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Abstract—The evaluation index of renewable power 

forecasting plays an important role in guiding the power grid 

dispatching department and the operation of renewable power 

plants. Most of the current evaluation indexes can hardly reflect 

the relationship between prediction error and system flexibility. 

Firstly, this paper studies the evaluation index of system 

flexibility, determines the weight of different flexibility indexes 

by entropy method, and quantifies the flexibility of power 

system. On the basis of the existing index, the system flexibility 

is introduced to improve the existing index, and a new error 

evaluation index Root Weighted Squared Error is obtained. The 

simulation results show that the new evaluation index has good 

performance in measuring the level of single station prediction 

and multi-station scheduling. 

Keywords—system flexibility, entropy method, weight matrices, 

root weighted square error 

I. INTRODUCTION  

Renewable energy power generation has the characteristics 
of large volatility and strong randomness [1]. Ultra-short-term 
forecasting model of photovoltaic power generation based on 
cloud movement and multi-index fusion wind power 
prediction model are applied to renewable energy power 
prediction. [2-6]. According to the predicted value of 
renewable energy generation in the past, the dispatcher makes 
the future conventional energy generation plan [7]. The large 
prediction error of renewable energy power will not be 
conducive to the operation of conventional energy units, and 
may affect the power system, affect the power quality of the 
load side, and bring trouble to the production and life of users 
[8-11].  

Root Mean Square Error (RMSE) and Mean Absolute 
Error (MAE) are commonly used evaluation indexes in 
renewable energy prediction. They can objectively reflect the 
error between the real value and the predicted value, but there 
are still some limitations [12-17]. In order to better evaluate 
the forecast performance, the Northwest Energy Regulatory 
Bureau of China's National Energy Administration issued the 

"Implementation Rules for Grid-Connected Operation of 
Power Plant in Northwest China", this rule will add Relative 
Harmonic Error (RHE) to the ultra-short-term power 
forecasting evaluation system [18]. Chen et al. also proposed 
Weight Root Mean Square Error (WRMSE) to measure the 
prediction performance of renewable energy stations [19]. 

At present, most indicators have the same error weight for 
each time point and period [20-23]. However, in the grid, the 
sensitivity of the system to error is different at different times. 
When the flexibility of the system is low, the accuracy of the 
error is higher. A small prediction error can also cause the 
power system to collapse [24].  

In order to more accurately determine the forecast level of 
wind farms. Yao et al. determined load peak and trough 
periods according to load output curve, and calculated the 
maximum forward error of the system load peak and the 
maximum negative error of the load valley [25]. 

C. G. Min et al. proposed a method for quantifying power 
system flexibility using effective ramping capability (ERC) 
obtained from conventional power plants, which is based on 
payload capacity to determine the capacity of variable 
renewable energy sources [26]. ERC is characterized as the 
contribution capacity of conventional power plants to net load 
demand, which can be used to describe the contribution 
capacity of power plants to the system in the specified 
direction at different time scales. It is a function of the 
minimum and maximum output levels of the power plant and 
the maximum ramp rate. 

E. Lannoye et al. proposed the insufficient ramping 
resource expectation (IRRE). IRRE refers to the expectation 
that the power system will be unable to cope with the net load 
change [27]. The computational structure of IRRE is similar to 
that of LOLE, but IRRE forms a flexible resource distribution 
available in each direction and time range. By calculating the 
IRRE of the selected period, the adaptability of the system to 
the change of net load in the current period can be understood 
[28]. 
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The sensitivity of the power system to the prediction error 
is different at different times. When the system flexibility is 
low, the prediction accuracy of the renewable energy station is 
required to be high. When the system flexibility is high, the 
prediction error can be tolerated to a certain extent. However, 
RMSE, MAE and other indicators cannot evaluate the forecast 
level of renewable energy stations according to the system 
flexibility. Power system flexibility can be measured by 
multiple indicators: (1) upward adjustable capacity available, 
(2) available for downward adjustment, (3) upward ramping 
capability requirement, (4) downward ramping capability 
requirement [29-32]. They measure the ability of the power 
system to cope with variable loads by calculating the 
regulation capacity and regulation rate of the power system in 
different directions. 

