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Abstract—This paper explores the problem of model-based 

detecting and reconstructing occurring actuator and sensor faults in 

direct current (DC) microgrids (MGs) connected to resistive and 

constant power loads (CPLs) and energy storage units. Both the 

actuator and sensor faults are modeled as an additive time-varying 

term in the state-space representation, which highly degrade the 

system response performance if they are not compensated. In this 

paper, a novel advanced extended Kalman filter (EKF), called dual-

EKF (D-EKF) is proposed to estimate the system states as well as the 

accruing actuator and sensor faults. The main property of the 

developed approach is that it offers a systematic estimation 

procedure by dividing the estimating parameters into three parts 

and these parts are estimated in parallel. A first-order filter is 

utilized to turn the sensor faulty system into an auxiliary sensor 

faults-free representation. Thereby, the artificial output contains the 

filter states. The proposed D-EKF estimator does not require 

restrictive assumptions on the power system matrices and is highly 

robust against stochastic Gaussian noises. At the end, the proposed 

approach is applied on a practical faulty DC MG benchmark 

connected to a CPL, a resistive load, and an energy storage system 

and the obtained simulation results are analyzed form the accuracy 

and convergence speed viewpoints. 

 

Keywords—DC microgrid, Constant power load, Actuator 

Fault, Sensor Fault, Extended Kalman Filter, Dual-EKF.  

I. INTRODUCTION 

Direct current (DC) and alternating current (AC) microgrids 

(MGs) are an effective solution to integrate distributed loads and 

renewable energy sources [1]. For recent power utilities 

involving DC wind turbine,  fuel cells, and photovoltaics and 

DC electronic loads, it is wise to consider the DC MGs [1]. 

Thanks to power electronic advances, DC Mgs are now widely 

feeding tightly controlled loads that are inherently nonlinear and 

act as constant power loads (CPLs). The main issue associated 

with CPLs is that possess a destabilizing negative incremental 

resistance behaviour. The CPL stability issue has been attracting 

many attentions and different linear and nonlinear control 

strategies have been presented [2]–[4].  

However, in none of those references the issue of fault 

detection and fault tolerant control is investigated. Indeed, 

reviewing the state-of-the-art methods reveals that   the faulty 

operation of islanded DC MGs with CPLs has been rarely 

investigated. Nevertheless, occurring rigorous faults not only 

degrades the DC MG efficiency and reliability but also damages 

the MG connected elements if it is not detected and treated 

accordingly.  

In [5], power management of generators and loads in a DC 

MG in the presence of grid faults is investigated. However, it is 

assumed that the faults are identified and no mechanism for that 

is not given. In [6], a fault tolerant passivity-based controller is 

developed for a faulty hybrid AC/DC MG. It is assumed that the 

fault occurs in the AC side and its corresponding voltage grid is 

measurable. Therefore, the actual fault is not detected and 

estimated and only its effects are tolerated.  

In [7], the influence of several faults on a DC MG with 

multiple CPLs is investigated, and a fault-tolerant control (FTC) 

method was suggested to the closed-loop system robust against 

faults. However, that approach suggests the FTC for each CPL 

connected to the DC MG. By increasing the number of CPLs, 

that approach is not cost-effective.  

In [8], the effect of sensor fault on a typical DC MG with 

different energy sources was investigated. However, the other 

classes of faults were ignored. A robust controller and 

monitoring technique was developed in [9] to alleviate the 

consequence of occurring faults. Though, the faults were not 

reconstructed. In [10], the actuator and sensor faults were 

detected by developing a robust linear observer was developed. 

However, the detected faults were not estimated.  

In [11], both the actuator and sensor faults were detected and 

reconstructed. In that approach, a sliding mode observer was 

suggested. However, to design the observer gains, several 

assumptions on the ranks of the system were required. In 

parallel to the abovementioned attempts dealing with faults, 

several estimation methods have been presented in MGs to 
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estimate the states, including estimating the’ flux of rotor in 

motors [12], the state-of-charge in energy storage systems [13], 

and the currents in DC MGs [14]. However, in none of those 

approaches, the issue of occurring faults in the power system 

has been not investigated. This is the main motivation for this 

work. 

