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Abstract—This paper presents a two-stage adaptive robust 

optimization approach to develop an optimal bidding strategy 

for a grid-connected solar photovoltaic (PV) plant with a 

coupled energy storage system (ESS). This study models the 

power flow through system elements as well as the exact 

interactions between the system and upstream network. The 

uncertainties of solar radiation, affecting the PV generation and 

market prices are characterized by bounded intervals in 

polyhedral uncertainty sets. A robust optimization is formed as 

a min-max-min problem characterizing both "here-and-now" 

and "wait-and-see" variables. This tri-level robust optimization 

is solved through a decomposition approach, where it is recast 

into a min master problem and a max-min subproblem. Unlike 

previous conventional robust optimization models, that utilise 

duality for solving the inner subproblem, a block coordinate 

decent (BCD) methodology is used in this study. Accordingly, 

instead of conducting duality theory, the subproblem is solved 

over a first-order Taylor series approximation of uncertainties. 

This results in a moderate computation/mathematical burden. 

Moreover, there is no need to linearize the dualized problem 

anymore, as no duality is conducted. Using BCD methodology in 

solving the robust optimization model also allows modelling 

binary variables as recourse actions, which differentiates this 

approach to conventional dual-based robust optimization 

models. An illustrative example is provided to demonstrate the 

performance of the proposed bidding strategy model.  

Keywords—Robust optimization, bidding strategy, energy 

management, energy storage, electricity market.  

NOMENCLATURE 

A. Indices 

𝑡 Index of hour. 

B. Parameters 

𝛿𝑡
− Penalty rate for surplus of power. 

𝛿𝑡
+ Penalty rate for shortage of power.  

𝑃𝑡
𝑝𝑣−𝑔𝑒𝑛

 Generated power by PV plant. 

𝜂𝑐ℎ𝑔 Charging efficiency of the ESS. 

𝜂𝑑𝑖𝑠 Discharging efficiency of the ESS.  

𝐸𝑖𝑛𝑡 Initial state of charge (SoC) of the ESS. 

𝐸𝑙 Steady-state loss of charge of the ESS in each hour. 

𝑃𝑚𝑖𝑛
𝑐ℎ𝑔

 Minimum permissible charge rate of the ESS. 

𝑃𝑚𝑎𝑥
𝑐ℎ𝑔

 Maximum permissible charging rate of the ESS. 

𝑃𝑚𝑎𝑥
𝑑𝑖𝑠  Maximum permissible charge rate of the ESS. 

𝑃𝑚𝑖𝑛
𝑑𝑖𝑠  Minimum permissible discharge rate of the ESS. 

𝐸𝑚𝑖𝑛
  Minimum permissible SoC of the ESS. 

𝐸𝑚𝑎𝑥
  Maximum permissible SoC of the ESS. 

𝑃𝑚𝑖𝑛
𝑖𝑛  Minimum allowable buying bid. 

𝑃𝑚𝑎𝑥
𝑖𝑛  Maximum allowable buying bid. 

𝑃𝑚𝑎𝑥
𝑜𝑢𝑡  Maximum allowable selling bid. 

𝑃𝑚𝑖𝑛
𝑜𝑢𝑡  Minimum allowable selling bid. 

Ψ Uncertainty budget. 

𝜋𝑡 Market price. 

𝜋̅𝑡 Forecast of market price. 

𝑃̅𝑡
𝑝𝑣−𝑔𝑒𝑛

 Forecast of PV generation. 

𝜋̂𝑡
𝑑𝑒𝑣+ Maximum positive deviation of uncertain market 

price. 

𝜋̂𝑡
𝑑𝑒𝑣− Maximum negative deviation of uncertain market 

price. 

𝑃̂𝑡
𝑑𝑒𝑣+ Maximum positive deviation of uncertain PV 

generation. 

𝑃̂𝑡
𝑑𝑒𝑣− Maximum negative deviation of uncertain PV 

generation. 

C. Variables 

𝑃𝑡
𝑝𝑣

 PV power sold to network. 

𝛼𝑡
+ Binary variable indicating surplus of power. 

𝛼𝑡
− Binary variable indicating shortage of power. 

𝑃𝑡
𝑛−𝑐ℎ𝑔

 Charging power of the ESS provided by network in 

buying bids. 

