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 Adaptive Optimal Greedy Clustering-based Monthly 
Electricity Consumption Forecasting Method 
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Abstract—Accurate monthly electricity consumption 
forecasting (MECF) is important for electricity retailers to 
mitigate trading risks in the electricity market. Clustering is 
commonly used to improve the accuracy of MECF. However, in 
the existing clustering-based forecasting methods, clustering 
and forecasting are independently performed and lack 
coordination, which limits the further improvement of 
forecasting accuracy. To address this issue, an adaptive optimal 
greedy clustering-based MECF method is proposed in this 
paper. Firstly, a metric of predictability is defined based on the 
goodness of fit and cluster’s average electricity consumption. 
Under a pre-defined cluster number, the greedy clustering 
algorithm achieves the optimal division of individuals with the 
goal of maximizing predictability. Then, an adaptive method is 
designed to select the optimal cluster number from a variety of 
clustering scenarios according to the prediction accuracy on the 
validation dataset. The effectiveness and superiority of the 
proposed method have been verified on a real-world dataset. 

Keywords—Monthly electricity consumption forecasting; 
Electricity retailer; Greedy clustering; Predictability 

NOMENCLATURE 

A. Sets and Indices  
i, j, k Index for clusters 
m Index for substations 
t Index for timeslot 
R Index for the number of clusters updating 

 Set of substations in a region 
 Set of clusters 

 Set of selected substations during clustering 

 
Set of remaining substations during 
clustering 

B. Parameters  
K The number of clusters 
N The number of substations 
M The number of clusters updating 
T The number of timeslots 

 The substation i 
 The cluster j 

 The temporary cluster j 

 
The real electricity consumption data of the 
m-th substation at time t 

 
The forecasting electricity consumption 
data of the m-th substation at time t 

 
The aggregated electricity consumption 
series of each element from the cluster j. 

 The average of  

 
The electricity consumption matrix of 
substations 

  
The electricity consumption matrix for 
training 

  
The electricity consumption matrix for 
tuning 

 
The electricity consumption matrix for 
testing 

 The predictability of cluster j 

 
The goodness of fit of the forecasting 
algorithm on the cluster j 

 The optimal placement of cluster label 

,  
The upper and lower boundaries of the 
selection range of cluster number 

  The optimal cluster number 

X, Y 
The input and output matrix of the 
forecasting model 

I. INTRODUCTION 
With the deregulation of the electricity market, an 

increasing number of electricity retailers are being to directly 
participate in electricity trading. Monthly electricity 
consumption forecasting (MECF) can help the electricity 
retailers to master the customers’ medium and long term 
electricity consumption [1]. In this way, the electricity 
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retailers can make reasonable purchasing decisions to trade in 
the wholesale market [2] and mitigate the potential price risk 
caused by the huge fluctuations in the spot market [3]. 
Meanwhile, accurate MECF can also guide the planning 
department to reasonably arrange the mid-term operation and 
maintenance plan, reduce the cost of power supply and 
improve the reliability of the power grid [4].  

In recent years, many methods have been applied to MECF. 
From the perspective of forecasting algorithms, these methods 
can be classified into two categories: statistical methods and 
artificial intelligence (AI) methods [5]. The statistical methods 
mainly include autoregressive integrated moving average 
(ARIMA) [6], the grey model [7], etc. The AI methods mainly 
include artificial neural network (ANN) [8], support vector 
regression (SVR) [9] and recurrent neural network (RNN) 
[10], etc. From the perspective of spatial scale, it can be 
divided into regional forecasting which achieves the 
aggregated future electricity consumption of a region, and 
individual forecasting which achieves electricity consumption 
of a lower aggregated level [11] (e.g., substation level, feeder 
level, and customer level). Generally, there are three ways to 
achieve the regional (aggregated) electricity consumption 
forecasting. The first way is to aggregate the electricity 
consumption data of each lower aggregated level object in this 
region to construct a regional level electricity consumption 
time series. Then, forecasting algorithms are performed on the 
regional time series to obtain the future regional electricity 
consumption [12]-[13]. However, simply aggregating the 
lower level data cannot make full use of the spatial correlation 
information [14]. Some papers have investigated the second 
way, forecasting the electricity consumption data of each 
lower level object separately, and then aggregating each 
forecasting result to obtain the final regional electricity 
consumption [15]. However, due to the randomness and 
volatility of these individual series [16], this approach cannot 
achieve an ideal forecasting result.  

