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Probabilistic Rolling-Optimization Control for
Coordinating the Operation of Electric Springs in

Microgrids with Renewable Distributed Generation
Darwin A. Quijano, Antonio Padilha-Feltrin, Senior Member, IEEE and João P. S. Catalão, Fellow, IEEE.

Abstract—Electric spring (ES) is a novel smart grid technology
developed to facilitate the integration of renewable generation
by controlling the demand of non-critical loads (NCLs). The
utilization of ES to provide a single service such as voltage
or frequency regulation, validated in a setup consisting of a
single ES, has been extensively investigated. However, to take full
advantage of this technology, it is necessary to develop control
strategies to coordinate the operation of multiple distributed
ESs to provide multiple services in power systems. To this end,
this paper presents a rolling-optimization control strategy to
coordinate the operation of multiple ESs for voltage regulation,
congestion management and cost minimization of the real-time
deviations from the scheduled energy exchanges with the grid
in microgrids with renewable generation. The strategy is for
centralized implementation, and includes a probabilistic optimal
power flow-based optimization engine that finds the voltage
references of ESs for each control interval taking into account
generation variability and uncertainties. NCLs consist of electric
water heaters, which are modeled taking into account physical
constraints and the hot water demand. Simulations were carried
out in two test systems with 14 and 33 buses.

Index Terms—Electric spring, electric water heater, microgrid,
renewable energy, rolling-optimization.

NOMECLATURE

i, ij, t, n Indices for bus, line segment, time interval
and scenario;

Ei,t,n Thermal energy stored in the EWH;
Eli,t,n, E

u
i,t,n Thermal energy stored in the lower and

upper water layers of the EWH’s tank;
Li, L

l
i,t,n, L

u
i,t,n Total EWH’s tank volume, volume of lower

layer, and volume of upper layer;
T l, Tu, T a Cold water temperature, hot water temper-

ature and ambient temperature;
c,m Specific heat capacity and density of water;
P ai,t,n Total EWH heat loss;
P ali,t,n, P

au
i,t,n Heat loss from the lower and upper water

layers in the EWH’s tank;
P lui,t,n Thermal conduction between the lower and

upper water layers in the EWH;
P alui Maximum EWH heat loss;
Wi,t Rate of hot water draw from the EWH;
η Efficiency of the lower heating element;
∆c Duration of the control interval;
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∆d Lead time for set points calculation;
Tp Duration of planning horizon;
PNCLi,t,n Power of the lower heating element;
Eai , E

max
i , Emini Thermal energy stored in the EWH when it

is full of water at ambient temperature, hot
water, and cold water;

SOTCi,t,n State of thermal charge of the EWH;
τ Heat loss time constant;
V NCLi,t,n Voltage supplied to the NCL;
V ESi,t,n Output voltage of the ES;
Vi,t,n Voltage at bus i;
RNCLi Resistance of the lower heating element;
QESi,t,n Reactive power injected by the ES;
PCLi,t,n, Q

CL
i,t,n Active and reactive CL power;

PZi,t, P
I
i,t, P

P
i,t Share of the constant impedance, constant

current, and constant power components in
the total CL active power;

QZi,t, Q
I
i,t, Q

P
i,t Share of the constant impedance, constant

current, and constant power components in
the total CL reactive power;

P avi,t,n Available active power from the DG;
ωt,n Generation level relative to nominal capac-

ity;
P ici DG Installed capacity;
P gi,t,n, Q

g
i,t,n Active and reactive powers injected by the

DG;
P curti,t Generation curtailment from the DG;
θi,t DG Power factor angle;
θ−, θ+ DG Minimum and maximum power factor

angles
Pij,t,n, Qij,t,n Active and reactive power flows in the line

segments;
pi,t,n, qi,t,n Net active and reactive powers injected at

bus i;
rij , xij Resistance and reactance in the line seg-

ments;
Isqrtij,t,n Magnitude squared of the current in the line

segments;
V n Nominal voltage;
P si,t Scheduled active power exchange with the

main grid;
Pupi,t,n, P

dn
i,t,n Upward and downward deviations from the

scheduled active power exchanges;
Qsi,t,n Reactive power exchange with the main

grid;
V min, V max Minimum and maximum voltage limits;
Īij Maximum current flow in the line segment;
ρn Probability of scenario n;
Cst Day-ahead energy prices.
κupt , κ

dn
t Upward and downward imbalance prices.

I. INTRODUCTION

The development of microgrids is driven by the potential
benefits of locally supplying the electricity demand using
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distributed energy resources (DERs) such as distributed gener-
ation (DG). Some of these benefits include improving sustain-
ability in energy generation, reducing congestion and energy
losses in transmission systems, and enhancing reliability and
quality of power supply to end users. Large penetration levels
of renewable energy resources (RES)-based DG in microgrids
are expected to provide the benefits of local generation;
however, their integration into the system presents several
challenges.

The main drawbacks of interconnecting RES-based DG
in microgrids are related to the variability and uncertainty
of power production, which can affect voltage regulation,
congestion levels and balance of supply and demand [1]. The
common approaches to address these drawbacks include the
use of battery energy storage systems (BESSs) and regulation
reserves based on dispatchable generation [2], [3]. Demand
side management has also been demonstrated to be effective
for RES-based DG integration [4], [5]. In this respect, water
heater loads have a significant potential to participate in
demand side management. The demand of hot water represents
14% of the total residential energy consumption in the Euro-
pean Union and 18% in the USA [6]. However, until recently,
the effectiveness of managing water heater loads for RES-
based DG integration was undermined by the discrete on/off
nature of the thermal control loops that drive electric water
heaters (EWHs) [7]. This limitation can be now overcome by
interfacing EWHs with electric springs (ESs) and turning them
into smart loads.

ES is a novel smart grid technology developed to improve
the controllability of non-critical loads (NCL) for demand side
management. An ES consists in a power electronic device
that is installed in series with impedance-type NCLs such as
EWHs, air conditioners and refrigerators [8], [9]. By gener-
ating a controllable voltage, the ES can regulate the voltage
and power demand of the NCL while injecting reactive power
into the system [8]. Generally, loads can be classified into
critical loads (CLs) and NLCs depending on their tolerance
to voltage fluctuations. The first applications of ESs were
developed to damp electric oscillations and provide CLs with
a tightly regulated voltage in systems with high penetration of
RES-based DG [8], [10]. Later, the use of ESs was expanded to
mitigate frequency fluctuations [11]. In these initial studies, the
performance of ESs was evaluated considering a single locally-
controlled unit. However, the system-level impact of ESs
will only be released if multiple units are distributed across
the distribution systems and the associated control strategies
are developed. To address this problem, Akhtar et al. [12]
proposed a droop control method to operate multiple ESs for
frequency regulation. In [13], the coordination of multiple ESs
for bus voltage regulation was achieved through a consensus
algorithm.