The purpose of this paper is to propose an evaluation index 
based on system flexibility to fill the gap in the current 
evaluation system. This index takes system flexibility as the 
weight of prediction error. When the flexibility is low, the 
error weight is significant, while when the flexibility is high, 
the error weight is small. Four common system flexibility 
indexes are adopted, and the importance degree of different 
indexes is determined by using entropy weight method, and 
the flexibility matrix of the system is obtained after the 
summation of the indexes according to the importance degree 
and normalization treatment, so as to improve the existing 
evaluation indexes. The improved evaluation index can reflect 
the relationship between the prediction error and the system 
flexibility and has important guiding significance for the 
dispatching department to arrange the generation plan. 

II. Methodology 

In order to better evaluate the forecast level of renewable 
energy stations and guide the dispatching department to make 
generation plans, a model to quantify the flexibility of power 
system is established. Firstly, several system flexibility 
indexes are calculated according to the station information, 
then the importance of indexes is determined by entropy 
method, and the system flexibility is evaluated 
comprehensively. Finally, the system flexibility matrix is used 
to construct new evaluation indexes. 

A. Calculate the system flexibility index 

At present, most of the indicators of power system 
flexibility are designed based on the current up-or-down 
capacity of the system and the current up-or-down slope 
capacity. These four indicators can fully reflect the 
corresponding capacity of the system to variable load at a 
certain moment and can be used to represent the flexibility of 
the power system. Considering that the flexibility of power 
systems is variable and the measurement of flexibility is 
complex, in this paper, the day is divided into 96 time points, 
each time point interval is 15 minutes. The calculation formula 
of flexibility index is as follows: 

Calculate the upward adjustable capacity available of 
system: 

 , max,upcap t t tF P NL= −  () 

Where max,tP  is value of the system maximum force at 

time t, tNL  is value of the net load at time t. 

The upward adjustable capacity available is the upward 
reserve capacity of the power system during operation. The 
larger the capacity, the more flexible the system will be, and 
the less affected by the prediction error. The smaller the 
capacity, the less flexible the system will be, and the more 
affected by the prediction error. 

Calculate the capacity available for downward adjustment 
of system: 

 , min,downcap t t tF NL P= −  () 

Where min,tP  is value of the system minimum force at time 

t. 

The capacity available for downward adjustment is the 
downward reserve capacity of the power system during 
operation. The larger the capacity, the more flexible the 
system is; the smaller the capacity, the less flexible the system 
is. 

Calculate the upward ramping capability requirement of 
system: 

 , ( ) 0uprate t t t tF NL NL −=  −   () 

tNL is value of the net load at time t, t is value of the 

time interval. 

Ramping capacity represents the regulation rate of the 
system. The larger the ramping capacity of the system is, the 
stronger the ability to adjust variable loads is and the better the 
flexibility of the system is. 

The upward ramping capability requirement refers to the 
demand of load on the upward ramping capacity of the system. 
The higher the requirement, the lower the remaining upward 
ramping capacity of the system and the lower the system 
flexibility. On the contrary, the lower the requirement, the 
higher the remaining upward ramping capacity of the system, 
the higher the system flexibility. 

Calculate the downward ramping capability requirement of 
system: 

 , ( ( ) 0)downrate t t t tF NL NL −= −  −   () 

The downward ramping capability requirement refers to 
the demand of load on the downward ramping capacity of the 
system. The higher the requirement, the lower the system 
flexibility. On the contrary, the lower the requirement, the 
higher the system flexibility. 
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The first two flexibility indicators are positively correlated 
with the system flexibility, the larger the index value is, the 
greater the system flexibility is, while the last two flexibility 
indicators are negatively correlated with the system flexibility, 
the larger the index value, the smaller the system flexibility. 

B. Entropy weight method is used to determine the influence 

degree of the flexible index 

In information theory, entropy is a measure of the 
uncertainty of information. The larger the amount of 
information, the smaller the uncertainty and the smaller the 
entropy. The smaller the amount of information, the greater 
the uncertainty and the greater the entropy. According to the 
entropy value of the sample, the dispersion degree of the index 
can be judged and the weight of the index can be determined. 
On the basis of the original indexes. Yao et al. determined the 
weights of different indexes by using the entropy method, 
constructed a multi-index evaluation system, eliminated the 
influence of human factors on the weight distribution of 
indexes, and could accurately evaluate the prediction level of 
different wind farms [33]. 