To effectively utilize spatial correlation information and 
reduce the negative effect of randomness and volatility of 
individual series on electricity consumption forecasting, some 
existing studies investigate the adoption of the third way, the 
clustering-based forecasting methods. In these methods, the 
clustering algorithm is adopted to group all the individuals 
into several clusters first, then the forecasting algorithm is 
performed on each cluster separately to obtain forecasting 
results of each cluster, and eventually, the forecasting results 
of each cluster will be aggregated to obtain the final 
forecasting result. In Ref. [17], the individuals with the same 
load characteristic were grouped together by K-means and 
separate forecasting models were constructed based on each 
cluster. In order to make full use of the data in different 
clustering scenarios, an ensemble forecasting model was 
proposed in Ref. [18]. By combining the forecasting results 
under multiply clustering numbers, the method shows better 
forecasting performance than all clustering scenarios. It is 
worth noting that when the number of individuals meets a 
certain threshold, the clustering-based forecasting methods 
can achieve ideal forecasting results [19]-[20]. However, in 
existing clustering-based forecasting methods, the two steps 
of clustering and forecasting are executed separately and lack 
a direct linkage. The reason is that most of the current 
clustering algorithms, including K-means [21], hierarchical 
clustering [22], and Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN), take maximizing the 
intra-cluster similarity and minimizing the inter-cluster 
similarity under a predefined cluster number as the clustering 
objective function [23], but not the improvement of the final 
forecasting accuracy. In this way, forecasting and clustering 
are considered as two independent steps without coordination. 
Therefore, the improvement of the forecasting accuracy 
achieved by existing clustering based forecasting methods is 
restricted. To deal with this limitation, a data-driven linear 
clustering method is proposed in Ref. [24], which aims to 
make clusters’ load curves smoother by putting 
complementary individual load curves into the same cluster. 
In this way, the prediction accuracy of the linear load 
forecasting model can be improved. A closed-loop clustering 
algorithm is proposed in Ref. [25]. In this algorithm, the K-
means is used to generate initialized clusters and the 
forecasting models are built based on each cluster. Then, each 
individual is tested on all forecasting models to determine the 
optimal position according to the best prediction accuracy. 
However, this algorithm takes into account the effect of 
clusters on the accuracy of individual predictions, rather than 
the individual contribution to the predictability of clusters. 
This may cause the effect of clusters update to be limited by 
the initial partition of the cluster. At the same time, the 
influence of different individual load levels on the final overall 
predictability was not considered.  

To solve the above limitations, a greedy clustering-based 
electricity consumption forecasting model is proposed which 
can directly achieve joint optimization of clustering and 
forecasting. As shown in Fig. 1, in the greedy clustering 
algorithm, firstly, K lower aggregated level objects are 
selected as the initial center of the K clusters. Then, ordinally 
allocate the remaining objects  into the above K clusters 
according to certain criteria. The criteria is grouping the object 
into one of the clusters where it can achieve greater 
improvement of the predictability p. For each object, only its 
optimal allocation in the current situation is taken into 
consideration. Thus, the optimal partition of all individuals 
under a predefined K will be completed and the consistency of 
clustering target and forecasting target can be achieved. 

 
Fig. 1. The general process of greedy clustering for each object. 