With the increasing interest in the ES technology, several
other applications have been proposed in the literature. For
example, in [9], ESs are used to regulate bus voltage and
power and provide power factor correction in distribution
systems. In [14], an integrated configuration consisting of an
ES connected with a photovoltaic system is applied to achieve
dynamic supply-demand balance in distribution systems. In

[15], the utilization of ESs to provide constant power to
loads with varying impedance is investigated. The studies
in [9], [14], [15] demonstrated the proposed ES applications
considering a single locally-controlled ES. In [16], a strategy
based on a centralized predictive control is proposed to manage
the operation of multiple ESs to mitigate power losses in
an islanded microgrid. The authors of [17] developed an
optimization model for the operation of a transactive energy
system that consists of multiple microgrids with ESs used to
minimize the total bus voltage deviations. The problem of
allocating ESs to provide bus voltage regulation in distribution
systems is addressed in [18] through an optimization-based
approach.

Most of the existing works that deal with the problem of
coordinating multiple ESs [12], [13], [16]–[20] are focused
on a single application, for example, bus voltage regulation.
However, a practical implementation of ESs will require them
to simultaneously provide multiple services in a coordinated
manner. To this end, this work proposes a rolling-optimization
control strategy that coordinates the operation of multiple
ESs to simultaneously provide voltage regulation, congestion
management and cost minimization of the real-time devia-
tions from the scheduled energy exchanges with the grid in
microgrids with high penetration levels of RES-based DG.
The strategy is designed for centralized implementation and
is based on a probabilistic optimal power flow formulation
that takes into account uncertainties of RES-based DG power
production. To the best of the author’s knowledge, ESs have
not been used to simultaneously provide these services and
probabilistic approaches have not been proposed to take into
account uncertainties of RES-based DG power production
when coordinating the operation of ESs.

In addition, while the consumption of NCLs connected with
ESs is flexible, users satisfaction still needs to be ensured when
NCLs participate in demand side management. To achieve
this, NCLs must be modeled taking into account both their
electrical and physical constraints. In the literature, only a
few works have included detailed NCL models. In [19], a
realistic EWH model is considered within a distributed control
scheme designed to coordinate multiple ESs for overvoltage
prevention. Zhang et al. [20] propose a scheduling strategy to
control the power demand of air conditioners connected with
ESs to smooth the peak-valley difference in the distribution
system. In [21], an ice-thermal storage system installed with
an ES is operated to provide voltage regulation and dynamic
supply-demand balance in a distribution system. In [22], a
model predictive control strategy is designed to minimize the
operational cost of a microgrid through the operation of a
water heater system connected with an ES. Although these
works include realistic models of NCLs, they either consider
a single ES [21], [22] or consider multiple ESs operated for
a single application [19], [20].

In this work, NCLs are represented by EWHs, which are
modeled considering their electrical and physical constraints as
well as the hot water consumption profile of the users. This
configuration of EWH with ES works as a thermal storage
system that stores energy at times of generation surplus for
later use at times of generation deficit. When deployed in
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microgrids, ESs are expected to reduce the dependence on
large-scale BESSs, which have high investment cost, limited
capacity and environmental impact. The ability of ESs to
reduce BESSs requirements for voltage regulation in distri-
bution systems was demonstrated in [10], [19]. Because of
this, this work does not consider the presence of BESSs in
the microgrid.

The major contributions of this paper are listed as follows:
• A rolling-optimization control strategy with multi-minute

control interval for coordinating the operation of multiple
ESs to provide voltage regulation, congestion management
and cost minimization of the real-time deviations from the
scheduled energy exchanges with the grid in microgrids with
high penetration of RES-based DG.

• A probabilistic optimal power flow-based optimization en-
gine for centralized implementation that finds the ES voltage
references for each control interval based on predictions
of demand and generation, and taking into account the
uncertain behavior of RES-based DG power production.
A probabilistic formulation is proposed so that optimal
decisions are made taking into account the possible real-
izations of RES-based DG power production within each
control interval, avoiding bus voltage and line thermal limits
violations. To the best of the author’s knowledge, this is
the first time uncertainties are considered in the problem of
coordinating the operation of ESs.
Table I shows a comparison of the proposed control strategy

for ESs with those found in the literature.
The remainder of this paper is organized as follows. Section

II describes the microgrid control architecture and the rolling-
optimization control strategy. Section III presents the model
of the optimization engine. The characterization of the wind
power uncertainties and the scenarios generation process are
described in section IV. The computational implementation
is discussed in section V. Case studies and discussions are
provided in section VI. Finally the conclusions are presented.

II. MICROGRID CONTROL ARCHITECTURE AND
ROLLING-OPTIMIZATION CONTROL STRATEGY

In a microgrid, DERs and controllable loads are managed
by the microgrid control system, which is responsible of
ensuring the continuous power supply to loads with acceptable
voltage and frequency characteristics. The microgrid control
system integrates local and supervisory controllers and can
be physically implemented in a variety of ways, includ-
ing distributed and centralized [23]. The proposed rolling-
optimization control strategy is designed to be implemented
through a centralized microgrid control system, which is
composed of a microgrid central controller (MGCC), local
controllers of DERs and loads, and a communication system to
exchange information between the MGCC and the local con-
trollers. A microgrid operating in grid-connected mode, with
DERs consisting of wind-based DG with controllable power
factor and curtailable active power generation, is considered.
Other types of RES-based DG can be easily integrated into the
model and similar performance analyzes can be carried out
considering the different generation profiles. Loads supplied
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Fig. 1. Scheme of the rolling-optimization strategy.

by the microgrid are classified into CLs and NCLs. Here,
NCLs installed with ESs consist of EWHs for residential hot
water consumption.

