

{

𝐾𝑥(𝑘) = 𝑃𝑥
−(𝑘)𝐶𝑥

𝑇(𝐶𝑥𝑃𝑥
−(𝑘)𝐶𝑥

𝑇 +𝑅𝑤)
−1

𝑥+(𝑘) = 𝑥−(𝑘) + 𝐾𝑥(𝑘)(𝑦(𝑘) − 𝐶𝑥𝑥̂𝑘
−) 

𝑃𝑥
+(𝑘) = (𝐼 − 𝐾𝑥(𝑘)𝐶𝑥)𝑃𝑥

−(𝑘)                  

, (27) 

{
 
 

 
 𝐾𝑓(𝑘) = 𝑃𝑥

−(𝑘)𝐶𝑓
𝑇(𝐶𝑓𝑃𝑓

−(𝑘)𝐶𝑓
𝑇 +𝑅𝑤)

−1

𝑓+(𝑘) = 𝑓−(𝑘) + 𝐾𝑓(𝑘)(𝑦(𝑘) − 𝐶𝑥𝑥̂𝑘
−) 

𝑃𝑓
+(𝑘) = (𝐼 − 𝐾𝑓(𝑘)𝐶𝑓)𝑃𝑓

−(𝑘)                  

𝜕𝑥̂+(𝑘)

𝑥𝑓
= (𝐼 − 𝐾𝑥(𝑘)𝐶𝑥)

𝜕𝑥̂−(𝑘)

𝑥𝑓
                   

. (28) 

Where the artificial fault output matrix 𝐶𝑓 is as follows: 

𝐶𝑓 = 𝐶𝑥
𝜕𝑥̂+(𝑘−1)

𝜕𝑥𝑓
. (29) 

4. Let 𝑘 = 𝑘 + 1 and go to Step 3.  

As mentioned before, the dual-EKF uses two parallel filters to 

estimate the states and actuator fault. In Algorithm 1, the details 

of implementing these two filters are given. However, they can 

operate in parallel, based on Fig. 5. As can be seen in Fig. 5, two 

parallel filters are performed and the algorithms of the time update 

and measurement update are separated into two parts, each of 

which is used in each filter. Now, based on Theorem 1 and 

Algorithm 1, the closed-loop system schematic is obtained in Fig. 

6. The DC MG power system dynamics (2) are considered as the 

open-loop system. The system output and control inputs are used 

in the dual-EKF to estimate the state vector and actuator faults. 

The dual-EKF uses Algorithm 1 based on the flowchart of  

Fig. 5 to calculate the estimation 𝑥(𝑘) and 𝑓𝑎(𝑘). Then, the LPV-

MPC computes the control law by using Theorem 1 and the 

optimization problem (14)-(16) is implemented based on Fig. 4.  

 

 

Fig. 5. Dual-Kalman filter algorithm. 

  

  
Measurement update 

(27) 
Measurement update 

(28) 
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+ 
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𝑦 
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Fig. 6. Implementation of the proposed estimation method. 

 

It should be noted that the actual states and control input of the 

power system (i.e. 𝑥 and 𝑢) differ from those of the dual-EKF and 

LPV-MPC (i.e. 𝑥 and 𝑢̃ in (6)). Therefore, changes of variables 

(3) (i.e. 𝑥1 = 𝑥1 − 𝑥1
∗ and 𝑢 = 𝑢̃ + 𝑢∗) are required to construct 

the closed-loop system. 

Due to appearing actuator fault and input constraints, the 

proposed controller uses the dual-EKF and an online LPV-MPC. 

The dual-EKF is capable of decomposing the state and fault 

estimation procedures. Therefore, when a fault is detected, then 

the whole dual-EKF should be implemented; and when the fault is 

not detected, only the EKF of the state estimation should be 

performed. Besides, by implementing the separate EKFs by two 

digital processors, the overall online calculation time decreases. 

Although the DC MG power system is nonlinear, the online 

optimization problem of the LPV-MPC is solved by LMIs, which 

use convex optimization with low online calculations. Therefore, 

the proposed approach requires a low online computational burden 

compared to the available online nonlinear observer-based 

controllers. 

IV. SIMULATION RESULTS 

The DC MG power system dynamics (2) of Fig. 2 with the 

parameter values 𝑅 = 10 (Ω), 𝐶 = 500 (𝜇𝐹), 𝐿 = 39.5 (𝑚𝐻), 

𝑃 = 300 (𝑊), and 𝑉𝑒 = 200 (𝑉) are considered. The 

measurement of the case study in Fig. 2 is the bus voltage. The 

system is discretized with the sampling time is  𝑇 = 1 (𝑚𝑠𝑒𝑐) and 

the output measurement noise variance is 𝑅𝑤 = 0.1. Two 

scenarios are considered to evaluate the performance of the dual-

EKF and the LPV-MPC approach. The results are compared with 

state-of-the-art methods. 