𝑃𝑡
𝑑𝑖𝑠 Charging power of the ESS. 

𝜋𝑡
𝑑𝑒𝑣+ Positive deviation of uncertain market price. 

𝜋𝑡
𝑑𝑒𝑣− Negative deviation of uncertain market price. 

𝜋̃𝑡 Uncertain market price. 

𝑃𝑡
𝑐ℎ𝑔

 Charge power of the ESS. 

𝑃𝑡
𝑝𝑣−𝑐ℎ𝑔

 Charge power of the ESS, provided by PV plant. 

𝑃̃𝑡
𝑝𝑣−𝑔𝑒𝑛

 Uncertain PV generation. 

𝑃𝑡
𝑑𝑒𝑣+ Positive deviation of uncertain PV generation. 

𝑃𝑡
𝑑𝑒𝑣− Negative deviation of uncertain PV generation. 

𝐸𝑡 SoC of the ESS.  

𝑥𝑡
𝑐ℎ𝑔

 Charging status of the ESS (binary variable). 

𝑥𝑡
𝑑𝑖𝑠 Discharging status of the ESS (binary variable). 

𝑥𝑡
𝑖𝑛 Buying status in bidding strategy (binary variable). 

𝑥𝑡
𝑜𝑢𝑡 Selling status in bidding strategy (binary variable). 
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D. Sets  

𝛯𝑇  Set of time slots. 

Ξ𝐼 Set of first-stage variables. 

Ξ𝐼𝐼 Set of second-stage variables. 

Ξ𝑈𝑆 Set of uncertain parameters.  

Ξ𝑈𝑃 Set of uncertain PV generation.  

Ξ𝑈𝜋 Set of uncertain market price.  

E. Vectors and matrices 

𝑨, 𝑭 Coefficient matrices of objective function.  

𝑩, 𝑪, 𝑬, 𝑮,𝑯/𝑫 Coefficient/requirement vectors.  

𝑼̅/𝑼𝒅𝒆𝒗+ Vector of estimated/deviated uncertain parameters.  

𝑼̃ Vector of uncertain parameters. 

𝑿/𝒀 Vector of start-up/operation variables.  

I. INTRODUCTION 

A. Problem Description 

The accelerating uptake of distributed energy systems, 
including solar and battery systems, in electricity distribution 
networks has resulted in significant technical and operational 
issues such as voltage/frequency deviation, reverse power 
flow, etc. Moreover, intermittency in solar photovoltaic (PV) 
generation, which is mostly due to atmospheric conditions, 
has made the operation of these systems challenging. This 
becomes more vital if the PV system has been installed for 
benefiting recovery schemes such as a bidding strategy. In a 
bidding strategy, for instance, any deviation from the 
submitted bids, i.e., shortage/surplus, of a PV plant results in 
extra costs which is not favorable for such a system. To 
manage this risk, energy storage systems (ESSs) such as 
batteries, are often deployed in conjunction with PV systems. 
ESS can also be beneficial for the upstream network as it can 
provide arbitrage opportunities for meeting network 
constraints more efficiently.  

Although an ESS can increase the efficiency of PV plants 
as well as providing support for the upstream network, the 
short-term volatile nature of solar power is still an important 
factor in operating these systems, especially in a competitive 
market. This issue becomes of major importance when 
developing a bidding strategy for day-ahead markets, using 
forecasts of solar radiation and market prices. As such, a 
rigorous approach is needed to characterize the uncertainties 
in these forecasts and how this impacts optimal operation of 
these systems.  

B. Literature Survey 

The accelerating uptake of energy storage systems, such 
as battery systems, has seen significant interest in optimizing 
the operation of these systems in power and energy networks 
[1]. The arbitrage ability of an ESS allows provide 
opportunities where lower cost energy can be purchased from 
network or generated energy stored and subsequently sold into 
the network at times of high prices. Therefore, the optimal 
operation of PV plants and ESSs is strongly dependent on the 
uncertainty of electricity market prices [2]. Recent work has 
investigated self-scheduling and bidding strategies of ESSs 
under uncertainties. In [3] the bidding strategy of a merchant 
compressed air energy storage (CAES) was developed 
through information-gap theory to characterize the uncertainty 
of electricity price. The bidding strategy of a battery energy 
storage system (BESS) was investigated in [4].  