This paper focuses on the problem of detecting and 

simultaneously estimating actuator and sensor faults and 

voltages and currents in a typical DC MG that connected to 

uncontrollable DC source, controllable energy storage units, and 

linear loads and CPLs. A model-based dual-extended Kalman 

filter (D-EKF) is presented through which the system states and 

actuator and sensor faults are evaluated and constructed in 

parallel. The developed approach extends the results of the 

conventional extended Kalman filter (EKF) and dual-EKF such 

that it not only capable of dealing with faulty systems but also 

requires almost the same computational time burden as the EKF. 

The main advantages of the proposed approach over the state-

of-the-art method [11] are that I) it does not expose restrictive 

assumptions on the system matrices and II) is robust against 

stochastic Gaussian noises. To show the advantages of the 

developed dual-EKF approach, a numerical simulation is 

carried out on a DC MG benchmark with nonlinear dynamics 

and noises. The obtained results illustrate the accuracy and 

efficiency of the proposed approach in the presence of 

simultaneous faults.  

This article is continued as follows: In Section II, the 

dynamics of the DC MG with an energy storage unit, CPLs, and 

linear loads are presented and additive actuator and sensor fault 

are then considered. In Section III, the developed dual-EKF is 

designed for the power system. In Section IV, the simulation 

and comparative results are provided and the obtained outcomes 

are discussed. Finally, in Section V, the achievements of this 

article are summarized and some future perspectives are drawn.  

II. FAULTY DC MG WITH CPLS 

A typical DC MG involves some power generators, storage, 

and loads. These loads can be resistive or constant power, as 

shown in Fig. 1. The difference between the resistive loads and 

CPLs is appearing power electronic load converters. The CPLs 

are commonly integrated into DC MGs at the input point of the 

load converter by assuming the converters are ideal or consume 

constant power. 

Since the goal of this paper is to address the FDI issue, only 

one DC source is considered. Nevertheless, the proposed 

approach is applicable to DC MGs with several sources. An 

overall state-space representation of the DC MG with one DC 

source, one energy storage system (ESS), and one CPL, shown 

in Fig. 1, is obtained as follows [15]: �� � �� � ��� � 	
� � ���� � ����� � �� � �	 � �                                   (1) 

where � � ���   ��   ��  ���� � ����  � �   ���  � ���  the state 

vector comprising the current and voltage of CPL filter, ��� and 

� �, and current and voltage of source filter, ��� and � �. � ��! is the control input of system associated to the ESS, ��� is 

the output voltage DC/DC converter in the DC source, � is the 

sensor fault matrix, and � is the measurement noise. Also, 

� �
⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎡% &�'� % 1'� 0 1'�1*� 0 0 0

0 0 % &�'� % 1'�% 1*� 0 1*� % +*�⎦⎥
⎥⎥
⎥⎥
⎥⎥
⎤

; � �
⎣⎢
⎢⎢
⎡ 000% 1*�⎦⎥

⎥⎥
⎤ ; 

���� �
⎣⎢
⎢⎢
⎡ 0%0*�� �00 ⎦⎥

⎥⎥
⎤ ; � �

⎣⎢
⎢⎢
⎡ 001'�0 ⎦⎥

⎥⎥
⎤ ; 

� � 10 1 0 00 0 0 12 ;  � � 1112 

(2) 

 

 
Fig. 1. Power system illustration of a DC MG. 

 

 
Fig. 2. A basic diagram of the DC MG with CPL, resistive loads, actuator fault, 

sensor fault and noise. 
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As can be seen in (1), the power system is subjected to the 

actuator and sensor faults 	
 and 	 and white noise �. Also, the 

dynamics are nonlinear due to appearing ����.  