Scenario 1 (Evaluating the Dual-EKF performance):  

Since the goal of this scenario is to evaluate the performance 

of the state and actuator estimator, the duty cycle of the DC/DC 

buck converter is set as 𝑢 = 0.5. Initially, the power system 

without actuator fault is simulated and the applicability of the 

dual-EKF is compared with the conventional EKF and UKF. The 

key difference between the EKF and UKF is the way of 

approximating the nonlinearities. In the EKF, the nonlinearity 

terms are linearized at each step, meanwhile, the UKF uses the so-

called sigma points to compute the state vector mean value and 

estimation variance matrix. These algorithms are considered for 

comparison to show how the dual-EKF outperforms the EKF and 

UKF when faults occur. The details of the EKF and UKF 

algorithms can be found in [27]. 

 

The initial conditions of the dual-EKF are given in Table I. 

TABLE I. INITIAL CONDITIONS OF THE DUAL-EKF 

State filter 

𝑥+(0) = [130, 10]𝑇, 𝑃𝑥
+(0) = 103𝐼, 𝑄𝑥 = 10−3𝐼 

Fault filter 

𝑓+(0) = 0, 𝑃𝑓
+(0) = 102 , 

𝜕𝑥+(0)

𝜕𝑓
= [0, 0]𝑇, 𝑄𝑓 = 10−5 

 

 

Table II illustrates the computational burden and estimation 

precision of both considered filters. 

TABLE II. PERFORMANCE COMPARISON OF DUAL-EKF, EKF, AND UKF 

 Dual-EKF  EKF UKF 

Mean value of the computational 

burden (seconds) 

1.95

× 10−4 

1.14

× 10−4 

7.85

× 10−4 

Norm 2 of the voltage estimation 

error 
20.9638 21.0625 14.0457 

The voltage maximum steady-state 

error (volts) 
0.3987 0.3975 0.7706 

Norm 2 of the current estimation 

error 
8.0936 8.2180 2.1943 

The current maximum steady-state 

error (amperes) 
0.1932 0.1940 0.5075 

 

 

The computational burden of the dual-EKF is calculated for 

that Algorithm 1, which is implemented with one processor. If two 

parallel processors implement the dual-EKF, then the mean value 

of the computation time burden reduces to 11.4017 milliseconds, 

which is almost similar to the conventional EKF time of 11.4012 

milliseconds. From another point of view, the dual-EKF slightly 

provides more precise estimations than the conventional EKF for 

steady-state errors and norms 2. Besides, the UKF has the highest 

online computational burden, due to computing sigma points and 

propagating the mean vector and covariance matrices. The UKF 

results in smaller norm 2 of estimation errors, which indicates that 

system and measurement noises are better mitigated compared to 

the EKF and dual-EKF. On the other hand, the maximum steady-

state values of the estimation errors of the UKF are higher than 

those based on the EKF and dual-EKF. Thereby, the UKF reacts 

to the estimations error slower and with higher overshoot than the 

other methods. 

In the next study, the following time varying actuator fault is 

considered: 

𝑓𝑎 = 0.2 sin(4/3𝜋𝑡). (30) 

A time-varying actuator fault can be more challenging than a 

constant value because, in (18) and thus the dual-EKF 

formulation, it is assumed that a fault is constant. By adding the 

actuator fault (30) and setting a constant duty cycle for the 

converter (i.e. 𝑢 = 0.5), the DC MG power system states behave 

in an oscillatory way, as shown in Fig. 7. 

 

𝑦 = 𝑥1 
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𝑢 

Algorithm 1 
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LPV-MPC 

Theorem 1 

(14)-(15) 

𝑥1 
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𝑢̃ 

𝑥 

𝑓𝑎 

+ − 

DC MG power system with 

nonlinear loads and actuator fault (2) 
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(a) 

 
(b) 

Fig. 7. The DC MG power system states in the presence of the actuator fault:  

(a) 𝑥1 = 𝑣𝐶, (b) 𝑥2 = 𝑖𝐿 . 

 

The estimation errors of the power system states and actuator 

fault based on the dual-EKF and EKF are plotted in Fig. 8. Both 

approaches accurately estimate 𝑥1 = 𝑣𝑐, because this state is 

measurable via a noisy sensor. Since its correct but noisy value is 

available, the filters only try to decompose noise. The estimation 

errors of the state 𝑥2 = 𝑖𝐿 based on the conventional EKF are high. 

Additionally, the UKF results in a very high biased error and it is 

not plotted in Fig 8. Because the conventional EKF and UKF fail 

to estimate actuator fault and cannot compensate for its effects on 

the estimation errors. Theoretically, the conventional EKF and 

UKF methods lead to unbiased estimation, when the actuator fault 

is not involved. However, the actuator fault appears, since its 

expected value is not zero, the estimations are biased. On the other 

hand, the dual-EKF algorithm involves the actuator fault in its 

estimation process and provides unbiased estimations.   

