
Influence of Demand Response Programs in Microgrids Facing Photovoltaic and 

Battery Integration 

Bruno P. Ramos 

Fac. Eng. University of Porto (FEUP) 

Porto, Portugal  

e-mail: up201504544@edu.fe.up.pt

Morteza Vahid-Ghavidel 

FEUP and INESC-TEC 

Porto, Portugal 

e-mail: mv.ghavidel@gmail.com

Gerardo J. Osório 

Portucalense Univ. Infante D. 

Henrique, Porto, Portugal 

e-mail: gerardo@upt.pt

Miadreza Shafie-khah 

Univ. of Vaasa 

Vaasa, Finland 

e-mail: mshafiek@univaasa.fi

Ozan Erdinç 

Yıldız Technical Univ. 

Istanbul, Turkey 

e-mail: ozanerdinc@gmail.com

João P. S. Catalão 

FEUP and INESC TEC 

Porto, Portugal 

e-mail: catalao@fe.up.pt

Abstract—Yearly, the number of Distributed Energy Resources 

(DER) integrated into the power grid increases has increased, 

having a large impact on power generation globally, promoting 

the introduction of renewable energy resources (RER). To 

increase the flexibility of the power system with integrated 

RER, the introduction of energy storage systems (ESS) is 

essential. Demand response (DR) programs also help to 

increase grid flexibility, resulting in increased grid reliability 

as grid congestion and losses decrease. However, this new 

paradigm shift needs further research and careful analysis. In 

this work, two types of DR programs are addressed to promote 

greater participation by different consumers features. To 

interconnect the different consumers, DR aggregators are 

inserted to ensure that individual consumers have influence on 

the power market. All these aspects, if accompanied by 

information, measurement, communication, and control 

systems, give rise to the smart grids, playing an essential role. 

The results show, considering the worst uncertainty case 

scenario, that there is a suitable total RER of 2151.50 kW, 

against 3227.30 kW, by not considering the RER uncertainty. 

Keywords-Demand response aggregator; Energy storage; 

Robust optimization; Smart grid; Solar photovoltaic generation. 

I.  INTRODUCTION

Climate change is a huge environmental problem that 
humanity has been fighting against. According to the 2030 
Agenda for Sustainable Development of the United Nations 
(UN) [1], the environmental challenges to be faced are 
diverse and complex.  

The generation of electricity in smaller amounts, closer to 
end-users and using RER can dramatically increase the 
energy efficiency, reduce CO2 emissions, improve the grid 
resiliency, and reduce the need for new transmission system 
investments [2]. Because of the characteristic shared among 
all the renewable sources, their variability introduce 
uncertainty in the power system, becoming difficult to 
predict the electricity generation from RER like solar or 
wind, which happens due to the unpredictability of weather 
conditions. In the solar photovoltaic (PV) generation case, 
the variability and unpredictability of generation brings a 
problem for its integration in the grid.  

The PV variability may lead to excess or lack of power 
generation comparative to the consumer demand. As a result, 
PV generation installed alone in the grid have a low level of 
reliability and efficiency [2]. Integrating PV into power grids 
is a great solution to reduce losses in transmission and 
distribution cables, to increase resilience in the grid, to lower 
the costs of power generation, and to reduce the need to 
invest in new utility to increase the generation capacity [3].  

ESS technology led to an evolution of the battery storage 
along with other storage types but ultimately with a different 
direction of peak shaving or short-term outage prevention. 
Nowadays, ESS lead to delay capacity [4], grid expansions 
[5], frequency and voltage balancing [6], [7], among others. 
Also, ESS is usually categorized based on their application 
time-scale, which are referring to the time that it takes 
between the storage and the use of the energy [8].  

This work was developed to solve some challenges that 
the penetration of RER inflicts in the grid. The main RER 
that is approached in this work is the solar PV. The work 
presented in this paper is related to the introduction of PV 
and ESS, in the consumer side of the grid, and the impacts 
analysis that the integration will have in the profit of a DR 
aggregator. The DR aggregator could be implemented in a 
microgrid to bring together all the DR from the consumer 
and sell it to the purchaser that can be independent system 
operators, to participate in the energy market. The model 
developed has as objective to maximize the DR aggregator 
profit with the inclusion of PV generation and battery ESS 
(BESS) at the consumer side. To do that, given a PV 
generation scenario, the code will reach to the best feasible 
solution for the DR aggregator of PV-battery-consumer 
power exchanges interactions and with the purchaser (ISO) 
maximizing the profit. Furthermore, a study about the PV 
generation uncertainty considering the robust optimization 
programming is considered, observing the impacts of the 
uncertainty of PV generation, which may result of the 
weather conditions uncertainty or season of the year. 