The goal is to estimate the faults as well as the state vector 

based on the available voltage measurement in the presence of 

noise. This is done by presenting an improved nonlinear 

extended Kalman filter (EKF), which will be presented in the 

coming section. 

III. PROPOSED NONLINEAR STATE AND FAULT ESTIMATOR 

a) Modifying the state-space representation 

Estimating information of (1) has four main challenges due to 

appearing I) the actuator fault 	
, II) the sensor fault 	, III) the 

nonlinear term 1/��, and IV) the stochastic noise �. In order to 

tackle with the actuator and sensor faults 	
  and 	 , they are 

considered as augmented states. On the other hand, since its time 

derivative is unknown, it is considered that 

	�
 � 0, 	� � 0 (3) 

It is worthy to note that, if there is any pre-knowledge of 	
 

and 	, the dynamics (3) can be updated. Initially, the issue of 

appearing sensor fault in the output is handled by introducing 

the filtered output 6 � �6�  6���  as follows [11]: 6� � %76 � 7� � %76 � 7*� � 7�	 � 7� (4) 

where 7 < 0 is. The relation (4) illustrates a first-order filter on 

the measured output � . Considering (4), it is possible to 

introduce a fault-free output as follows: �9 � 6 (5) 

This is the main feature of using the above first-order filter. 

The nonlinearity and white noise of (1) are also treated by using 

the EKF scheme. Now, by defining the augmented vector : ����  6   	
   	�� � ���   ��   ��   ��  �;  �<   �=   �>��  and 

reminding (1), (3), (4), and (6) one has: 

?:� � @�:� � �A� � �A���B � �C:                                (6) 

where 

@�:� �
⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎡@��:�@��:�@��:�@��:�@;�:�@<�:�@=�:�@>�:�⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎤

�

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎡ % &�'� �� % 1'� �� � 1'� ��1*� �� % 0�*���% &�'� �� % 1'� ��1*� �� % 1*� �� % ��+*� % 1*� �=%7�; � 7�� � 7�>%7�< � 7�� � 7�>00 ⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎤

; 

�A � D0 0 0 % 1*� 0 0 0 0E� ;  

(7) 

�A � D0 0 1'� 0 0 0 0 0E� ; 
�C � 10 0 0 0 1 0 0 00 0 0 0 0 1 0 02 

Now, the continuous-time representation (6) is discretized by 

the Euler approach with the sample time F  and subjected to 

system and measurement noises � and �. Thereby 

G:�H � 1� � @IJ:�H�K � �I��H� � �I��� � ��H�B�H� � �C:�H� � ��H�                                             (8) 

where 

@IJ:�H�K � :�H� � F@J:�H�K; �I � F�A; �I � F�A 

b) Dual-Extended Kalman Filter 

The main objective is to estimate the state vector :L in the 

presence of noise. The conventional EKF is modified such that 

it estimates the actual system states and faults separately and 

simultaneously. In this regard, a dual-EKF (D-EKF) is proposed, 

which contains three modified EKFs each of which estimates 

the states, actuator fault, and sensor fault. To develop the D -

EKF, the augmented state vector is split into two vectors as :�H� � �M��H�   	��H��� , where M�H� �����H�  ���H�  ���H�  ���H�  �;�H�  �<�H���  and 	�H� ��	
�H�   	�H��� � ��=�H�   �>�H��� . Thereby, the nonlinear 

dynamics (8) are represented by their corresponding Jacobian 

matrix, as follows: 

⎩⎪⎨
⎪⎧DM�H � 1�	�H � 1�E � DΨ!!�H� Ψ!9�H�0 S E DM�H�	�H�E � �I��H�

                          ��I��� � D�!�H��9�H�E                              
��H� � �C�M��H�    	�H��� � ��H�                          

 (9) 

where  ��H� � T�!��H�, �9��H�U�
, �C � ��!  0  0� , �I ���!�   0   0��, �I � ��!�   0  0��, and  

�! � 10 0 0 0 1 00 0 0 0 0 12 ; �! � D0 0 0 % F*�E� ; 
�! � D0 0 F'� 0E�

 