Entropy method is widely used to determine the 
importance of indicators. Its objective evaluation method can 
eliminate the subjective influence well and provide a basis for 
comprehensive evaluation. When the weight of multiple 
indexes cannot be calculated, entropy weight method is 
usually used to determine the importance of each index. 
Entropy method is used to calculate the information entropy of 
the index, which is represented as the degree of change of the 
index. The greater the degree of change, the stronger the 
disorder of the index and the bigger the weight of the 
corresponding index [34-35]. The entropy redundancy can be 
used to represent the importance of index. The basic steps are 
as follows. 

Normalization processing to eliminate the differences in 
the values of different indicators: 

 
, min

,

max min
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Calculate the proportion of indicators of samples: 
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Calculate the entropy of indicators of samples: 
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Calculate entropy redundancy of indicators of samples: 

 1k k

i id e= −  () 

Calculate the influence degree of the indicators: 
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Where 
,i jnorm

kX  is normalized value of the k-th index of the 

j-th point of the i-th sample. 
mini

kX  and 
maxi

kX  are minimums 

and maximums of k-th index of i-th sample, i is the number of 
samples, and k is the number of indexes. 

C. Building the weight matrix 

According to the importance degree of each index 
calculated in the entropy weight method, the four indexes 
were added according to the calculated weight. 

 

4

,
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=   () 

Where iw  is an error weight matrix based on system 

flexibility, it is the set of error weights for 96 time points.  

The smaller the error weight is, the higher the flexibility of 
the system is and the lower the requirement for the prediction 
performance is. The larger the error weight is, the lower the 
flexibility of the system is and the higher the requirement for 
the prediction performance is.  

D. Summary of flexibility weight 

In order to measure the flexibility of the system more 
scientifically and construct the error weight matrix based on 
flexibility, this paper adopts the entropy weight method to 
determine the weight of different flexibility indicators， and 

the following steps are as follows: 

Firstly, a matrix containing four flexibility indicators is 
established: 

 , , , ,{ , , , }upcap t downcap t uprate t downrate tX F F F F=  () 

Where ,upcap tF  is upward adjustable capacity available, 

,downcap tF  is Capacity available for downward adjustment, 

,uprate tF  is upward ramping capability requirement, ,downrate tF  

is downward ramping capability requirement. 

Secondly, standardize each index, and use entropy weight 
method to calculate the weight of each index. 

Thirdly, the flexibility matrix of the samples can be 
obtained by adding the flexibility indexes according to the 
weight of each flexibility index. 

Fourthly, using the flexible row weight to correct the 
prediction error index. 
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The technical flow chart is shown in Fig. 1. 

Input system parameters, load data, new energy 

output data

Calculate three flexibility indicators

Entropy weight method is used to determine the 

importance of different indexes

Indexes were added according to the importance

Normalize the weights

Use the weight to correct the error evaluation index
 

Fig. 1. Technical flow chart. 

III. CASE STUDY 

In order to further illustrate the guiding significance of the 
indicators proposed in this paper in the prediction and 
scheduling of renewable energy stations, this paper takes the 
operation data of a regional power grid in China in 2020 as an 
example for simulation. The data sampling period is 5 
minutes. 

A. Calculate the weight matrix 

According to the load situation and the renewable energy 
output can be calculated to get the net load output, and then 
can determine the day of the unit output and the unit 
regulation rate. The flexibility index matrix can be calculated 
according to the flexibility index formula. According to the 
entropy method, the importance degree of flexibility indexes 
is calculated, and the system flexibility matrix of 
comprehensive evaluation is obtained. The system flexibility 
matrix is transformed into error weight matrix. The lower the 
system flexibility, the larger the error weight, the higher the 
system flexibility, the smaller the error weight. The error 
weight matrix is used to modify the existing evaluation 
indexes to get a new evaluation index Root Weighted Squared 
Error (RWSE). 
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The error weight curve for a day in March is shown in Fig. 
2. 

A DB C

 

Fig. 2 The error weight curve for a day in March. 

When a large amount of renewable energy penetrates into 
the power system, it will have a great impact on the flexibility 
of the operation of the power system and make it difficult to 
make the generation plan. Therefore, it is very important to 
analyze the flexibility of the power system. It can be seen 
from Fig. 2 that on this day, the error weights of period B and 
C are relatively high, which indicates that the system is less 
flexible in this period and the system is greatly affected by the 
prediction error. In the other period, the error weights of 
period A and D are low, which indicates that the system has 
high flexibility in this period and can tolerate certain 
prediction errors. 