A stochastic programming (SP) approach was developed 
in [5] to characterize the uncertainties for the bidding strategy 
of an ESS operating within the electricity market. Although 

SP is a more efficient method in uncertainty characterization, 
compared to deterministic and probabilistic methods, it is 
subject to a huge number of uncertainty scenarios which is not 
practical. To void this issue, the backward scenario reduction 
method has been used by [6] to reduce the simulation time. 
While scenario reduction methodologies are able to reduce the 
optimization computational time, SP is still subject to the lack 
of tractability as it requires a priori knowledge of the 
distributions of uncertain parameters. This requirement is not 
practical for real world studies. Moreover, SP can be 
intractable if the number of uncertain parameters is high. This 
becomes more vital as more resolution is required is uncertain 
parameters [7]. There is also a possibility of ending up with 
non-optimal or non-feasible solution if there is significant 
deviation between the uncertain parameters and the forecasted 
uncertainties which were considered in the SP model at the 
first place [8].  

To overcome the issues associated with SP models, robust 
optimization (RO) approaches have are widely utilised in 
order to characterize the associated uncertainties [9]. The 
benefit of RO, compared to SP, is that it is the worst-case 
realization of uncertainties that are modelled. This process is 
done by modelling the uncertainties through polyhedral sets 
where RO decides each uncertain parameter should reach its 
maximum value in order to maximize the worst-case 
realization of uncertainties [10-11]. This means any 
uncertainty realization in real situation will be less than the 
worst-case realizations resulting in a feasible solution in any 
condition. This is why RO solutions are more reliable than SP 
and scenario-based models. However, this may seem a little 
conservative as it is not much realistic to simulate all 
uncertainties by their worst-case realization. To cope with this 
problem, post-event analysis or after the fact analysis has been 
conducted in some RO studies to reduce their 
conservativeness.  

Conventional RO models use duality theory in order to 
solve the max-min subproblem by changing it into a single-
level max problem. This is because it is not possible to directly 
solve the max-min subproblem as it is a two-level problem. 
Duality theory allows the transformation of the two-level 
problem into a single-level problem. The operation of a wind 
farm, coupled with an ESS, as well as its upstream network 
interactions through optimal bidding strategy was developed 
through RO in [12]. However, the buying/selling bidding 
status of the plant, which was determined by binary variables 
was replaced by a sell-only bidding strategy as no binary 
variable was considered, in the max-min subproblem. This is 
because duality theory was used in the model of [12]. A 
similar approach was utilized in [13] for a wind generation 
coupled ESS to develop a robust model predictive control-
based bidding strategy. The model of [13] only implemented 
a single-stage max-min problem. A similar approach to [12] 
was also taken in [14] to simplify the use of the duality theory 
approach for solving the max-min subproblem.   

It deserves mentioning that the use of duality theory results 
in not having binary variables in the sub-problem. In 
particular, the binary variables are removed or obtained in the 
master problem before uncertainty realizations. Accordingly, 
the binary variables such as storage charging/discharging 
status are obtained without considering the uncertainties. 
Therefore, the arbitrage ability of the storage is not exploited 
to compensate the effects of uncertain parameters. Therefore, 
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further studies are required to characterize binary variables in 
the sub-problem after uncertainty realizations.  

C. Contributions 

In this paper, a recourse-based robust bidding strategy is 
proposed for a solar PV coupled ESS operating in a day-ahead 
market. A tri-level min-max-min RO problem is developed 
which recasts into a single-level min master problem and a bi-
level max-min subproblem through a decomposition using 
column-and-constraint (C&C) methodology.  

In the literature survey, the use of duality theory was seen 
to limit the application of RO in terms of characterizing binary 
variables after uncertainty realizations. This is because the 
dual of a mixed-integer model is generally weak, intractable 
and complicated [15]. By contrast, this paper utilized a block 
coordinate decent (BCD) approach to eliminate this limitation. 
In particular, BCD builds the second-stage subproblem by a 
first-order Taylor series approximation of the min subproblem 
which is conducted to minimize the objective function over 
uncertain parameters. This provides the opportunity to 
iteratively solve the max-min subproblem without the duality 
theory technique.  