II. PROBLEM FORMULATION

The model developed in this work is composed by three 
different types of electricity consumers, which are residential, 
commercial, and industrial.  
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Each of them is linked to the electricity market using a 
DR aggregator, which aggregates all consumers demand to 
sell to the ISO. The consumers can establish contracts with 
the DR aggregator using two different types of DR programs, 
such as, reward-based DR programs, which may be an 
incentive base DR (IBDR) program type or time of use 
(TOU) program that is a price base DR (PBDR) program 
type.  

Then, the obtained DR aggregated is exchanged with 
purchasers through the establishment of DR option 
agreements, or fixed DR contracts. In addition, it is 
integrated closer to the consumers solar PV generation for 
self-consumption and with a BESS that may be charged with 
the excess of PV generation and discharged when the prices 
of energy are higher, or the PV generation is not enough to 
supply all demand.  

The BESS could also be charged directly with the power 
bought by consumers to DR aggregator, when the prices of 
electricity are lower. All these functionalities have as a 
purpose to maximize the DR aggregator profit and incentive 
the participation of consumers giving to them an active role 
on the power system.  

In Figure 1, is schematized the behavior and power 
exchanges for all the system that was modeled. Considering 
in the bottom block the three consumer types equipped with 
solar PV generation and BESS. Then, these consumers are 
aggregated by the DR aggregator using the two types of DR 
programs, TOU and reward-based DR. Finally, through fixed 
DR contracts and DR option agreements the DR aggregator 
link the consumers to the power system. 

Such arrangement is used to motivate the consumers to 
increase their consumption at off-peak periods, and at on-
peak periods DR is obtained from consumers, which means 
that they reduce their consumption and with the introduction 
of the PV generation and BESS in the consumer side, they 
could decrease the need to purchase electricity from the 
aggregator directly using the PV electrical generation 
with/without the BESS at each time slot.  

 
Figure 1. DR aggregator structure with PV generation and BESS system 

This code was constructed based on the model for DR 
aggregator presented [9], considering the solar PV generation 
and BESS of the consumers, analyzing the impacts that it has 
on the DR aggregator profit, and the iterations between all 
the DER that are integrated in this model, PV generation, 
BESS, DR programs.  

Firstly, it is analyzed the behavior of the deterministic 
optimization model, to observe the impact of the integration 
of PV generation and battery, on DR aggregator functionality. 
Finally, it is inserted the uncertainty of PV generation to 
simulate the uncertain nature, using a robust optimization 
programming method. 

A. Mathematical Formulation 

1) Fixed DR contracts 
The acquired demand response by the aggregator is 

traded to the purchaser using the block b of fth contra 

including the prices 𝜆𝑓,𝑏
𝐷𝑅(𝑡) , DR 𝑃𝑓,𝑏

𝐷𝑅(𝑡) , and DR 

(𝑃𝐷𝑅(𝑓 ; 𝑏)), that is expressed by Equations (1) and (2). 
The 𝑃(𝐹𝐷𝑅) corresponds to the income in dollars for the 
DR aggregator, resulted from the sale of DR to purchasers 
that was bought and to the consumers, using DR programs 
and then aggregated. Nb and Nf are the number of available 
blocks and contracts respectively. 

𝑃(𝐹𝐷𝑅) = ∑ ∑ ∑ 𝑃𝑓,𝑏
𝐷𝑅(𝑡). 𝜆𝑓,𝑏

𝐷𝑅(𝑡)

𝑁𝑏

𝑏=1

𝑁𝑓

𝑓=1

𝑇

𝑡=1

 (1) 

𝑝𝑓,𝑏
𝐷𝑅,𝑚𝑖𝑛 ≤ 𝑝𝑓,𝑏

𝐷𝑅(𝑡) ≤ 𝑝𝑓,𝑏
𝐷𝑅,𝑚𝑎𝑥  , ∀𝑡 (2) 

2) DR option agreement 
After examining the profitability of the DR option 

chosen for the day, the DR aggregator set an agreement with 
the purchaser. This agreement can be cancelled but the DR 
aggregator needs to pay a penalty fee to the purchaser.  