 

(10) 

Also, ��H� are the system and measurement noise vectors, 

characterized by Gaussian function ℊ  with mean vector and 

variance matrix, as follows: 

D�!�H��9�H�E ~ℊ X0, DY!�H� 00 Y9�H�EZ (11) 

��H�~ℊ�0, +�H�� (12) 

Also, 

Ψ!!�H� � D[@I��:�[\ … [@I<�:�[\ E�^_`_�a� (13) 
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Ψ!9�H� � b[@I��:�[	 … [@I<�:�[	 c�d
_`_�a� (14) 

Inspired from the dual estimation idea [16]–[18], in the 

following, D-EKF is developed for the system (9): 

• Initial conditions for the state EKF 

?M̂f�0� � �gM�0�h                                                    0!f�0� � �g�M�0� % M̂f�0���M�0� % M̂f�0���h (15) 

 

• Initial conditions for the fault EKF 

⎩⎪⎨
⎪⎧	i�0� � �g	�0�h                                                   09f�0� � � jJ	�0� % 	i�0�KJ	�0� % 	i�0�K�k

Γ9!�0� � [M̂f[	 ^9`9i�m�                                              (16) 

where M̂f�. � , and 	i�. �  are the estimations of M�. �  and 	�. � , 

respectively, 0!f�. �, and 09f�. � are the covariance matrices of 

the estimation errors. For H � 1,2, …  the following recursive 

algorithms are performed: 

• Algorithm of the state EKF 

⎩⎪⎪
⎨
⎪⎪⎧

M̂p�H� � Ψ!!�H�M̂f�H % 1� � �!��H� � �!���          �Ψ!9�H�	i�H�                                    0!p�H� � Ψ!!�H�0!f�H % 1�Ψ!!� �H� � Y!�H % 1�q!�H� � 0!p�H��!�J�!0!p�H��!� � +�H�Kp�        M̂f�H� � M̂p�H� � q!�H�J��H� % *!M̂p�H�K         0!f�H� � �S % q!�H��!�0!p�H�                               
 (17) 

• Algorithm of the fault EKF 

⎩⎪⎪
⎨
⎪⎪⎧

09p�H� � 09f�H % 1� � Y9�H % 1�                         
q9�H� � 09p�H��9� r�909p�H��9��H� � +�H�sp�
	i�H� � 	i�H % 1� � q!�H�J��H� % �!M̂p�H�K    09f�H� � JS % q9�H��9K09p�H�                               Γ9!�H� � �S % q!�H��!� rΓ9!�H % 1� � Ψ!9�H�s 

 (18) 

where �9 � �!Γ9!�H % 1�. 

The flowchart of the D-EKF algorithm is summarized in 

Fig. 3. As can be seen in Fig. 3, the state EKF shares its 

estimation with the faults EKF and gets the faults information. 

If there is no occurring fault, the faults EKF stops and its 

corresponding information will be not needed in the state EKF 

and it operates independently. This can be done by setting 	i�H� � 0 or 	i�H� � 	∗, where 	∗ is the last estimated constant 

value of the faults, in (17). The output of the D-EKF is system 

states and faults, which are needed for different actions such as 

online monitor, advanced control, as wells as repairing or 

replacing the converter. 

 

IV. SIMULATION RESULTS 

The developed estimator is applied the DC MG dynamics (2) 

with the parameters &� � 1.1 �Ω� , '� � 39.5 �y�� , *� �500 �6@� , &� � 1 �Ω� , '� � 17 �y�� , *� � 500 �6@� , + �100 �Ω�, 0 � 300 �{�, ��� � 200 ���, and �! � 0. Also, the 

sampling time is F � 0.2 �y\M|�. Also, the actuator and sensor 

faults are chosen as follows: 

	
 � }0            0 ~ � ~ 11            1 < � ~ 4%1             4 < �      
	 � �0                                    0 ~ � ~ 4

sin �2�3 �� % 4��             4 < �   
 

(19) 

 

 

Fig. 3. Implementation of the proposed estimation method. 