In the proposed strategy, optimal set points (i.e., ES voltage
references, DG active power curtailment, and DG power
factor) are determined at the MGCC to minimize the cost
of the real-time energy deviations and avoid bus voltage and
line thermal limits violations. A scheme of the process carried
out by the rolling-optimization control strategy is shown in
Fig. 1. At time tk−∆d, the optimization engine optimizes the
system operation for the finite window [tk, tk + Tp] based
on predictions of wind power generation, CL demand and
hot water demand, and taking into account uncertainties of
wind power generation. These predictions are obtained from
measured values of previous control intervals, which are sent
to the MGCC by the local controllers. Uncertainties are taken
into account through a scenario-based approach that simulates
the possible realization wind power generation within each
control interval. In practice, the leadtime ∆d accounts for the
processing time and communication delay, and in this work is
assumed to be equal to the duration of the control interval ∆c.
From the obtained optimal set points, those corresponding to
the control interval [tk, tk+1] are sent to the local controllers
for implementation, whereas the remaining are disregarded.
After that, the prediction horizon is rolled forward and the
process is repeated with new predicted data at tk.

The proposed strategy determines the optimal set points
for the current control interval taking into account the future
system behavior, which is subject to the changing conditions
of generation and demand. These set points are to be held
throughout the length of the multi-minute control interval,
which is adopted to avoid solving the optimization problem
too frequently. A probabilistic formulation of the optimization
problem allows to take into account the possible realizations
of wind power generation within the control intervals and
therefore seeks to maintain the voltage and power flow levels
within limits. Uncertainties of CL demand and hot water
demand are not considered because the predicted values are
not expected to have significant variations within control
intervals.

III. OPTIMIZATION ENGINE

This section describes the model used to optimize the
microgrid operation for the prediction horizon. The control
variables represent the set points of controllable resources,
which include DG power factor, DG curtailment and ESs
voltage output. To incorporate the variability and uncertainty
of wind power into the model, a probabilistic approach, in
which scenarios of wind power with their respective probabil-
ity of occurrence are sampled from a Beta probability density

This article has been accepted for publication in IEEE Transactions on Sustainable Energy. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2022.3188250

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on July 07,2022 at 21:37:17 UTC from IEEE Xplore.  Restrictions apply. 



4

TABLE I
LITERATURE REVIEW OF RELATED WORKS

Ref. year Multiple ES NCL physical constraints Uncertainties ES application

[8] 2012 Bus voltage regulation
[10] 2013 Bus voltage regulation
[11] 2015 Bus voltage and frequency regulation
[12] 2015 3 Frequency regulation
[13] 2017 3 Bus voltage regulation
[9] 2017 Bus voltage and power regulation, and power factor correction
[14] 2019 Dynamic supply-demand balance
[15] 2019 Provide constant power to a load with varying impedance
[16] 2020 3 Bus voltage regulation and mitigation of power losses
[17] 2020 3 Bus voltage regulation in a transactive energy system
[18] 2021 3 Allocation of ESs for bus voltage regulation
[19] 2020 3 3 Bus voltage regulation
[20] 2021 3 3 Smooth peak-valley difference
[21] 2017 3 Bus voltage regulation and dynamic supply-demand balance
[22] 2019 3 Minimize operational cost

Proposed – 3 3 3
Bus voltage regulation, congestion management, and

Cost minimization of real-time energy deviations

function (PDF) [24], [25], is proposed. This approach assigns
to each control interval a number of values of wind power
generation that the optimal set points must satisfy.

A. Objective function

This work proposes to coordinate the operation of ESs
to minimize the cost of the real-time deviations from the
day-ahead scheduled energy exchanges with the main grid
(payments made for upward deviations minus payments re-
ceived for downward deviations) while managing bus voltage
levels and line congestion. This formulation is applicable to
microgrids that trade the energy exchanges with the main grid
in a day-ahead market and are financially accountable for the
real-time energy deviations [26], [27]. The objective function
is formulated as follows:

min
∑
t∈Ωt

∑
n∈S

ρn∆c(κupt P
up
e,t,n − κdnt P dne,t,n), (1)

where e denotes the bus at which the point of common
coupling with the main grid is located. The scheduled energy
exchange with the main grid at a given time interval can
be energy import or export depending on the value of the
predicted net load (demand minus generation) in the micro-
grid. Upward deviations from the scheduled energy exchanges
(∆cPupe,t,n) occur when the real-time net load is greater than
the scheduled value (energy shortage). Similarly, downward
deviations (∆cP dne,t,n) occur when the real-time net load is
lower than the scheduled value (energy surplus). Here, the
energy shortage is charged with an imbalance price κup, and
the energy surplus is paid for with an imbalance price κdn [27].
Thus, (1) minimizes the payments that the microgrid makes for
the downward deviations and maximizes the payments that the
microgrid receives for the upward deviations. The objective
function (1) is subject to a set of constraints defined in the
following subsections.

B. Model of electric water heater

A realistic model of an EWH must take into account
its electrical and thermal characteristics, as well as the hot

water demand. Fig. 2 shows the configuration of the EWH
composed of a tank, two heating elements and their respective
thermostats. The water in the tank is vertically divided into
three layers: a lower layer with cold water at temperature
T l, an upper layer with hot water at temperature Tu, and a
mixing layer in between [7]. The cold water that enters the
tank to replace the consumed hot water remains in a layer at
the bottom of the tank because is denser than hot water. The
mixing layer moves up and down depending on the content
of hot water in the tank. This layer behaves as a dynamic
natural barrier that maintains the hot water layer separated
from the cold one [28]. In this model, the thickness of the
mixing layer is assumed to be zero [7], [19]. In practice, the
upper heating element is turned on only when the cold-water
layer reaches a critical level and is therefore disregarded [19].
The total thermal energy stored in the EWH is determined by
the volumes of cold water at temperature T l and hot water at
temperature Tu as follows:

Ei,t,n = Eli,t,n + Eui,t,n = cmLli,t,nT
l + cmLui,t,nT

u. (2)
The change in the stored thermal energy between two

consecutive time intervals is described by the dynamic thermal
energy balance equation expressed as follows:

Eli,t,n=Eli,t−1,n+∆c
[
cmWi,tT

l+ηPNCLi,t,n −P ali,t,n+P lui,t,n
]
,
(3)

Eui,t,n=Eui,t−1,n−∆c
[
cmWi,tT

u+P aui,t,n+P lui,t,n
]
, (4)