This agreement is expressed in Equation (3), where the 
first term refers to the income for DR aggregator, resulted 
from the purchase of a DR, specified in the pool of the day 
at the option chosen by DR aggregator, at every hour 
𝑃𝑜𝑝

𝐷𝑅(𝑡), at the correspondent price λ𝑜𝑝
𝐷𝑅(𝑡) specified in the 

pool of options. The second term is related to the penalty 
that the DR aggregator must pay to the purchaser if it 
cancels the agreement.  

To see if the agreement is executed or cancelled at every 
hour of the day, it is used the binary variable 𝑣𝑜𝑝

𝐷𝑅(𝑡), which 

is 0 if the agreement is cancelled or 1 if it is executed. 
Equation (4) is a constraint used to limit the value of agreed 
DR in the DR option agreement. 

𝑃(𝑂𝐷𝑅) = ∑ ∑ [𝑃𝑜𝑝
𝐷𝑅(𝑡). 𝜆𝑜𝑝

𝐷𝑅(𝑡)

𝑁𝑜𝑝

𝑜𝑝=1

𝑇

𝑡=1

− (1 − 𝑣𝑜𝑝
𝐷𝑅(𝑡)) . 𝑓𝑜𝑝

𝑝𝑒𝑛(𝑡)] 

(3) 

𝑝𝑜𝑝
𝐷𝑅,𝑚𝑖𝑛 ≤ 𝑝𝑜𝑝

𝐷𝑅(𝑡) ≤ 𝑝𝑜𝑝
𝐷𝑅,𝑚𝑎𝑥  ,

∀𝑜𝑝 = 1,2, … , 𝑁𝑜𝑝 
(4) 
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3) Reward-based DR program 
This program is modeled, using Equations (5) to (9). 

With Equation (5) it is possible to model the reduction of 
load by the consumers in which PF(t) indicates the 
participation level of consumers from 0 (unattainable) to 1 
(attainable). Equation (6) refers to the donated reward to the 
consumer for the chosen block at each hour, which is 
limited by Equation (7). the Equation (8) and (9) certify that 
the model only chose one reward-based DR step for the load 
reduction at each hour of the day. 

𝑃𝐷𝑅(𝑡) = ∑ 𝑃𝐹(𝑡). 𝑃̅𝑗
𝐷𝑅(𝑡)

𝑁𝐽

𝑗=1

. 𝑣𝑗
𝐷𝑅(𝑡), ∀𝑡, ∀𝑗 (5) 

𝑅𝐷𝑅(𝑡) = ∑ 𝑅𝑗
𝐷𝑅(𝑡)

𝑁𝐽

𝑗=1

, ∀𝑡, ∀𝑗 (6) 

𝑅̅(𝑗−1)
𝐷𝑅 (𝑡). 𝑣𝑗

𝐷𝑅(𝑡) ≤ 𝑅𝑗
𝐷𝑅(𝑡) ≤ 𝑅̅𝑗

𝐷𝑅(𝑡). 𝑣𝑗
𝐷𝑅(𝑡),

∀𝑡, ∀𝑗 
(7) 

∑ 𝑣𝑗
𝐷𝑅(𝑡)

𝑁𝐽

𝑗=1

= 1 , ∀𝑡, ∀𝑗 (8) 

𝑣𝑗
𝐷𝑅(𝑡) ∈ {0,1} (9) 

4) Time-of-Use program 
In TOU programs, the DR aggregator offers different 

prices to the consumers to possibility the consumer to 
modify their electricity usage profile according to the 
offered prices. Elasticity of consumers electricity 
consumption and, their participation in TOU program is 
proportional with each other, which means that if the price 
decrease, more flexible should be the consumer. This 
program is modeled by Equation (10). The TOU(t) is related 
to the bill difference resulted from shifting loads by the 

consumer, which 𝐸(𝑐, 𝑡, 𝑝), refers to the elasticity of the 
consumer. 

𝑇𝑂𝑈(𝑡)

= ∑ 𝐷0(𝑐, 𝑡) ∑ 𝐸(𝑐, 𝑡, 𝑝) (
𝜆(𝑐, 𝑝) − 𝜆0(𝑐, 𝑝)

𝜆0(𝑐, 𝑝)
) , ∀𝑡

𝑃

𝑝=1

𝑁

𝑐=1

 (10) 

5) Battery energy storage system 
For the electrical energy storage system constraints, the 

Equations (11) and (12), respects to the limitation of the 
power discharged from the battery and the power charged to 
the battery at each hour of the day, respectively.  