B. Application of index in photovoltaic power plant 

Comparison of power prediction of the two scenarios is 
shown in Fig. 3, The system flexibility of the two scenarios is 
shown in Fig. 4.  

 

Fig. 3 Comparison of the two scenarios. 

 

Fig. 4 Comparison of the system flexibility of the two scenarios. 

Scenario 1 is on March 6th and Scenario 2 is on 
November 7th. Fig. 2 shows the prediction comparison of two 
scenarios. The prediction of Scenario 1 fluctuates greatly 
while that of Scenario 2 changes gently. Fig. 3 shows the 
error matrices of two scenarios. In scenario 2, the moments of 
system flexibility shortage are mainly concentrated in the 
morning and afternoon, while in scenario 3, the moments of 
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system flexibility shortage are mainly concentrated in the 
afternoon. 

Comparison of evaluation indexes of the two scenarios is 
shown in Fig. 5. 

 

Fig. 5 Comparison of evaluation indexes of the two scenes. 

As can be seen from Fig. 5, RMSE of the two scenarios 
has little difference, and the prediction degree of the two 
scenarios cannot be distinguished by RMSE index. However, 
the same prediction error will have different effects on 
different systems. Comparison of prediction for a couple of 
days can be found a scene in the afternoon there was a larger 
prediction error, the flexibility of the system is in shortage 
state, at this time should be strictly monitored, scenario 2 in 
most schedule shows good prediction accuracy, especially in 
the afternoon session, no large deviation, can say scene two 
prediction error's influence on the system than the impact of 
setting a prediction error. However, RMSE does not do a 
good job of representing this difference. Fortunately, using 
RWSE does a good job of distinguishing them. The index 
RWSE is designed based on the flexibility of the system. 
When the flexibility of the system is low, the prediction 
accuracy is strictly monitored, which can well reflect the 
impact of the prediction error on the power system and 
provide support for measuring the prediction situation of the 
station. 

C. Application of index in dispatching department 

Three photovoltaic power plants (F1, F2, F3) in a 
province of China were selected for analysis, and the station 
capacity was all 50 MW. 

The power prediction of different stations on typical days 
and the system flexibility of that day are shown in Fig. 6, 
Index comparison of the stations is shown in Fig. 7. 

Fig. 6 shows the power prediction of F1, F2 and F3 
stations on a certain day and the flexibility of the system on 
that day. Fig. 7 shows that the prediction work of the three 
photovoltaic stations is ranked from good to bad, by using 
RMSE is F3, F1, F2, and by using RWSE is F1, F3, F2.  

According to the ranking of the two indexes, the 
prediction accuracy of F2 station is the lowest. As can be 
seen from the prediction of F2 station in Fig. 6, a large error 
occurs at noon, and the error fluctuates greatly, which also 
has a great impact on the system. For F1 station and F3 
station, compared with RMSE value, the prediction accuracy 
of F3 station is better than that of F1 station. However, at 
noon, when the system flexibility is higher, the prediction 

effect of F1 station is better and it is more friendly to the 
system. Therefore, from the perspective of the influence of 
the prediction error on the system flexibility, the prediction of 
F1 station is better than that of F3 station, and the prediction 
effect of F2 station is the worst. 

  

  

Fig. 6. Comparison of typical daily forecasts. 

 

Fig. 7. Comparison of typical daily error indicators. 

When the dispatching department makes the generation 
plan, it considers more about the influence of the forecast 
situation on the flexibility of the power system. Compared 
with RMSE, RWSE can better show the relationship between 
the prediction error and the flexibility of the system, and it is 
more suitable for guiding dispatching. 

IV. CONCLUSION 

The traditional power prediction evaluation index can not 
reflect the relationship between the prediction error and the 
system flexibility. In this paper, several power system 
flexibility indexes are integrated to reflect the system 
flexibility more comprehensively and effectively, and used to 
construct a new evaluation index RWSE.RWSE does not 
need to divide the time period manually, and it is more 
objective, stable and has great application potential than the 
time period considering the influence of prediction error. This 
index can evaluate the accuracy of power prediction 
according to the flexibility of the system, and has a good 
performance in measuring the prediction level of single 
station and scheduling of multiple stations. 

In other words, RWSE index maintains the objectivity and 
adaptability of RMSE index, introduces the system flexibility, 
is a supplement to the original evaluation system, and 
provides a scientific and reasonable guidance for the 
prediction of renewable energy stations. 
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