Note that the iterative BCD methodology is conducted in 
each iteration of the C&C methodology. This means the BCD 
robust model in this paper includes two nested loops, namely 
outer loop (for the C&C methodology) and the inner loop (for 
the BCD technique). This proposed model is called "BCD 
robust", for the remainder of this paper. 

Using BCD robust model, the obtained solutions are more 
reliable than the solutions from SP. They are also feasible as 
long as the uncertain parameters are deviating between the 
polyhedral uncertainty sets. 

D. Paper organization 

The remainder of this paper is organized as follows. A 
deterministic bidding strategy for a PV coupled ESS is 
proposed and discussed in Section II. In Section III, the BCD 
robust optimization model as well as its solution algorithm is 
developed and discussed. Simulation results are provided in 
Section IV and conclusions presented in Section V.  

II. DETERMINISTIC DAY-AHEAD BIDDING STRATEGY FOR THE 

PV-ESS SYSTEM 

In this section, a deterministic model is developed for a 
coupled PV-ESS system which includes both internal self-
scheduling of the system as well as its optimal interactions 
with upstream market. Note that, the deterministic model (1), 
neglects the uncertainties. The associated uncertainties are 
characterized and modelled in Section III.  

The deterministic model is developed as (1) and is based 
on the given system configuration in Fig. 1. 

Min∑ −(𝑃𝑡
𝑝𝑣
+ 𝛼𝑡

+ ∙ 𝛿𝑡
− − 𝛼𝑡

− ∙ 𝛿𝑡
+) ∙ 𝜋𝑡

𝑡∈𝛯𝑇

⏞                        
𝕄1= 𝑃𝑉 𝑏𝑖𝑑 𝑎𝑛𝑑 𝑠ℎ𝑜𝑟𝑡𝑎𝑔𝑒/𝑠𝑢𝑟𝑝𝑙𝑢𝑠 𝑟𝑎𝑡𝑒𝑠

 

+∑ (𝑃𝑡
𝑛−𝑐ℎ𝑔

− 𝑃𝑡
𝑑𝑖𝑠) ∙ 𝜋𝑡

𝑡∈𝛯𝑇

⏞                  
𝕄2= 𝐵𝐸𝑆𝑆 𝑏𝑢𝑦𝑖𝑛𝑔/𝑠𝑒𝑙𝑙𝑖𝑛𝑔 𝑏𝑖𝑑
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Fig. 1. Configuration of the considered system 

s.t. 

AC/DC Power flow constraints: 

 

𝑃𝑡
𝑐ℎ𝑔

= 𝑃𝑡
𝑛−𝑐ℎ𝑔

+ 𝑃𝑡
𝑝𝑣−𝑐ℎ𝑔

;  ∀𝑡 ∈ 𝛯𝑇 (1b) 

𝑃𝑡
𝑝𝑣−𝑔𝑒𝑛

= 𝑃𝑡
𝑝𝑣
+ 𝑃𝑡

𝑝𝑣−𝑐ℎ𝑔
;  ∀𝑡 ∈ 𝛯𝑇 (1c) 

ESS constraints:  

𝐸𝑡 = 𝐸𝑡−1 + (𝑃𝑡
𝑐ℎ𝑔

∙ 𝜂𝑐ℎ𝑔 − 𝑃𝑡
𝑑𝑖𝑠 ∙

1

𝜂𝑑𝑖𝑠
) ∙ 𝛥𝑡 

−𝐸𝑙;  ∀𝑡 ∈ Ξ𝑇   

(1d) 

∑ (𝑃𝑡
𝑐ℎ𝑔

∙ 𝜂𝑐ℎ𝑔 − 𝑃𝑡
𝑑𝑖𝑠 ∙

1

𝜂𝑑𝑖𝑠
)𝑡∈𝛯𝑇 = 𝐸𝑙 ∙ 𝑇;  (1e) 

𝐸𝑡=0 = 𝐸
𝑖𝑛𝑡; (1f) 

𝑃𝑚𝑖𝑛
𝑐ℎ𝑔

∙ 𝑥𝑡
𝑐ℎ𝑔

≤ 𝑃𝑡
𝑐ℎ𝑔

≤ 𝑃𝑚𝑎𝑥
𝑐ℎ𝑔

∙ 𝑥𝑡
𝑐ℎ𝑔
;  ∀𝑡 ∈ Ξ𝑇   (1g) 