 

Also, it is considered that the voltage of the CPL is subjected 

to the sensor fault given in (19) and the voltage of the source 

connected convertor filter is measured accurately. The first-

order filter parameter is set as 7 � 0.1. The parameters of the 

D-EKF are selected as follows: 

State EKF: M̂f�0� � �1 200  1 200 0 0��; 0!f�0� � 10�S<;  
Y! � 10p;S<; +! � 1p�S� 

Fault EKF: 	f�0� � �0  0��; 09f�0� � 10�S�;  Γ9!�0� � 0<��; 
Y9 � ���� g10�, 10h; 

+9 � ����g10p�, 10p�, 10p�, 10p�h; 

(20) 

The states of the system and their estimations are given in 

Fig. 4. From Fig. 4 one infers that the state D-EKF accurately 

estimates the states in a about 0.5 �\M|�.  

 

Fault EKF (18) 

M̂f�H� 	i�H� 

First-order 

filter (4) 

� 

6�H� 

Proposed dual-

EKF 

• Control 

• Monitor 

• Maintenance 

���, ���, � �, � � 

	
, 	 

State EKF (17) 

DC MG with ESSs, CPLs, resistive 

loads, and faults (2) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. The states and their estimations (Actual value by the blue line and the 

estimated value by the red line): (a). ��, (b). ��. (c). ��, (d). ��. 

 

The absolute value of the estimation error for each of the 

states are given in Fig. 5. Compared to the amplitude of the 

currents and voltages of the DC MG system, the estimation error 

amplitudes are neglectable. More precisely, the amplitude error 

amplitudes divided by their associate state amplitudes are 

0.2298, 0.0426, 0.3844, 0.0461, respectively. 

Moreover, the estimation of the actuator and sensor faults 

are given in Fig. 6. As can be seen in Fig. 6, the proposed 

approach estimates the actuator fault faster than the sensor fault. 

This is an advantage especially for advanced control of power 

grid. The reason is that the system states and actuator fault are 

estimated fast and the control law is related to these quantities. 

Though, it is worthy to note that the converge speeds of the EKF 

estimations are influenced by the initial conditions of the EKFs.  

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. The absolute values of the errors of the system states: (a). Error of ��, 

(b). Error of ��, (c). Error of ��, (d). Error of ��. 

 

Additionally, the actuator fault 	
 changes promptly as can 

be seen in Fig. 6(a) and(19). On the other hand, the dual-EKF 

needs a transient time response to act and estimate the correct 

value. Consequently, at the moment of the step change in the 

faults, the overall estimator produces, a small estimation error 

to all states and faults.  

However, if the fault changes smoothly like the sensor fault 

in Fig. 6(b), no estimation error will occur. As can be seen in 

Fig 6(b), the sensor fault oscillates after � > 4 �\M|�, but the 

estimation errors in Fig 5 and 6 are almost zero for � > 5 �\M|�. 
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(a) 

 
(b) 

Fig. 6. The actuator and sensor faults and their estimations (Actual value by the 

blue line and the estimated value by the red line): (a). 	
, (b). 	. 

 

V. CONCLUSION 

In this article, the issue of state and actuator and sensor faults 

estimation for DC MGs with nonlinear dynamics was studied. It 

was assumed that the considered DC MG feeds linear resistive 

loads and nonlinear CPLs. A novel dual-EKF approach, through 

which two EKFs were combined, was suggested for the power 

system. It was shown that the state EKF can work independent 

to the fault EKF. So, it is possible to use only one Kalman filter 

whenever the actuator fault does not happen. Or, each of the 

Kalman filters is implemented on a processor. Numerical results 

showed that in the presence of actuator and sensor faults, the 

dual-EKF accurately estimates the states and the faults. For 

future work, considering fault-tolerant control approach for the 

power system is suggested. 
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