In addition, the clustering algorithms are usually applied 
under a predefined cluster number K, so it is crucial to provide 
an appropriate cluster number to achieve the optimal partition 
of individuals [26]. In order to deal with this difficulty of 
choosing cluster number, some performance metrics, e.g., 
Davies-Bouldin index (DBI), Ratio of the within-cluster sum 
of squares to between cluster variation (WCBCR), were used 
to find the appropriate cluster number [27]. However, these 
metrics reflecting the intra-cluster compactness and inter-
cluster separation are designed to optimize the conventional 
clustering algorithms, which also aim to maximize the 
similarity of each cluster but not the predictability. To address 
this problem, instead of determining the cluster number 
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directly, a range of cluster number K which may include the 
optimal cluster number is set to generate multiple clustering 
scenarios. Then, the optimal cluster number is adaptively 
selected based on the MECF accuracy of various clustering 
scenarios, which is performed on the validation set.  

The contributions of this paper are summarized as follows:  

1) A greedy clustering-based MECF method is proposed in 
this paper, which takes the prediction accuracy as the guide to 
adjusting clustering by iteration. In this way, the proposed 
method can coordinate clustering and forecasting well, thus 
significantly improving the accuracy of MECF.  

2) An adaptive optimal cluster number selection method is 
designed for the proposed greedy clustering, which chooses 
the optimal cluster number according to the forecasting 
accuracy under multiple clustering scenarios. In this way, the 

difficulty of pre-defining the cluster number for greedy 
clustering can be avoided.  

This paper is an extended version of our conference paper 
[28]. The major revisions have been made as follows: 1) The 
abstract and introduction have been rewritten to make the 
innovation clearer. 2) The case study has been improved. The 
impacts of initialization strategy and dataset partition on the 
performance of adaptive optimal greedy clustering-based 
forecasting are explored. 

The rest of this paper is organized as follows. The greedy 
clustering-based forecasting method is proposed in Section II. 
The verification of this method on the real-world data is 
presented in Section III. The impact of two factors on the 
performance of the proposed method is analyzed and 
discussed in Section IV. Section V highlights the conclusion 
and future work. 

Fig. 2. The flowchart of greedy clustering-based forecasting method. 

II. METHODOLOGY 
This paper proposes a greedy clustering-based electricity 

consumption forecasting method illustrated in Fig. 2, which 
aligns the clustering target with the improvement of 
forecasting accuracy. Furthermore, the optimal cluster number 
K can be adaptively selected. The whole process can be 
divided into three main stages, including the greedy clustering 
(stage I), the adaptive selection of optimal cluster number 
(stage II), and the clustering-based forecasting (stage III).  

To explain the method more clearly, the substations level 
data of a region is taken as an example. First, presume that a 
region contains N substations . 
denotes the electricity consumption matrix of N substations in 
T time length.  denotes the electricity consumption data 

of the m-th substation  at time t ( ). Then, the 

substations data matrix D is segmented into three parts: ,
,  in chronological order for training, tuning and 

testing the proposed method. 

In stage I, the greedy clustering algorithm is applied under 
a predefined cluster number, which maximizes the 
predictability of the Forecasting Algorithm 1(FA1) on the data 
of each cluster to improve the overall predictability. Then, in 
stage II, the Forecasting Algorithm 2 (FA2) is applied based 
on different cluster number K to obtain the corresponding total 
electricity consumption forecasting results. After that, the 
optimal clustering results can be adaptively selected among all 
clustering scenarios. The two stages both are performed on  

 and .  

Finally, in stage III, based on the optimal clustering results, 
the FA2 will be employed on each cluster. Then, all of the 
forecasting results obtained from each cluster will be 
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aggregated to get the final regional monthly electricity 
consumption. This stage is conducted on .  

A. The Proposed Greedy Clustering 
The target of the greedy clustering algorithm is to put the 

substation  into the cluster  where it 
can achieve a larger improvement of predictability. The 
predictability is mainly measured by the goodness of fit of 
FA1 on . With respect to the goodness of fit, many 
metrics and techniques have been presented in numerous 
publications. In this paper, the  is used as the metric of it.  