In Equations (13) to (16) is defined the SOC constraints 
with (13) and (14) defining the initial state of charge of the 
battery. Equations (15) and (16), respects to the SOC of the 
battery in the next time slot before one hour charging or 
discharging, and the SOC value upper and lower limitation, 
respectively. 

0 ≤ 𝑃𝑑𝑐ℎ(𝑡) ≤ 𝑢𝑑𝑐ℎ(𝑡) + 𝑃𝑑𝑐ℎ
𝑚𝑎𝑥, ∀𝑡 (11) 

0 ≤ 𝑃𝑐ℎ(𝑡) ≤ 𝑢𝑐ℎ(𝑡) + 𝑃𝑐ℎ
𝑚𝑎𝑥, ∀𝑡 (12) 

𝑎. 𝑆𝑂𝐶𝑚𝑎𝑥 = 𝑆𝑂𝐶(𝑡 = 𝑇𝑓𝑖𝑛𝑎𝑙) (13) 

𝑆𝑂𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑎. 𝑆𝑂𝐶𝑚𝑎𝑥 (14) 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡 − 1) + 𝑃𝑐ℎ(𝑡). 𝜂𝑐ℎ −
𝑃𝑑𝑐ℎ

𝜂𝑑𝑐ℎ
≥ 1 (15) 

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶(𝑡) ≤ 𝑆𝑂𝐶𝑚𝑎𝑥, ∀𝑡 (16) 

0 ≤ 𝑢𝑑𝑐ℎ + 𝑢𝑐ℎ ≤ 1, ∀𝑡 (17) 

6) PV generation 
The next three Equations, (18) to (20), are for the PV 

generation array. The PV array upper and lower limitation is 
in Equation (18). The two Equations, (19) and (20), refers to 
the minimum and maximum values that the PV generation 
in each time slot may have for the robust optimization 
problem. 

𝑃𝑝𝑣
𝑚𝑖𝑛(𝑡) ≤ 𝑃𝑝𝑣(𝑡) ≤ 𝑃𝑝𝑣

𝑚𝑎𝑥(𝑡), ∀𝑡 (18) 

𝑃𝑝𝑣
𝑚𝑖𝑛(𝑡) = 𝑃𝑝𝑣

𝑎𝑣𝑔(𝑡). (1 − 𝛼), 𝛼 ∈ [0,1], ∀𝑡 (19) 

𝑃𝑝𝑣
𝑚𝑎𝑥(𝑡) = 𝑃𝑝𝑣

𝑎𝑣𝑔(𝑡). (1 + 𝛼), 𝛼 ∈ [0,1], ∀𝑡 (20) 

7) Robust Optimization Programming Model 
The next equations are relative to the robust 

optimization programming model formulation for the solar 
PV generation uncertainty. Due to the fact this is a 
maximization problem of the DR aggregator profit, for the 
formulation of the RO model it is necessary to minimize the 
total PV generation of the day according to the budget of 
uncertainty value Γ, defined as an integer parameter, which 
value may fluctuate between 0 and 𝑇 (total number of time 
slots considered), which in this case 𝑇 =  24. 

If 𝛤 =  0, it is the same that ignoring the effect of the 
uncertainty parameter and we obtain the results for the 
deterministic model considering the 𝑃𝑝𝑣

𝑚𝑎𝑥(𝑡) in all time 

slots, resulting in the best-case scenario for the DR 
aggregator profit maximization. If it is considering the  
𝛤 =  𝑇 , it is the same that consider the PV generation 
uncertainty in all time slots, resulting in the worst-case 
scenario for the DR aggregator, so it turns the minimum 
value of profit maximization possible. The uncertainty 
interval for 𝑃𝑝𝑣(𝑡)  is defined in Equations (18) to (20). 

Considering a percentage of the average PV generation of 
20 scenarios of production. To obtain the Equations (21) to 
(28), it is considered 2 dual variables 𝜉(𝑡) and 𝛽 which are 
inserted in the Equation (21) with negative signs. This 
happens to insert the PV uncertainty parameter in the 
balance equation of the maximization model (30). Changing 
the signal, it is possible to just maximize the profit, 
maximizing the total PV generation deviation, minimizing 
the PV generation at the same time respecting the 
considered Γ value.  

Equation (21) is calculating the total PV generation of a 
day considering the uncertainty budget. For each hour the 
RO is using the maximum PV generation. If 𝛤 =  0 and 
knowing that this problem is a maximization problem, 
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maximizing the profit of DR aggregator the model is 
considering the best-case scenario for the PV generation 
where at every hour the generation is maximum.  