𝑃𝑚𝑖𝑛
𝑑𝑖𝑠 ∙ 𝑥𝑡

𝑑𝑖𝑠 ≤ 𝑃𝑡
𝑑𝑖𝑠 ≤ 𝑃𝑚𝑎𝑥

𝑑𝑖𝑠 ∙ 𝑥𝑡
𝑑𝑖𝑠;  ∀𝑡 ∈ Ξ𝑇 (1h) 

𝐸𝑚𝑖𝑛
 ≤ 𝐸𝑑𝑡 ≤ 𝐸𝑚𝑎𝑥

 ;  ∀𝑡 ∈ Ξ𝑇 (1i) 

𝑥𝑡
𝑐ℎ𝑔

+ 𝑥𝑡
𝑑𝑖𝑠 ≤ 1; ∀𝑡 ∈ Ξ𝑇 (1j) 

Upstream network interaction constraints:  

𝑃𝑚𝑖𝑛
𝑖𝑛 ∙ 𝑥𝑡

𝑖𝑛 ≤ 𝑃𝑡
𝑛−𝑐ℎ𝑔

≤ 𝑃𝑚𝑎𝑥
𝑖𝑛 ∙ 𝑥𝑡

𝑖𝑛;  ∀𝑡 ∈ Ξ𝑇  (1k) 

𝑃𝑚𝑖𝑛
𝑜𝑢𝑡 ∙ 𝑥𝑡

𝑜𝑢𝑡 ≤ 𝑃𝑡
𝑝𝑣
+ 𝑃𝑡

𝑑𝑖𝑠 ≤ 𝑃𝑚𝑎𝑥
𝑜𝑢𝑡 ∙ 𝑥𝑡

𝑜𝑢𝑡;  ∀𝑡 ∈ Ξ𝑇 (1l) 

𝑥𝑑𝑡
𝑖𝑛 + 𝑥𝑑𝑡

𝑜𝑢𝑡 ≤ 1; ∀𝑡 ∈ Ξ𝑇  (1m) 

The objective function in (1a) includes two terms. The 
term 𝕄1 includes the selling bid of the PV plant as well as 
out-of-bid penalty allocations. In particular, PV plant is 
penalized if it deviates from the submitted bids. Therefore, 
penalty rates 𝛿𝑡

− and 𝛿𝑡
+ are added to the surplus and shortage 

portion of the bis, respectively. These values are considered as 
pre-contracted parameters. For example, in Iran, values of 𝛿𝑡

− 
and 𝛿𝑡

+ are 0.9 and 1.1, respectively. This means that if more 
power is available in a certain bidding period, the surplus of 
power is sold to the network with 90% of the market price, 
and if less power is available, the shortage is penalized by 
110% of the market price. The second term of the objective 
function, i.e., 𝕄2, includes buying and selling bids of the ESS. 
In fact, the ESS can be charged by both the PV plant and the 
upstream network when in charging mode.  

Constraints (1b) and (1c) are the power flow equations for 
the considered configuration in Fig. 1. ESS operating 
constraints are given by (1d)-(1j). Constraint (1d) represents 
the dynamic energy balance of the battery system while (1e) 
is the end-coupling constraint of the battery, i.e., it makes sure 
the ESS has been charged to its initial point at the end of the 
operating horizon. The initial energy level of the ESS is given 
by (1f). Constraints (1g)-(1i) represent the allowable ranges 
for charging, discharging, and energy level of the battery. 

Constraint (1j) makes sure that the ESS is working in one 
mode only, i.e., out-of-use, charging, or discharging. 
Upstream network power trading constraints are given by 
(1k)-(1m). Constraints (1k)-(1l) are the allowable ranges of 
buying/selling power from/to the network while (1m), making 
sure that only one of the buying or selling statuses are in place. 
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In fact, according to (1m) the PV-ESS plant can only bid for 
buying or selling at each bidding period.  

As it is seen in (1), the associated uncertainties with PV 
generation and market prices are ignored. Therefore, the 
obtained solutions of the model in (1) may not be practical if 
uncertainties arise. In the next section, the BCD robust model 
is presented and discussed. 