  
Fig. 3. The process of calculating the goodness of fit. 

Algorithm 1: Greedy clustering algorithm 
Input: The cluster number K, all substations 

, electricity consumption data 
 

Output: The clusters  

Randomly select K substations  
from ; 

Remaining substations  
after selection; 
M = N – K, R = 1, m = 1; 
for  do  

; 
end for 
for  do 

for  in  do 

; 

; 

; 

end for 
; 

; 
m = m + 1; 
R = R + 1; 

end for 

The process to calculate the goodness of fit is shown in Fig. 
3. Take the consumption data of  for example. Firstly, the 

FA1 is trained with the data from . After obtaining the 

forecasting results on , the goodness of fit of the 

forecasting algorithm on  can be calculated according to 
Eqs. (1) and (2). 

  (1) 

  (2) 

where  denotes the goodness of fit of the forecasting 

algorithm on ;  represents the aggregated electricity 

consumption series of each element from the j-th cluster ; 

 and  denote the true value and forecasting value 

of  at time t;  denotes the average of ; T 

represents the length of time series . 

The whole procedures of greedy clustering are presented in 
Algorithm 1 and the specific process of greedy clustering is 
as follows: 

1) Initialization: K  substations 

 are randomly selected from the 
substations set and the remaining substations set

 is produced at the same time. 
 and  both satisfy the following constraints: 

   (3) 

Making the  as the initial elements of K clusters 
, i.e. . Then, the initial 

goodness of fit on each cluster can be calculated to get 
using Eq. (1). 

2) Calculating the variation of predictability: Arrange  
from the remaining substations  into each cluster 

 successively to generate  as 

Eq. (4). And the electricity consumption data  of 

 can be obtained by Eq. (5) 

teD

is ÎS 1 2{ , ,... }j Kc c c cÎ

vaD

2R

Start

Training the FA1 on Dtr

 Getting the forecasting results on Dtu

End

Calculating the goodness of fit

1 2{ , ,..., }Ns s s=S
1 2{ , ,..., }Nd d d

{ , ,..., }M M M
Kc c c= 1 2C

1{ ,..., }se se se
Ks s= ¬S

S

1{ ,..., }re re re
Ms s= ¬S

{1,..., }j KÎ
0 se
j jc s¬

R M£
1R

jc
- 1R-C

1temp R re
j j mc c s-= !

1temp R
jj

mcc -= +d d d

1( ) *temp R temp
jj j

j cc c
p df f -= -

{ ,... }
argmax
j k

l
Î

=
1

p

1R R re
mc c sl l

-¬ !

jc

j

tr
cd

j

va
cd

jc

2

2
1

ˆ( ( ) )1
( ( ) )

j j

j

j j

va vaT
c c

c va va
t c c

d t d
T d t d

f
=

-
=

-å

1

1 ( )
j j

T
va va
c c

t

d d t
T =

= å

jc
f

jc jc
d

jc
( )

j

va
cd t ˆ ( )

j

va
cd t

j

va
cd j

va
cd j

va
cd

j

va
cd

(1 )K N£ £

1 2{ , ,... }se se se se
Ks s s=S
S

1 2{ , ,..., }re re re re
Ms s s=S

reS seS

se re

se re

=

=Æ

!

"

S S S
S S

seS
0 0 0 0

1 2{ , ,..., }Kc c c=C 0se
j js cÎ

1 2

0 0 0 0[ , ,..., ]
Kc c cf f f=f

re
ms

reS
0 0 0 0

1 2{ , ,..., }j Kc c c cÎ tempC

temp
jc

d
temp
jc

This article has been accepted for publication in IEEE Transactions on Industry Applications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIA.2022.3200352

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on August 23,2022 at 10:46:06 UTC from IEEE Xplore.  Restrictions apply. 