Ei,t,n=Eli,t,n+Eui,t,n=Ei,t−1,n+

∆c
[
ηPNCLi,t,n +cmWi,t(T

l−Tu)−P ai,t,n
]
. (5)

The heat loss from the water in the EWH to the ambient
air is calculated according to the following expression [19]:

P ai,t,n = P ali,t,n + P aui,t,n = P alui

Ei,t,n − Eai
Emax
i − Eai

, (6)

where, Eai = cmLiT
a, Emax = cmLiT

u and Li = Lli,t,n +
Lui,t,n. P alui is obtained from

P alui = cmLi(T
u − T a)/τ, (7)

where, τ is a constant that indicates the time it takes the
thermal losses to bring down the water temperature from Tu
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Fig. 2. Configuration and temperature profile of an EWH [7].
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Fig. 3. Diagram of connection of electric spring.

to T a, and in this work is set to 120 h [7]. The measure used
to indicate the amount of thermal energy stored in the EWH
is the state of thermal charge (SOTC) defined as follows:

SOTCi,t,n =
Ei,t,n − Emin

i

Emax
i − Emin

i

, (8)

where Emin
i = cmLiT

l. The SOTC is limited to minimum
and maximum values as follows:

SOTCmin ≤ SOTCi,t,n ≤ SOTCmax. (9)
The conventional approach used to control the power de-

mand of the EWH [denoted by PNCLi,t,n in (5)] uses an on/off
thermal control loop determined by the thermostat. Under this
control, PNCLi,t,n is equal to the rated power when the lower
heating element is switched on and equal to zero when the
lower heating element is switched off [7]. In this work, the
lower heating element is connected in series with an ES to
have a continuous regulation of PNCLi,t,n . From (5) it can be
seen that the time dependent data required from the EWHs to
control the ESs are the predictions of hot water demand Wi,t

that are obtained from measured values of previous control
intervals.

C. Electric spring operation and capability
Fig. 3 shows the configuration of an ES connected in

series with a NCL (in this case a pure resistive NCL). The
combination of an ES with a NCL is commonly known as
smart load [11], [13]. In parallel with the smart load, the CL
is connected directly to the microgrid bus. This work considers
the first generation of ES, which consists of an inverter with a
capacitor installed on the dc link side and an inductor-capacitor
(LC) filter on the ac side [8]. This type of ES can only inject
reactive power because it does not involve battery storage.
To ensure that the ES only injects reactive power, its output
voltage must be maintained perpendicular to the current vector
of the NCL [22]. The relationship between the magnitudes of
voltages in Fig. 3 is expressed as

 

                                        (a)                                                                   (b) 

 

 

 

 

Increases ES reactive 

power under 

capacitive mode 

Increases ES reactive 

power under 

inductive mode 

Fig. 4. Change of NCL active power for (a) change is ES voltage and (b)
change in ES reactive power.

V NCLi,t,n =

√
V 2
i,t,n − V ESi,t

2
. (10)

The NCL active power demand is a function of the supply
voltage V NCLi,t,n and is expressed as

PNCLi,t,n =
(
V NCLi,t,n

2
)
/RNCLi , (11)

The reactive power injected by the ES is a function of V ESi,t

and the NCL current, and can be expressed as

QESi,t,n =
(
V ESi,t V

NCL
i,t,n

)
/RNCLi . (12)

In this work, as in [22], it is assumed that V ESi,t takes
positive values for inductive operation and negative values
for capacitive operation of the ES. From (10), to ensure that
V NCLi,t,n only takes positive and real values, V ESi,t is limited by

−Vi,t,n ≤ V ESi,t ≤ Vi,t,n. (13)
It is worth noting that V ESi,t must hold for all values of wind

power within the control interval and is therefore not indexed
by n. Through the dynamic control of the ES voltage V ESi,t

it is possible to regulate the power delivered to the NCL. For
example, the ES voltage can be increased to reduce the NCL
consumption when there is energy deficit in the microgrid.

The operating range of a smart load composed of an ES
and a pure resistive NCL rated at 1 pu (RNCLi = 1 pu) is
shown in Fig 4. To draw this figure, the values of V NCLi,t,n , for
V ESi,t ranging from 0 to 1 pu, and with Vi,t,n assumed to be
1 pu, are calculated using (10). Then, PNCLi,t,n and QESi,t,n are
calculated using (11) and (12), respectively. Fig 4(a) shows
that, for a pure resistive NCL, increasing the ES voltage V ESi,t

always leads to a reduction in the NCL active power PNCLi,t,n

with respect to the rated value. This is because, according
to (11), the NCL active power depends directly on the NCL
voltage, which decreases when the ES voltage is increased
according to (10). Fig. 4(b) describes the smart load capability
curve in which the smart load operating range is limited to the
perimeter of the circumference. It is observed that reducing the
NCL active power requires the injection of reactive power by
the ES, which can be either inductive or capacitive. When
reducing the NCL active power, the reactive power injected
by the ES increases up to a maximum value that is reached
when the NCL power is equal to 0.5 p.u. after which it begins
to decrease.

D. Critical loads model

CLs require a supply voltage regulated within a strict range
to function properly. Like with NCLs, the power demand of
a variety of CLs is dependent on the magnitude of the supply
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voltage [26]. To account for this dependency, CLs are modeled
using the ZIP load model as follows:

PCLi,t,n = PZi,tV
2
i,t,n + P Ii,tVi,t,n + PPi,t, (14)

QCLi,t,n = QZi,tV
2
i,t,n +QIi,tVi,t,n +QPi,t. (15)

In this model, CLs are represented by a combination of
constant impedance (Z), constant current (I) and constant
power (P) components. The share of each component in the
total CL active (reactive) power demand is given by the
parameters PZi,t, P

I
i,t and PPi,t (QZi,t, Q

I
i,t and QPi,t).