III. BCD ROBUST BIDDING STRATEGY FOR THE PV-ESS 

SYSTEM 

A. Two-stage Robust Model 

In joint planning and operation studies, the planning 
variables are considered as “here-and-now” variables, while 
the operating variables are considered as “wait-and-see” 
variables. This is because the planning decisions are taken for 
the long-term performance of the system and are independent 
on short-term uncertainties, while the operating decisions 
must be taken under uncertainties as they are strongly subject 
to change if uncertainties arise.  

Considering the above explanation of "here-and-now" and 
"wait-and-see" decision variables, the RO problem is formed 
as the tri-level min-max-min problem given by (2). 

min𝑿∈Ξ𝐼(𝑨
′ ∙ 𝑿 + max𝑼̃∈Ξ𝑈𝑆min𝑌∈Ξ𝐼𝐼𝑭

′, 𝒀) (2a) 

s.t.  
Ξ𝐼 = {𝑿 ∈ {𝟎, 𝟏}𝑁𝑋   |  𝑪𝑿 ≥ 𝑫} (2b) 

Ξ𝐼𝐼 = {𝒀 ∈ ℝ𝑁𝑌   |  𝑬(𝑿, 𝒀, 𝑼̃) ≥ 0} (2c) 

Ξ𝑈𝑆 = {𝑼̃ ∈ ℝ𝑁𝑈̃   |  𝑼̃ = 𝑼̅ ± 𝑼𝒅𝒆𝒗±} (2d) 

In (2a), the outer min problem minimizes the term 𝑨′ ∙ 𝑿 
over "here-and-now" variables denoted by vector 𝑿. The outer 
min problem is subject to constraint (2b) which represents the 
set of constraints including "here-and-now" variables. The 
inner min problem in (2a) minimizes the term 𝑭′, 𝒀  over 
"wait-and-see" variables, while the inner max problem 
maximizes it over the uncertain parameters. (2c) represents the 
set of the remaining constraints which are dependent on "wait-
and-see" variables, while the inner max problem is subject to 
uncertainty set realizations as (2d).  

B. Uncertainty Set Realization 

The extended form of the uncertainty set realizations is 
given by (3), which characterizes the uncertainties of both PV 
generation and market price. 

Ξ𝑈𝑃 = {𝑃̃𝑡
𝑝𝑣−𝑔𝑒𝑛

= 𝑃̅𝑡
𝑝𝑣−𝑔𝑒𝑛

+ 𝑃𝑡
𝑑𝑒𝑣+ −

𝑃𝑡
𝑑𝑒𝑣−;   ∀𝑡 ∈ Ξ𝑇}  

(3a) 

Ξ𝑈𝜋 = {𝜋̃𝑡 = 𝜋̅𝑡 + 𝜋𝑡
𝑑𝑒𝑣+ − 𝜋𝑡

𝑑𝑒𝑣−;   ∀𝑡 ∈ Ξ𝑇}  (3b) 

0 ≤ 𝑃𝑡
𝑑𝑒𝑣+ ≤ 𝑃̂𝑡

𝑑𝑒𝑣+; ∀𝑡 ∈ Ξ𝑇 (3c) 

0 ≤ 𝑃𝑡
𝑑𝑒𝑣− ≤ 𝑃̂𝑡

𝑑𝑒𝑣−; ∀𝑡 ∈ Ξ𝑇 (3d) 

0 ≤ 𝜋𝑡
𝑑𝑒𝑣+ ≤ 𝜋̂𝑡

𝑑𝑒𝑣+; ∀𝑡 ∈ Ξ𝑇 (3e) 

0 ≤ 𝜋𝑡
𝑑𝑒𝑣− ≤ 𝜋̂𝑡

𝑑𝑒𝑣−; ∀𝑡 ∈ Ξ𝑇 (3f) 

Ξ𝑈𝑆 = {Ξ𝑈𝑃 ∪ Ξ𝑈𝜋,∑ |
𝑃𝑡
𝑑𝑒𝑣+

 𝑃̂𝑡
𝑑𝑒𝑣+

𝑡∈𝛯𝑇
 

+
𝑃𝑡
𝑑𝑒𝑣−

𝑃̂𝑡
𝑑𝑒𝑣−

| +∑ |
𝜋𝑡
𝑑𝑒𝑣+

 𝜋̂𝑡
𝑑𝑒𝑣+

𝑡∈𝛯𝑇
+
𝜋𝑡
𝑑𝑒𝑣−

𝜋̂𝑡
𝑑𝑒𝑣−| ≤ Ψ}; 