Increasing the Γ, the model is considering the worst-case 
scenarios of production for the number of time slots equal to 
Γ, so the problem became a Max-Min type. To solve that, 
and to transform this into a maximization type problem, it is 
added two dual variables that are limited in Equations (23) 
to (25). 

𝑃𝑝𝑣
𝑇𝑜𝑡𝑎𝑙 = ∑[𝑃𝑝𝑣

𝑚𝑎𝑥(𝑡). 𝑥(𝑡) − 𝜉(𝑡)]

𝑇

𝑡=1

− 𝛤. 𝛽, ∀𝑡 (21) 

𝑃𝑝𝑣
𝑇𝑜𝑡𝑎𝑙 = ∑ 𝑃𝑝𝑣(𝑡)

𝑇

𝑡=1

, ∀𝑡 (22) 

𝛽 + 𝜉(𝑡) ≥ (𝑃𝑝𝑣
𝑚𝑎𝑥(𝑡) − 𝑃𝑝𝑣

𝑚𝑖𝑛(𝑡)) . 𝑦(𝑡), ∀𝑡 (23) 

𝜉(𝑡) ≥ 0, ∀𝑡 (24) 

𝛽 ≥ 0 (25) 

𝑦(𝑡) ≥ 0, ∀𝑡 (26) 

𝑥(𝑡) ≤ 𝑦(𝑡), ∀𝑡 (27) 

𝑥(𝑡) ∈ {0,1}, ∀𝑡 (28) 

8) Objective function 
Equation (29) is the objective function (OF) of the 

model, it is responsible to maximize the profit of the DR 
aggregator. The first term of the OF obtain the income from 
selling DR with fixed DR contracts to the purchasers. The 
second term the income of selling DR using DR option 
agreements to the purchasers followed by the penalty fees if 
the DR aggregator cancels that agreement.  

The last term represents the rewards that the DR 
aggregator needs to pay to the consumers that assign to the 
reward-based DR four their load reduction. Maximizing the 
OF is the same that maximizing the PV generation, the 
model is minimizing the PV generation while the objective 
function is being maximized because of the inserted 
constraints of the RO model. 

Furthermore, Equation (30) represents the energy 
balance of the system between the demand and supply of 
energy. In this equation, is integrated the power charged and 
discharged of the BESS and the solar PV generation at each 
hour considering the uncertain nature of this RER, using the 
robust optimization (RO). The first and second terms of 
Equation (30) are related to the DR traded by the DR 
aggregator with the purchaser using DR fixed contracts and 
DR option agreements, respectively. The third term is 
related to the DR traded by the consumer with the DR 
aggregator using reward-based DR program.  

The fourth, is the load difference resulted from the use 
of TOU program at each hour. The fifth and sixth terms are 
related to the power that is used to charge and the power 
that is discharged of the BESS at each hour of the day. 
Finally, the last term is related to the PV production at each 

hour of the day, and it can be considering uncertainty if in 
the RO programming model, the budget of uncertainty 
upper than zero or not if this budget of uncertainty is equal 
to zero. 

The following constraints are related to all the variables 
that are inserted in the OF and in the balance equation. In 
addition to the balance constraint, to the objective function 
equation is added as constraints associated to Fixed DR 
contract Equation (2), that is associated to Fixed DR 
contracts.  

Equation (4), associated to DR option agreements. 
Equation (5), associated to TOU program. Equations (6) to 
(10), associated to the reward-based DR program. Equations 
(11) to (17) associated to the BESS. Equations (18) to (20), 
associated to the PV generation model. Equations (21)-(28), 
associated to the robust optimization programming method. 

𝑀𝑎𝑥 𝐵 = ∑ [∑ ∑[𝑃𝑓,𝑏
𝐷𝑅(𝑡). 𝜆𝑓,𝑏

𝐷𝑅(𝑡)]

𝑁𝑏

𝑏=1

𝑁𝑓

𝑓=1

𝑇

𝑡=1

+ ∑ [𝑃𝑜𝑝
𝐷𝑅(𝑡). 𝜆𝑜𝑝

𝐷𝑅(𝑡)

𝑁𝑜𝑝

𝑜𝑝=1

− (1 − 𝑣𝑜𝑝
𝐷𝑅(𝑡)) . 𝑓𝑜𝑝

𝑝𝑒𝑛(𝑡)]

− ∑ 𝑃𝐹(𝑡)

𝑁𝑗

𝑗=1

. 𝑃𝑗

𝐷𝑅
(𝑡). 𝑅𝑗

𝐷𝑅(𝑡)] 