E. Distributed generation model

In this work, wind-based DG with controllable power factor
and curtailable active power is considered. The active power
available to be injected by a DG unit is given by:

P avi,t,n = ωt,nP
ic
i , (16)

where ωt,n is a random parameter whose values are sampled
for each time interval t and scenario n from a Beta PDF as
will be shown later. Depending on the DG installed capacity
P ici and the generation level ωt,n, injecting the available active
power can lead to microgrid constraints violations. Curtailment
of the DG available active power is an option to alleviate such
problems [26], [29]. The following formulation is used for
generation curtailment:

P gi,t,n = P avi,t,n − P curti,t , (17)

P curti,t ≤ P avi,t,n, (18)
where, P curti,t is defined as a control variable within the
model. For each control interval, the optimization will find
a value of P curti,t for all scenarios of wind power generation.
In general, limiting the DG power production is an expensive
solution and its application will be limited to situations when
other solutions are exhausted. Although it is not explicitly
represented in the objective function (1), the adopted formu-
lation minimizes the generation curtailment due to its direct
relationship with the downward and upward deviations from
the scheduled energy exchanges. In other words, by harnessing
all the energy from the generators, it is avoided to increase
the energy shortage and/or reduce the energy surplus in the
microgrid, which is necessary to minimize the imbalance cost.
In addition, the reactive power provided by the DG is limited
to a range of power factors as follows:

θ− ≤ θi,t ≤ θ+, (19)
where, θi,t is a control variable with a single value determined
for each control interval.

F. Power flow equations

The complex power flows at each node of the microgrid are
described by the DistFlow equations simplified according to
the assumptions made in [32].∑

ij∈Ωl

Pij,t,n = Phi,t,n − rhiIsqrhi,t,n + pi,t,n, (20)∑
ij∈Ωl

Qij,t,n = Qhi,t,n − xhiIsqrhi,t,n + qi,t,n, (21)

Vj,t,n = Vi,t,n − (rijPij,t,n + xijQij,t,n) /V n2, (22)

Isqrhi,t,n =
(
P 2
hi,t,n +Q2

hi,t,n

)
/V n2. (23)

where, i is the reference node, h is the node upstream node
i, j|ij ∈ Ωl is the set of nodes downstream node i, and Ωl
is the set of nodes in the microgrid. pi,t,n and qi,t,n are the
net active and reactive power injections at node i defined as
follows:

pi,t,n=P gi,t,n−P
CL
i,t,n−PNCLi,t,n +(P si,t+P

up
i,t,n−P

dn
i,t,n), (24)

qi,t,n = Qgi,t,n −Q
CL
i,t,n +QESi,t,n +Qsi,t,n. (25)

The terms that compose pi,t,n and qi,t,n are nonzero only
at those buses where the elements they represent exist. For
example, P gi,t,n is different from zero only at buses with DG.
The terms in parentheses in (24) define the active power
exchange with the main grid, which is represented as the
sum of the scheduled value and the upward and downward
adjustments. To ensure the adequate operation of CLs, the
voltage variations at each node are limited to a range defined
in (26). The current flow at each line segment is limited to a
maximum value as shown in (27).

V min ≤ Vi,t,n ≤ V max, (26)

0 ≤ Isqrij,t,n ≤ Ī
2
ij . (27)

IV. GENERATION OF SCENARIOS OF WIND POWER

The proposed rolling-optimization control strategy deter-
mines the optimal set points for each control interval based
on predicted profiles of demand and generation with multi-
minute resolution. To cater for uncertainties and fluctuations
of wind power within each control interval, the optimization
is performed over a set of scenarios that describe the possible
realizations of wind power. This approach assumes that the
realizations of wind power follows a Beta PDF from which
the set of scenarios is sampled. The adequacy of the Beta PDF
to model the wind power was demonstrated in [24] and [25]
by comparing it with the distribution of real data. In addition,
the Beta PDF is easy to handle since it only depends on two
parameters α and β, and its values are limited to the interval
[0,1] as it happens with the normalized wind power. The Beta
PDF is defined as follows:

fω̄t
(ωt) =

ωt
αt−1 · (1− ωt)βt−1

B (αt, βt)
, (28)

B (αt, βt) =

∫ 1

0

ωt
αt−1 · (1− ωt)βt−1

dωt, (29)

where, 0 ≤ ωt ≤ 1 and αt, βt > 0. Equation (28) models for
each time interval t the occurrence of wind power values ωt
when a certain value ω̄t has been predicted. The parameters
αt and βt are functions of the predicted mean value ω̄t and
the standard deviation σt as follows:

αt =
(1− ω̄t) · ω̄2

t

σ2
− ω̄t, (30)

βt =
1− ω̄t
ω̄t

· αt. (31)

The relationship between ω̄t and σt is given by σt = 0.5 ·
ω̄t · (1− ω̄t) [24].

The process of generating scenarios of wind power consists
of two steps. In the first step, a large set of scenarios S̄ with
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equal probability of occurrence is randomly generated from
the PDF (28). Here, a scenario consists of a profile of wind
power for the current prediction horizon under evaluation.
The second step uses the simultaneous backward reduction
technique (SBR) described in [33] to reduce the set S̄ to a set
S that efficiently approximates the continuous PDF (28). The
SBR method determines a reduced scenario set S̄ by removing
a scenario subset J from the original scenario set S. This is a
heuristic method that iteratively determines the scenarios to be
removed based on a scenario distance metric. Each scenario
in the reduced set is assigned with a probability of occurrence
ρn. Numerical results reported in [33] demonstrate that this
method performs well in terms of solution time and accuracy
to produce a reduced scenario set. In addition, the performance
of the SBR method applied to a power systems application of
stochastic programming was demonstrated in [34].

V. IMPLEMENTATION

The optimization problem that is successively solved to
determine the optimal set points of the controllable resources
for each control interval is defined by the objective function
(1) subject to constraints (5)–(27). This problem is nonlinear
with continuous variables. The source of nonlinearities are
the ES constraints (10)–(12), the constraints corresponding to
the CL power (14) and (15), and the constraint that defines
the magnitude squared of the line current (23). The rolling-
optimization algorithm was coded in the algebraic modeling
language AMPL and the commercial solver KNITRO was
used for the optimization steps. The KNITRO solver is let
to automatically choose the solution algorithm and it uses the
interior-point/barrier direct method.

VI. SIMULATIONS AND RESULTS

Results were obtained from a real microgrid in Guangdong
province, China, and the IEEE 33-bus system, which have
been adapted for the simulations performed here. Tests are
performed for a period of 24 hours with a control interval of
10 min ∆c = 10 min) and a prediction horizon of 4 hours (Tp
= 4 hours). The average time required to solve the proposed
optimization problem for each control interval is 1.4 and 1.8
minutes for the Guangdong and the IEEE 33-bus systems,
respectively, using a computer with a processor Intel Core i7-
6700HQ and 8 GB of RAM. It is observed that this processing
time is lower than the leadtime ∆d of 10 minutes adopted in
this work for real-time implementation.