  (4) 

   (5) 

Then, the new goodness of fit  of 

cluster  can be obtained by using Eq. (1) 
again. The variation of the goodness of fit before and 
after clustering  into  could be a part of a 
description of predictability variation. Meanwhile, the 
cluster with a larger magnitude of electricity 
consumption contributes more to the final forecasting 
result. Therefore, in the process of measuring the 
variation of the predictability, the impact of the 
magnitude of each cluster’s electricity consumption data 
is considered by multiplying the variation of the 
goodness of fit with the average electricity consumption 
of the cluster . The variation of predictability 

 before and after clustering  into 

 can be obtained by Eq. (6). 

   (6) 

where  and represents the goodness of fit of 

consumption data of  and ;  represents the j-
th cluster of ;  represents the average electricity 

consumption of . 

3) Updating the clusters: According to step 2), the vector 
 can be calculated to denote the 

variation of predictability. The clustering target is to 
group  into the cluster  where  can achieve 
higher improvement of predictability. Therefore, after 
the comparison of all the situations ( put  into each 
cluster  and calculating the variation of 
predictability ) according to Eq. (7), the corresponding 
cluster label  of  can be obtained, and then the 
cluster can be updated by using Eq. (8) while other 

clusters of  keep the same. Thus, once the updating 
is completed, the new clusters  can be obtained. 

   (7) 

  (8) 

where  denotes the subscript corresponding to the 
minimum of p.  

4) Termination mechanism: Repeating steps 2) and 3)
 times until there are no substations left in 

, and then the final clustering result
, an optimal allocation of all 

substations under a predefined cluster number K can be 
obtained. It is considered to be the clustering result with 
the highest overall predictability under a predefined K. 

B. The Adaptive Selection of Optimal Cluster Number 
The purpose of greedy clustering is to achieve the 

maximum predictability of each cluster under a predefined 
cluster number K, while the selection of the optimal cluster 
number is to select the K which helps the forecasting method 
to maximize the forecasting accuracy. 

To overcome the key challenge of predefining the optimal 
cluster number, this stage generates multiple clustering 
scenarios under different K. Based on these scenarios, FA2 
was used for each cluster to get K consumption forecasting 
results, and then the K results are added together to obtain the 
forecast value of total electricity consumption which is 
performed on . The Mean Absolute Percentage Error 
(MAPE) of the forecasting results under various clustering 
scenarios,  can be obtained by Eqs. (9) and (10). 

   (9) 

  (10) 

where {MAPE} represents the set of all MAPE calculated 
under multiple forecasting scenarios; T represents the number 
of forecast values;  and  represents the total 
true value and total forecast value of electricity consumption 
at time t on . 

In other words, aiming to determine the optimal cluster 
number, the greedy clustering is applied according to cluster 
number K which increases within this range . 
Then, FA2 is employed on  and  to obtain the total 
consumption forecasting results based on each kind of 
clustering scenario. As K increases, if the forecasting accuracy 
is improved (in other words, MAPE decreases), the optimal 
cluster number becomes the corresponding K. In this way, the 
optimal clustering results can be finally achieved. When this 
range is large enough, it will include the globally optimal K. 

C. The Selection of Forecasting Algorithm 
Forecasting algorithms are used in all three stages where the 

greedy clustering stage uses the FA1, the selection of optimal 
K stage, and the final forecasting stage use the FA2. Due to the 
fact that the forecasting algorithm is not the main concern of 
this paper, the commonly used forecasting algorithm, Extreme 
Learning Machine (ELM) [29], is applied to this greedy 
clustering based MECF method. 

In this paper, the FA1 and FA2 both apply the same ELM, 
but it is worth noting that the forecasting algorithm applied in 
the first stage is only used to calculate the goodness of fit, so 
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it definitely can be inconsistent with FA2 but the input features 
and out features should stay same with FA2. As for the 
configuration, the hidden layer of ELM is set to 20 neurons, 
the kernel function is sigmoid, and no other optimizations are 
performed on it. 

Considering the seasonal periodicity of monthly electricity 
consumption, the input data is the electricity consumption 
data for the preceding 12 months of the t-th month to be 
forecasted, as shown in Eq. (11). 