(3g) 

Since the RO problem in (2) is a min-max-min problem, it 
cannot be directly solved. To solve such a problem, a 
decomposition algorithm is conducted by means of the well-
known column-and-constraint generation methodology [1]. 
This solving procedure is consistent with RO models in other 
energy systems [13-17]. 

 

Fig. 2. Outline of the algorithm in solving BCD Robust model 
 

The decomposition methodology recasts the min-max-min 
problem as a single-level min master problem (the outer min 
problem in (2a)) and a bi-level max-min subproblem (the inner 
max-min problem in (2a)). The subproblem itself is also 
solved by the block coordinate decent (BCD) methodology 
instead of duality theory, specifically it is is solved with a first-
order Taylor series approximation over uncertainty sets, 
instead of using duality theory. This results in breaking the bi-
level subproblem into two single-level subproblems. 

C. BCD Robust Approach and its Solution Methodology  

Unlike [10-14], the sub-problem in this study is not solved 
by duality theory as the block coordinate decent methodology 
is used instead. In the BCD technique, the max-min sub-
problem is recast into two individual subproblems, with a 
first-stage min subproblem followed by a second-stage max 
subproblem. The second-stage sub-problem is built upon the 
firs-order Taylor series of the fist-stage sub-problem 
considering uncertain parameters resulting in the maximum 
value of objective function through the worst-case realization 
of uncertainties. The obtained worst-case realization of 
uncertainties in the second-stage sub-problem is then fixed in 
the first-stage sub-problem to obtain the “wait-and-see” 
variables. Therefore, the solution methodology of the BCD 
robust optimization problem includes two nested loops.  
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Fig. 3. Worst-case realization of market price 

 

Fig. 4. Worst-case realization of PV generation 

The outer loop is conducted due to the use of a C&C 
decomposition, while the inner loop is conducted for the BCD 
technique. The structure of this procedure, showing the 
interactions between the master and subproblems is shown in 
Fig. 2, where the inner loop path is shown using blue arrows 
and the outer loop path are indicated by the red arrows. 

As no duality is conducted in the model, the binary 
decision variables indicating battery charging/discharging 
status as well as buying/selling bids can be obtained as “wait-
and-see” variables under the worst-case realization of 
uncertainties obtained in the second-stage sub-problem. 
Therefore, the obtained RO solutions are recourse-based, 
meaning more practical and feasible solutions against 
uncertainties of PV generation and market prices. 

 

IV. SIMULATION RESULTS 

A. Data Set 

Simulations were performed for a 24-hour operating 
horizon using forecasted load data from [16]. The forecast PV 
generation has been considered for a north facing 600kW PV 
with 30° tilt using solar insolation and ambient temperature 
data for Port Augusta, South Australia. The steady state 
energy loss of the ESS was set at 2% of the system capacity. 
Base value for power is 10 kW in the perunit system. ESS 
capacity is considered as 500 kWh. A time-of-use electricity 
tariff is used with where both buying and selling prices are the 
same, at 41.53 ¢/kWh for hours 07-20 and 27.01 ¢/kWh at 
other times. There are 48 uncertain parameters because of the 
hourly uncertain price and uncertain PV generation in a 24 
hour operating window. Simulations were conducted using 
BARON solver in GAMS software package [17].  

 

Fig. 5. Optimal operation (State-of-the-charge, charging/discharging 
power) of ESS 

 

Fig. 6. Optimal PV interaction with ESS and network 

 

Fig. 7. Optimal bidding strategy of the PV-ESS plant in a 24-h operating 
horizon 

BARON solver uses CPLEX to find the optimal solution 
in GAMS. The simulation has been conducted on a laptop 
computer with a core-i5 CPU and 8 GB RAM. 

B. Results 

Simulations have been conducted for two scenarios 
including the deterministic and the robust model. In fact, the 
value of Ψ  is considered zero in the deterministic model, 
while it is considered as 48 in the RO model. Simulation 
results for the worst-case realization of uncertain parameters 
are as follows. 