A. Guangdong system

The diagram together with the line data and the CL peak
values of this microgrid are shown in Fig. 5 [35]. CLs are
assumed to have a power factor of 0.9 lagging, and are
composed of a mix of 30% constant impedance, 50% constant
current and 20% constant power components. The total CL in
the microgrid is 7.8 MW. Wind farms are installed at buses
9, 10, 13 and 14, and they are limited to operate between a
0.9 lagging to 0.9 leading power factor range. Smart loads
composed of EWHs and ESs are located at buses 1, 7, 8
and 12. All EWHs have identical capacities and a peak hot
water demand of 500 kW, calculated assuming an inlet water
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Fig. 5. Topology of the microgrid.

temperature of 20 ◦C (T l = 20 ◦C), a set temperature of
65 ◦C (Tu = 65 ◦C), and an ambient temperature of 20
◦C (T a = 20 ◦C) [19]. Each EWH has a storage capacity
of 1500 kWh, and a power rating of 250 kW with 95%
heating efficiency. To ensure the availability of hot water at any
moment, the STOC of all EWHs is limited to a minimum of
30% (SOTCmin = 0.3). The microgrid is interfaced with the
main grid through a 10 MVA transformer, and the minimum
and maximum voltages at all buses are limited to 0.95 p.u.
and 1.05 p.u., respectively.

The CL demand and hot water demand vary throughout
the 24-hour period according to the half-hourly resolution
profiles shown in Fig 6(a) and Fig 7, respectively. The one-
minute resolution profile shown in Fig 6(b) is used to represent
the variations of wind power generation. The values of CL
demand, hot water demand and wind power used as predictions
to evaluate the proposed control method were obtained from
the profiles shown in Fig. 6 and Fig. 7. The predictions are
obtained by shifting the profiles two control intervals to the left
and calculating the mean value for each control interval. Thus,
the predictions for the control interval [ti + ∆c, ti + 2∆c] are
assumed to be equal to mean values obtained from the control
interval [ti−∆c, ti] [24]. This approach is used for simplicity,
since the development of a forecast method is not the focus
of this work. The utilization of a more sophisticated forecast
method is expected to improve the accuracy of the proposed
control method. From the predicted values, 1000 scenarios of
wind power are randomly generated for each control interval
using the PDF (28). The scenario number is then reduced to 20
by applying the reduction technique described in the previous
section. The predictions and scenarios of wind power for the
period under analysis are shown in Fig 8. The imbalance
prices for upward and downward deviations (κupt and κdnt )
are assumed to be three times and half the day-ahead energy
prices shown in fig 7 [36], respectively.

The performance of the proposed strategy to coordinate the
operation of ESs for voltage regulation, congestion manage-
ment, and cost minimization of the real-time energy deviations
is evaluated by comparing the results of the following cases:
• Case 1: The microgrid is operated according to the proposed

probabilistic rolling-optimization strategy.
• Case 2: The microgrid is operated according to the proposed
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Fig. 6. Variations of (a) CL demand, and (b) wind power.

 

 

 

 

 

 

Fig. 7. Variations of hot water demand and energy price.

 

 

 
Fig. 8. Predictions and scenarios of wind power.

probabilistic rolling-optimization strategy but without con-
sidering ESs. This case simulates the EWHs controlled by
the thermostat of their lower heating element. The EWHs
are turned on and start consuming rated power when the
SOTC reaches a lower threshold and are turned off when
the water tank is full of hot water [7].

• Case 3: The microgrid is operated according to a de-
terministic formulation of the rolling-optimization strategy
considering ESs. In this case, the optimization is performed
for the predicted values of CL demand, hot water demand,
and generation.
The above three cases were investigated for scenarios with

100% and 156% DG penetration level. Here, the DG pen-
etration level is defined as the total DG installed capacity
expressed as a percentage of the total peak load (CL plus NCL)
in the microgrid. A DG penetration level of 156% corresponds
to the maximum DG capacity that can be connected in the
microgrid, and was obtained by applying a hosting capacity
estimation method considering the operation of ESs [29]. A
deterministic optimization model was formulated and solved
to obtain the day-ahead scheduled power exchanges with the

TABLE II
RESULTS WITH 100% DG PENETRATION LEVEL

Case 1 Case 2

Imbalance Cost ($) 1416.60 1799.16
Upward deviation (MWh) 13.57 16.71
Downward deviation (MWh) 12.10 14.98

main grid (P se,t) considering an hourly resolution [30], [31].
The objective function of the scheduling model is formulated
to minimize the cost of the energy imports and maximize the
revenue from the energy exports as follows:

min
∑
t∈Ωt

Cst P
s
e,t, (32)

where, the energy prices Cst used in the scheduling model are
shown in Fig 7. The variable P se,t takes positive values for
energy imports and negative values for energy exports.

The performance of the optimal set points obtained for
cases 1, 2 and 3 is assessed by running minute-by-minute
power flow simulations with the data of CL demand, hot water
demand and generation shown in Fig 6 and Fig 7. From these
simulations, the microgrid operating state with one-minute
resolution and the cost of energy deviations for the 24-hour
period are obtained. The microgrid operating state is assessed
with respect to bus voltage magnitudes, power flows in lines,
adjustments to the scheduled energy exchanges, demand of
EWHs, SOTC of EWHs and generation curtailment.

1) Reduction of the cost of energy deviations: A DG pene-
tration level of 100% is considered to assess the performance
of the proposed control strategy in reducing the cost of energy
deviations in the microgrid. The total DG installed capacity is
8.8 MW distributed equally among the 4 indicated buses. The
analysis is performed by comparing the results of cases 1 and
2. Under this DG penetration level, the microgrid does not
experience violations to voltage and power flow limits, and
generation curtailment is not necessary in both cases. Table II
summarizes the results for the 24-hour period under analysis.
Results show that the cost of energy deviations (imbalance
cost) is reduced by 21% when ESs are used to regulate
the energy consumption of EWHs. Upward and downward
deviations in case 1 are lower than in case 2 because the
EWH consumption is shifted to the time intervals with energy
surplus, relieving the demand at the time intervals with energy
deficit. The cost of energy deviations is reduced because of
the difference between the prices for upward and downward
deviations. That is, the price charged to the microgrid for
upward deviations is higher than the price the microgrid is
paid for downward deviations.