  (11) 

Note that employing other factors (e.g., temperature) as 
input features also can help to improve forecasting accuracy. 
However, to highlight the proposed method, only the 
historical electricity consumption data was used in this paper. 

III. CASE STUDY 

A. Pre-configuration of Computational Experiments 
1) The Description of Dataset 

The data used in this paper is collected from Ausgrid [30]. 
From all the substations operating continuously from May 1st 
of 2012 to April 30th of 2019, the 105 substations that have 
relatively complete data are selected. After filling up the 
missing data through linear interpolation, the original data 
with 15-min sampling interval was aggregated into monthly 
data. Data from May 1st of 2012 to April 30th of 2017, from 
May 1st of 2017 to April 30th of 2018, and from May 1st of 
2018 to April 30th of 2019 are used as the training set, tuning 
(validation) set and testing set.  

2) The Environment of Experiment  
The computational experiments in this paper are performed 

using MATLAB (R2019b) and Python 3.8 on a laptop 
equipped with AMD Ryzen 7-4800H 2.90 GHz, 16GB usable 
RAM and Microsoft Windows 10 Home Edition.  

3) The Evaluation Metrics 
In this paper, three commonly used evaluation metrics are 

adopted to quantify the forecasting performance of the 
proposed method, including Mean Absolute Error (MAE), 
Mean Absolute Percentage Error (MAPE), and Root Mean 
Square Error (RMSE). 

  (12) 

  (13) 

  (14) 

where T represents the number of forecast values;  and 

 respectively represent the true value and forecast 

value of electricity consumption at time t on . 

B. The Configuration of Test  
There are 105 substations in this dataset. For greedy 

clustering, if K is too large, it will increase the calculation 
burden; on the contrary, if K is too small, the obtained 
clustering results may not meet the requirements of improving 
accuracy. Considering both the forecasting accuracy and the 
complexity of model training, the range of K is set from 2 to 
11. It is noticed that this range may not be large enough to 
include the globally optimal cluster number, but it is large 
enough to show the performance of clustering.  

To verify the superiority of the proposed method, three 
other MECF methods are set as comparisons: 

M1: The proposed greedy clustering-based MECF method. 
M2: K-means based MECF method, i.e., K-means is used 

as the clustering method. 
M3: Forecast after aggregation, i.e. the electricity 

consumption data of 105 substations are aggregated to 
construct the regional electricity consumption time series, and 
then ELM is used to forecast the accumulated time series 
directly. 

M4: Forecast before aggregated, i.e. the electricity 
consumption data of all substations are forecasted separately 
by ELM, and then the 105 forecasting results are aggregated 
to get the final results. 

TABLE I.  ERROR COMPARISON OF DIFFERENT METHODS 

Metrics M1 M2 M3 M4 

MAE/MWh 45721.70 57551.64 76960.82 226944082 

MAPE/% 3.30 4.19 4.84 14.30 

RMSE/MWh 62973.07 68230.40 76960.82 226944.82 

Table I shows the forecasting metrics of these four methods, 
while the best metrics are bolded. Obviously, according to 
these metrics, compared with the forecasting methods without 
clustering optimization (M3, M4), the clustering-based 
forecasting methods (M1, M2) achieve better forecasting 
results, which is well known. Among them, the M1 achieves 
the best MAPE at 3.30%, while the M4 has the worst MAPE 
at 14.30%. Compared with the commonly used K-means 
clustering-based forecasting (M2), the accuracy is improved 
by 21.24%. It can also be seen that the proposed method M1 
achieves lower RMSE and MAE than M2, whose clustering 
target is inconsistent with the forecasting target.  

Fig. 4 shows the curve between the real values and the 
forecast values of the four methods. It can be seen that the M1 
also has a good fitting effect. 

The forecast results of all methods are recorded in Table II, 
and the optimal results for each month are in grey. It clearly 
shows that the proposed M1 method achieves the best forecast 
results for most months. 