The worst-case realization of both market price and PV 
generation is shown by Fig. 3 and Fig. 4, respectively. As it is 
seen, the electricity price has increased in some hours at the 
start of the operating horizon. 

It deserves mentioning that the worst-case realization of 
market price is not necessarily just descending or ascending.  
It may also stay unchanged if it appears as a worst-case 
realization in the inner max problem. This is due to the fact 

20

25

30

35

40

45

1 3 5 7 9 11 13 15 17 19 21 23

D
o

ll
ar

Time [h]

Forecast Worst-case realization

0

10

20

30

40

50

60

70

1 3 5 7 9 11 13 15 17 19 21 23

P
o

w
er

 [
p

.u
.]

Time [h]

Forecast Worst-case realization

0

10

20

30

40

50

1 3 5 7 9 11 13 15 17 19 21 23

P
o

w
er

 [
p

.u
.]

Time [h]

Charging Power by Network Discharging Power

Charging Power by PV BESS Level

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23

P
o

w
er

 [
p

.u
.]

Time [h]

PV to Network PV to BESS PV Gen.

0

20

40

60

1 3 5 7 9 11 13 15 17 19 21 23

P
o

w
er

 [
p

.u
.]

Time [h]

Selling bid (PV) Buying bid (BESS)
Selling bid (BESS)

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on February 25,2022 at 14:29:59 UTC from IEEE Xplore.  Restrictions apply. 



that the worst-case realization of market price can be 
ascending, if buying, or descending, if selling. Therefore, it 
can happen in both ways. The PV generation, however, has 
been reduced in all hours as it is obvious that any reduction in 
PV generation results in a worst-case for the plant operation 
(energy surplus never results in extra costs, while energy 
shortage does). Therefore, the worst-case realization of PV 
generation has reduced in all hours, compared to its forecast. 

The optimal operation of an ESS under the worst-case 
realization of uncertain market price and PV generation is 
given by Fig. 5. As it is seen, the ESS can be charged by both 
the PV plant and the network. However, it has been mostly 
charged by the network throughout the day, except in hour 13 
where it has charged by the PV plant. The optimal interaction 
of PV plant with an ESS and network is also given by Fig. 6. 
As it is seen, all the generated power by PV plant has been 
sold to the network, except in hour 13 in which the ESS has 
been charged by the PV power.  

Finally, the optimal bidding strategy of the coupled PV-
ESS plant has been given by Fig. 7. As it is seen, the PV plant 
has contributed in the majority of the selling bid, while the 
buying bids are all allocated to ESS charging power. The ESS 
has also been discharged in hours where no PV power is 
available, which shows the arbitrage ability of the ESS in 
providing more flexibility and market participation for the 
PV-ESS plant. The obtained RO solutions in Figures 3-7 are 
based on the considered worst-case realization of uncertainties 
throughout the operating horizon. Moreover, the use of the 
BCD technique provides the opportunity to characterize 
buying/selling bids as well as ESS charging/discharging status 
after uncertainty realizations as recourse actions. 

V. CONCLUSION  

This paper has presented a block coordinate decent robust 
optimization for developing a bid strategy for a coupled PV-
ESS plant to maximise the benefit when operating in a day 
ahead market, while managing the uncertainty in future PV 
generation and market prices. The uncertainties were 
modelled by polyhedral uncertainty sets while the robust 
settings, including the uncertainty budget and the deviation 
range of uncertainties, were controlled by the operator. The 
BCD technique was employed instead of duality theory to 
solve the second-stage problem. This results in more 
practical/feasible solutions as the ESS charging/discharging 
status as well as the PV-ESS buying/selling status were 
obtained after the uncertainty realizations. The obtained 
solutions were reported on the worst-case realization of 
uncertain PV generation and market price. The optimal 
operation of the plant as well as its optimal bidding strategy 
was also determined and reported in the simulation results. 
The proposed model can assist PV-ESS merchants to 
participate in the market and gain extra benefits by taking 
advantage of the proposed BCD robust optimization model. 
Future work will be focused on conducting the BCD robust 
model on hybrid systems including electricity and gas 
networks.  
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