Figure 9 shows the hourly day-ahead scheduled power
exchanges, and the real-time net load (critical load minus
generation) and adjustments with one-minute resolution. In
Fig 9(a), positive values indicate power imports and negative
values power exports. In general, the magnitude and direction
of the adjustments in real time depend on the magnitude of
the day-ahead scheduled power exchanges and the net load
in real time. Underestimating the scheduled power imports
or overestimating the scheduled power exports implies the
application of upward adjustments in real time to compensate
for the energy deficit. Analogously, overestimating the sched-
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uled power imports or underestimating the scheduled power
exports implies the application of downward adjustments to
compensate for the energy surplus. From Fig. 9(b) it can be
seen that the use of ESs to control the EWHs consumption
produces lower upward adjustments than the case without ESs
most of the time.

The consumption profiles of the aggregated EWHs for cases
1 and 2 during the analyzed period are shown in Fig. 10. In
case 2, without ESs, the EWHs start consuming at hour 7
and stop consuming at hour 21. These hours of consumption
coincide with the period of highest wind power availability
[see Fig 6(b)], which is an adequate operating rule when there
is no possibility of dynamically controlling the EWHs. In case
1, the consumption pattern of the EWHs is optimally shaped to
achieve the lowest cost of energy deviations. In this case, the
ESs are operated to reduce the EWHs consumption at time
intervals with energy deficit and supply the EWHs at time
intervals with energy surplus. However, the consumption level
of the EWHs is also conditioned by the SOTC of the EWHs
and the energy imbalance price. For example, the EWHs
consume rated power between hours 16–18 (which are hours
with energy deficit) to store energy and use it later to supply
the hot water demand at hours 19–21 when there are energy
deficits and the imbalance price is higher.

The evolution of the SOTC of the EWHs operated with ESs
(case 1) is shown in Fig. 11. STOCs below the adopted mini-
mum (i.e., 0.3) are obtained because the ES voltage references
are estimated based on predictions of wind power generation,
critical load demand and hot water demand. However, it
is observed that the proposed control strategy is effective
in preventing the SOTCs from reaching values far below
the minimum when the EWHs participate in demand side
management and simultaneously supply the hot water demand.
The highest SOTC is achieved at hour 6 because the EWHs
store hot water to supply the peak demand at hours 7 and
8. A second highest SOTC is achieved at hour 18 when the
EWHs store hot water to supply the demand at hours 19 and
20 when the power supplied to the EWHs is reduced to zero to
compensate for the energy deficits, as observed from Fig. 9(b)
and Fig. 10.

2) Voltage regulation and congestion management in the
microgrid: The effectiveness of a probabilistic formulation of
the control strategy to ensure adequate voltage and power flow
levels in the microgrid was evaluated considering a 156% DG
penetration level. The total DG installed capacity is 13.8 MW
distributed as follows: 5.1 MW at bus 9, 2.4 MW at bus 10, 5.1
MW at bus 13 and 1.2 MW at bus 14. In this scenario, bus
voltage and power flow limits violations are likely to occur
if the operation of controllable resources is not adequately
coordinated in real time. Fig. 12 shows the voltage profiles
of bus 9 and the loading profiles of line segment 4–6 with
one-minute resolution for cases 1, 2 and 3. Bus 9 and line
segment 4–6 are selected for analysis because they are located
in the feeder with the largest DG installed capacity. Bus 9 is
the most distant from the point of common coupling in that
feeder and line segment 4–6 concentrates the power flows
coming from the DG at buses 9 and 10. Fig. 13 shows the
maximum and minimum voltages reached at each bus during

 

 
Fig. 9. (a) Net load and day-ahead scheduled power exchanges. (b) Upward
adjustments. (c) Downward adjustments.

 

 

Fig. 10. Power demand of non-critical loads.

 

 

Fig. 11. State of thermal charge of EWHs for case 1.

the analyzed period. Note that, the profiles of cases 1 and 2
are similar and overlap most of the time. Both cases 1 and 2
are effective in limiting the duration and magnitude of voltage
and line loading excursions outside the limits. This is possible
because the optimal set points of controllable resources are
estimated taking into account the possible realizations of
wind power generation within each control interval through
the probabilistic formulation. On the other hand, results of
case 3 show that, with a deterministic approach, the voltage
rise issues are not managed effectively and congestion exists
for many minutes with line loading reaching 110 % of the
maximum capacity.

Overvoltages and overloads can be avoided by applying gen-
eration curtailment and/or increasing the EWHs consumption
because this reduces the reverse power flows. Fig. 14 shows
the generation curtailment applied to the generator at bus 9
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for the three cases. The consumption profiles of the EWH at
bus 8 (which is the closest to the generator at bus 9) for the
three cases are shown in Fig. 15. From these figures it can be
seen that, in case 1 the EWH consumption is increased to the
maximum at the time intervals with generation curtailment.
Note that, the generation curtailment between hours 11 and
19 in cases 1 and 2 is the same and the curves overlap. This
happens because during this period the EWH is turned on
and drawing maximum power in case 2, which means that the
EWH consumption in case 2 coincides with that of case 1 at
the time intervals in which generation curtailment is applied.
After hour 19, the generation curtailment in case 1 is lower
than in case 2 because the flexibility provided by the ES allows
the EWH to be controlled to draw maximum power while the
EWH in case 2 is turned off. In this way, it is observed that the
ESs can be used to control the EWHs consumption to reduce
the need for generation curtailment.

Fig. 15 shows that the EWH consumption in case 3 is lower
than in case 1 when the available wind power generation is
near the maximum (i.e., hours 13-14 and 19-22). Moreover,
in case 3 the generation curtailment is applied only when the
available wind power generation is the maximum (see Fig. 14).
As a result, the deterministic approach in case 3 fails to avoid
overvoltages and overloads.