C. The Comparison of Different Greedy Algorithms 

In the previous section, both the FA1 and FA2 of the 
proposed method use the same ELM algorithm. It is worth 
noting that the FA1 is only used to calculate the goodness of 
fit, so it does not have to stay the same with FA2. 

[ ( 12), ( 11),..., ( 1)]
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Fig. 4. Forecasting result curves of different methods. 

TABLE II.  THE FORECASTING RESULTS OF DIFFERENT METHODS 

Month True value/MWh Forecast value/MWh 
M1 M2 M3 M4 

Jan. 1363355.10  1373771.44  1366895.59  1426803.23  1367405.87  
Feb. 1508640.66  1505798.08  1472059.42  1473205.76  1312456.51  
Mar. 1531246.07  1577306.12  1590790.33  1591456.02  1418131.13  
Apr. 1473714.19  1473621.34  1483263.07  1440980.88  1361458.59  
May. 1281689.57  1325807.08  1334473.09  1295797.31  1119057.17  
Jun. 1274009.60  1342828.34  1363985.81  1333729.76  1116763.46  
Jul. 1248956.83  1282358.08  1294413.55  1337497.11  1120441.15  

Aug. 1356315.36  1381294.00  1431986.29  1325209.08  1130942.53  
Sep. 1567507.58  1420791.25  1440533.81  1433768.04  1202105.22  
Oct. 1303756.19  1413003.76  1418604.89  1407527.14  1187200.77  
Nov. 1376441.71  1317650.39  1335018.02  1511111.00  1024986.70  
Dec. 1211899.12  1215076.29  1177627.81  1170250.55  805651.67  

 

TABLE III.  ERROR COMPARISON OF DIFFERENT METHODS 

Metrics M1 G1 G2 G3 G4 

MAE/MWh 45721.70 52395.67 49200.50 47000.20 43960.46 

MAPE/% 3.30 3.79 3.51 3.40 3.19 

RMSE/MWh 62973.07 64778.59 63832.63 59057.08 54927.85 

In this part, the effectiveness of this method when using 
different forecasting algorithms as FA1 is investigated and 
FA2 keeps the same. Four kinds of greedy clustering based 
forecasting methods are designed as follows: 

G1: Linear Regression (LR) is used as FA1. 

G2: Support Vector Regression (SVR) with a linear kernel 
is used as FA1. 

G3: ELM which has 50 hidden layers of neurons is used as 
FA1. 

G4: ELM which has 100 hidden layers of neurons is used 
as FA1. 

The metrics of forecasting performance are recorded in 
TABLE III. Compared with the forecasting results in the 
previous part, these four greedy clustering based forecasting 
methods all achieve better forecasting accuracy than those of 
conventional methods. Meanwhile, the results also indicate 

that the selection of the FA1 may influence the final 
forecasting accuracy when FA2 keeps the same. Only based 
on the forecasting performance metrics of these methods, it 
can be inferred that when FA1 and FA2 are the same types, the 
M1 can achieve better forecasting results. But the truth of the 
problem and its reasons need to be further explored in future 
research.  

IV. DISCUSSION 
The key point of the proposed greedy clustering-based 

forecasting method is the performance of the clustering 
algorithm. In this section, the impact of two factors on the 
greedy clustering algorithm is investigated and discussed. 

A. The Impact of Initialization Strategy 
For traditional clustering algorithms, like K-means, the 

initialization of the cluster center has a great influence on the 
clustering results and finally affects the forecasting accuracy 
[31]. To explore the effect of clusters’ initialization on the 
forecasting performance, the three initialization strategies are 
adopted in the proposed greedy clustering:  

I1: Randomly select K substations as the initialized cluster 
center, which is the initialization strategy used in this paper. 

I2: Select K substations with the smallest similarity (biggest 
Euclidean distance) as the initialized cluster center, which is 
the strategy to improve the performance of K-means.  
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I3: Select K substations with the biggest similarity (smallest 
Euclidean distance) as the initialized cluster center. 