 
(a) 

 
(b) 

 
(c) 

Fig. 8. Estimation error (Dual-EKF by the red line and EKF by the blue line):  

(a) voltage estimation, (b) current estimation, (c) actuator fault estimation. 

 

Reminding Fig. 8(b) shows that by using the conventional 

EKF, the second state is estimated with about 11.7% error. On the 

other hand, the dual-EKF not only accurately estimates the second 

state but also constructs the actuator fault in Fig. 8(c). Thus, the 

dual-EKF successfully determines the effects of the actuator fault. 

It is worth noting that the considered actuator fault 𝑓𝑎 changes in 

the range [−0.3, 0.3], and the duty cycle control input varies in the 

range [0,1]. This shows that the considered actuator fault 

amplitude is 30% of the control input and changes the DC bus 

voltage ±60 volts. 

Scenario 2 (Evaluating the dual-EKF-based LPV-MPC 

performance):  

In this scenario, the effectiveness of the proposed overall 

controller is evaluated for the power system with the actuator fault 

of Fig. 9(a).  

The cost function weights of the LPV-MPC are set as 𝛿(∙) =

𝜆(∙) = 1. Also, the control input amplitude constraint is set as 

𝜉𝑚𝑎𝑥 = 1 and 𝜉𝑚𝑖𝑛 = 0. 

The actuator fault comprises stepwise and sinusoidal 

functions. Also, the desired reference for the DC bus voltage is 

𝑥1
∗ = 128 [𝑉]. For comparison, the closed-loop system with 

constant control input 𝑢 = 0.5 and the approach EKF-MPC 

approach [28] are considered. That approach uses the original 

nonlinear system instead of tracking error dynamics. Therefore, 

the future reference for the states is chosen based on (3).  

The closed-loop DC bus voltages based on the considered 

control methods are provided in Fig. 9(b). Fig. 9(b) reveals that 

although these approaches stabilize the DC MG, there is a steady-

state error based on the approach [28]. Moreover, Fig. 9(c) 

illustrates that based on the proposed approach, the current of the 

converter has less oscillation than the other control methods, 

which is consistent with the fixed DC bus voltage in Fig. 9(b). The 

main advantage of the proposed approach over [28] is that the 

information of the actuator fault is utilized to predict the future 

behavior of the power system, which makes it robust against 

faults. This results in an accurate voltage regulation based on the 

proposed approach. Besides, the proposed approach considers the 

amplitude constraints of the duty cycle, which is not the case in 

[28].  
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(a) 

 
(b) 

 
(c) 

Fig. 9. The actuator fault and DC bus voltage in Scenario 2 (No control by the black 

line, proposed approach by the red line, and the MPC [28] by the blue line):  

(a) 𝑓𝑎 , (b) 𝑥1, (c) 𝑥2. 

 

Additionally, to illustrate the closed-loop stability of the power 

system, based on the online LPV-MPC, the logarithmic value of 

the cost function (13) is given in Fig. 10. As can be seen in Fig. 

10, the cost function decreases, expect the instances that faults 

change, suddenly. Since the cost function can be regarded as a 

Lyapunov candidate and is decreasing, closed-loop system 

stability is assured. It is worth noting that due to the noisy 

measurements, the predictions of the system output experience 

some oscillations. 

 
Fig. 10. The logarithmic value of the cost function (13). 

V. CONCLUSION 

This article investigated the issue of state and actuator fault 

estimation and adaptive controller design for faulty DC MG power 

systems with nonlinear CPLs. A novel robust nonlinear adaptive 

controller based on LPV representation, constrained model 

predictive schematic, and dual-EKF approach was suggested for 

the power system. The proposed approach has some advantages 

listed as follows: i) The LPV representation provides a systematic 

method to predict the future behavior of the power system as a 

linear function of future control inputs. Thus, the online 

computational burden decreases; ii) On the other hand, occurring 

actuator faults affect the power system and by regarding it as a 

biased term, MPC was considered; iii) The value of the actuator 

fault was estimated by the dual-EKF. In the dual-EKF, two EKFs 

were combined, each of which estimates the system states and the 

actuator fault. Decomposing these two EKFs in the dual-EKF 

reduces the online implementation of the estimator. The 

improvement of the dual-EKF LPV-MPC over the conventional 

EKF-MPC was shown in the numerical simulations. It was shown 

that the conventional nonlinear Kalman filters such as EKF and 

UKF fail to estimate the current of DC MG correctly, as it 

neglected the actuator fault. Also, using that inaccurate estimation 

in the MPC leads to regulation error. Moreover, the dual-EKF 

estimates all states and actuator fault, and therefore, using their 

information in the LPV-MPC with bias term stabilizes the power 

system precisely. For future work, these topics are advised: i) 

considering power system uncertainties and developing a robust 

Kalman filter; ii) evaluating the effect of different kinds of faults; 

iii) using the proposed approach to distributed DC MGs. 
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