A summary of the results for the 24-hour period is shown
in Table III. It is included the total number of minutes with
bus voltage and power flow limits violations in the microgrid,
the maximum reached line overload, and the maximum and
minimum reached voltage magnitudes. The lowest cost of
energy deviations is obtained in case 3, however, at the cost of
increased congestion and voltage rise issues. This is because
the optimality and feasibility of the microgrid operation is only
ensured to the extent allowed by the information provided by
the predicted values of demand and generation. Results of case
2 show that the probabilistic approach can manage congestion
and voltage rise issues even without ESs by relying on the
application of generation curtailment. However, the applica-
tion of more generation curtailment and the impossibility of
managing the EWHs consumption in case 2 translate into a
24.7% increase in the cost of energy deviations compared to
case 3. In case 1, when ESs are available, the probabilistic
approach can manage congestion and voltage rise issues with
lower generation curtailment and cost of energy deviations
than in case 2. In this case, the cost of energy deviations is
12.4% greater than in case 3, which represents half the increase
in case 2. When compared with the deterministic case, the
probabilistic formulation in cases 1 and 2 reduces the duration
of overvoltages and line overloads by 50% and the magnitude
of the maximum overvoltage and line overload by 75%.

3) Microgrid reactive power requirement: Since ESs ex-
change reactive power with the microgrid when regulating
the voltage supplied to the EWHs, it is important to see how
their operation impacts the reactive power requirements of the
microgrid. Fig. 16 shows the total reactive power hours (varh)
exchanged with the main grid during the 24-hour period for
the cases with and without ESs, under the 100% and 156% DG
penetration levels. In both cases, the microgrid behaves as an
inductive source importing reactive power from the main grid

 

 

 

 

 

Fig. 12. (a) Voltages at bus 9 and (b) loading of line segment 4–6.

 

 

Fig. 13. Maximum and minimum voltages reached at each bus.

TABLE III
RESULTS WITH 156% DG PENETRATION LEVEL

Case 1 Case 2 Case 3

Imbalance Cost ($) 2283.24 2533.73 2031.92
Upward deviation (MWh) 21.56 23.77 19.73
Downward deviation (MWh) 16.37 18.86 16.94
Generation curtailment (MWh) 2.14 2.37 0.14
Duration of line overloads (min) 41 41 85
Maximum line overload (%) 2.8 2.8 11.9
Duration of over/under voltages (min) 20 20 41
Maximum voltage (p.u.) 1.051 1.051 1.054
Minimum voltage (p.u.) 0.990 0.989 0.991

 

 

Fig. 14. Generation curtailment applied to the DG at bus 9.

at any time. The reactive power dispatch of the controllable
resources (i.e., ES and DG) is determined by the optimization
engine to produce the best results for the optimized microgrid
operation. In case 1, ESs and DG work together to produce a
lower microgrid reactive power requirement than case 2. The
varh imports in case 1 with 100% and 156% DG penetration
levels are, respectively, 26.8% and 19.8% lower than in case 2.
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Fig. 15. Power demand of the EWH at bus 8 for (a) case 1 and 2, and (b)
case 3. 

 

Fig. 16. Reactive power exchanges with the main grid.

It can also be seen that, in both cases, a 156% DG penetration
level results in lower varh imports because the reactive power
flows are reduced to free line capacity to transport the higher
active power generation.

B. IEEE 33-bus system

The topology and line and load data of this system can be
seen in [37]. This system has a nominal voltage of 12.66 kV
and a total CL peak active power of 3.715 MW. The same
specifications and assumptions adopted in the Guangdong
system for the CLs, EWHs, DG, bus voltage limits, and energy
prices are considered in this system. Smart loads are located
at buses 11, 18, 24 and 31. It is considered a DG penetration
level of 176% equivalent to 8.3 MW distributed as follow: 1.2
MW at bus 16, 2.8 MW at bus 25, and 4.3 MW at bus 33.

The performance of the proposed control strategy is eval-
uated by comparing the results of the three cases defined
in section VI-A. A summary of the results for the 24-hour
period is shown in Table IV. To reduce the duration and
magnitude of the voltage and power flow limits violations,
cases 1 and 2 increase the imbalance cost by 49.9% and
68.8%, respectively, compared to the results of case 3. It
is also observed that the generation curtailment in case 1
is 36.7% lower than in case 2 due to the participation of
ESs. Although the duration of the line overloads in case 3
is less than in cases 1 and 2, the maximum line overload
reached in case 3 is 4 times greater. This system has longer
lines than the Guangdog system and, therefore, it experiences
more voltage issues including over and under voltages. Case 2

TABLE IV
RESULTS OBTAINED FOR THE 33-BUS TEST SYSTEM

Case 1 Case 2 Case 3

Imbalance Cost ($) 1569.90 1767.45 1047.08
Upward deviation (MWh) 13.76 15.72 10.13
Downward deviation (MWh) 8.87 9.75 9.23
Generation curtailment (MWh) 3.50 5.53 0.00
Duration of line overloads (min) 42 39 7
Maximum line overload (%) 2.59 2.16 9.12
Duration of over/under voltages (min) 123 83 588
Maximum voltage (p.u.) 1.057 1.057 1.089
Minimum voltage (p.u.) 0.946 0.935 0.938

performs similarly to case 1 in reducing overvoltage issues due
to the application of generation curtailment. However, case 1
performs better to solve undervoltage issues due the operation
of ESs. In this case, the ESs reduce the EWHs consumption
during the time intervals with high net load, thus reducing the
magnitude of the undervoltages.

VII. CONCLUSION

In this paper, a rolling-optimization control strategy was
proposed to coordinate the operation of multiple ESs to
provide voltage regulation, congestion management and cost
minimization of the real-time deviations from the scheduled
energy exchanges with the grid in microgrids with wind-based
DG. A probabilistic optimal power flow-based optimization
engine was designed to find the optimal set points of ESs and
generators every ten minutes based on predictions of demand
and generation, and taking into account the variability and
uncertainties of wind power generation.

Compared with a case in which EWHs were operated
according to an on/off control scheme, the proposed approach
reduced the cost of energy deviations by 21%. To achieve
this, the optimization engine operated the ESs to shift the
EWHs consumption to the hours with energy surplus and/or
low upward imbalance price. When compared with a deter-
ministic case, and considering a microgrid with high DG
penetration, the probabilistic approach significantly reduced
the magnitude and duration of bus voltage and line loading
limits violations. Moreover, the participation of ESs helped to
reduce the dependence on generation curtailment to manage
microgrid constraints. The adoption of a realistic EWH model
that considers electrical and thermal constraints allows to
ensure users satisfaction when EWHs participate in demand
side management. For future extension, it will be considered
the integration of other DERs such as electric vehicles and
dispatchable DG, and other types of NCLs with thermal cycle.
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