 
Fig. 5. The MAPE of three strategies under different cluster numbers. 

 
(a) RMSE 

 
(b) MAE 

 
(c) MAPE 

Fig. 6. The accuracy metrics of three initialization strategies for adaptive 
optimal greedy clustering based forecasting.  

For the robustness of the results, after repeated calculation 
a hundred times using the above three strategies. The average 
MAPE of the forecasting results under several clustering 
scenarios is shown in Fig. 5. From the obtained results, it can 
be seen that the initialization strategy to achieve the optimal 
forecasting accuracy varies with cluster number. Among three 
strategies, strategy I1 showed higher forecasting accuracy in 
more clustering scenarios and achieved the highest forecasting 
accuracy when the cluster number K=3. It is worth noting that 
s large increase in forecasting accuracy occurs from K=1(no 
clustering) to K=2. When K=10, the accuracy of clustering-
based forecasting is even worse than no clustering The reason 
is that the total number of individuals participating in the 
clustering is small, so a larger accuracy improvement can be 
achieved with a small cluster number under all strategies. 
However, when the cluster number is large, the division of 
individuals is too fine to improve the forecasting accuracy. 

The accuracy metrics of the adaptive optimal greedy 
clustering forecasting using three initialization strategies are 
shown in Fig. 6. The strategy I2 and I3 perform worse than I1, 
which means that random initialization can give full play to 
the superior performance of greedy clustering.  

B. The Impact of Dataset Partition 
In the proposed adaptive optimal greedy clustering-based 

forecasting method, the FA1 is trained on the training set and 
the calculation of predictability and the selection of optimal 
cluster number are performed on the validation set. Therefore, 
the length of the training set and validation set both have an 
influence on the forecasting results. In this part, the testing set 
is fixed to 12 months, the validation set and the training set are 
72 months in total. The length of the training set varied from 
36 months to 68 months in 4-month steps and the cluster 
number K ranged from 2 to 10.  

After one hundred rounds of repeated calculation, the 
MAPE under several clustering scenarios is shown in Fig. 7. 
As the length of the training set increases, the forecasting 
accuracy under these clustering scenarios generally shows an 
upward trend. In addition, it is worth noting that forecasting 
accuracy varies with the different cluster numbers and length 
of the validation set. It can be seen from Fig. 8 that as the 
length of the training set increases, the reduction of the 
validation set leads to a decrease in the probability of finding 
the real optimal number of clusters (the probability that the 
cluster number is the same when the highest accuracy on the 
validation set and the highest accuracy on the testing set), 
which limits further improvements in forecasting accuracy. 
Therefore, finding a suitable training set and validation set 
division ratio is also very important for the proposed method.  

 
Fig. 7. The variation of MAPE with the length of the training set under the 

different cluster numbers.  

 
Fig. 8. The probability of being selected to the optimal validation set varies 

with the length of the training set.  
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V. CONCLUSION AND FUTURE WORK 
An adaptive optimal greedy clustering-based MECF 

method is proposed in this paper, which can achieve the 
coordination of clustering and forecasting to further improve 
the MECF accuracy. The basic idea is to find an optimal 
clustering to maximize the predictability. Case studies show 
that compared with the existing clustering algorithms that aim 
to maximize intra-class similarity, the proposed method can 
achieve more accurate forecasting. The proposed method can 
help electricity retailers mitigate the trading risks in the 
electricity market and also can provide more accurate basis for 
power planning. 

The future works of this research are listed as follows:  

1) The initialization strategy of the cluster’s center will 
have a certain impact on the performance of greedy clustering. 
How to design the initialization strategy of the greedy 
clustering will be further explored.  

2) The increasing penetration of distributed photovoltaic 
(DPV) in the distributed network has significant impacts on 
the MECF. The MECF methods under high penetration of 
DPV will be investigated in our future work to support more 
practical applications, such as peer-to-peer trading [32]. 
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