(29) 

∑ ∑ 𝑃𝑓,𝑏
𝐷𝑅(𝑡)

𝑁𝑏

𝑏=1

𝑁𝑓

𝑓=1

+ ∑ 𝑃𝑜𝑝
𝐷𝑅(𝑡)

𝑁𝑜𝑝

𝑜𝑝=1

= 𝑃𝐷𝑅(𝑡) − 𝑇𝑂𝑈(𝑡) − 𝑃𝑐ℎ(𝑡)
+ 𝑃𝑑𝑐ℎ(𝑡) − 𝑃𝑝𝑣(𝑡), ∀𝑡 

(30) 

III. CASE STUDY AND RESULTS 

The proposed program is formulated as a mixed integer 
linear program (MILP) and was used the CPLEX solver 
under General Algebraic Modeling System (GAMS) to 
obtain the results. To study the proposed model, different 
values of uncertainty budget was inserted to the RO model, 
to simulate the PV generation uncertainty of the PV-battery 
system. For this model is considered two distinctive time 
periods of a day, the on-peak period, which is considered 
from 9:00 am until 10:00 pm and the off-peak period are the 
remaining hours of the day. In addition, in this model are 
considered three different types of consumers, which are 
residential, commercial, and industrial, each one with 
different characteristics of consumption. Furthermore, for the 
PV array, was imported 20 scenarios of PV production from 
Belgium measures and up scaled values using the website 
[10]. 

Then, the average of all 20 scenarios of generation 
resulted the p.u. values of a possible scenario of production 
dividing the PV array average for the maximum nominal 
capacity of PV generation of the forecast values. The DR is 
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being bought from the consumers by the DR aggregator and 
then it is being sold to the purchasers by the aggregator 
during the on-peak hours and during the off-peak periods the 
DR is by the customers to the DR aggregator and then it sells 
again to the consumer the DR.  

TOU prices for each consumer are derived from retail 
tariffs from reference [11]. The data for reward-based DR 
programs was extracted from [12]. For PV generation in 
deterministic model the values were obtained from extracting 
20 case production scenarios, measured and upscaled. Then 
those profiles were used considering 500 kW installed PV 
generation on the consumer side. For the robust optimization 
model, it is considered that the budget of uncertainty can 
takes value from 0 to 24 (Γ). It is also defined that the 
minimum PV generation is 80% of the average PV 
generation that was obtained from 20 scenarios of generation 
and the maximum PV generation possible is 120% of that 
PV average. 

It is possible to find out that, when 𝛤 = 0, is considered a 
deterministic resolution of the model using the maximum PV 
generation for the PV array so in this situation, the profit is 
maximum with a value of 311.7 thousand of dollar. Hence, 
when it is considered 𝛤 =  24, the profit is the minimum 
possible, with a value of 278.3 thousand of dollar, this is due 
to consider the PV minimum values for every hour of the day, 
being the worst situation possible. The DR aggregator is 
ranging from 278.3 to 311.7 thousand of dollar considering 
the uncertainty of PV generation. Analyzing the Figure 2, 
between 𝛤 =  0  and 𝛤 =  12  approximately, the profit 
reduction is reversely linear with uncertainty. After 𝛤 =  12, 
the profit starts to be a constant distribution. This occurs 
because of the RO program start to introduce the uncertainty 
in the hours when the sun radiation is lower so, increasing 
the budget of uncertainty, the deviation of profit turns 
smaller.  

The model minimizes the PV generation in the hours that 
has more generation minimizing the daily PV generation, 
maximizing the profit. Increasing the budget of uncertainty, 
the RO programming method starts to act in the hours when 
the PV generation is low because of the small or none 
amount of sun radiation. Because of that the deviation of the 
profit at high values of uncertainty is getting smaller and 
smaller until being zero. Observing the PV generation array 
for the 24 hours of the day, using different values of 
uncertainty budget, it is possible to verify that when 𝛤 =  0 
it is considered deterministic model values for the PV 
generation, so the PV generation uncertainty is not 
considered. Increasing the Γ is the same to increase the 
uncertainty on the PV generation. In Figure 3 that the RO 
model starts to minimize the time slots of the day when the 
sun radiation is higher, around the mid of the day, 
minimizing the total PV generation of the day considering 
the budget of uncertainty chosen. Increasing the uncertainty 
budget value, the total PV generation decrease. 

Increasing the uncertainty budget value, the total PV 
generation decrease. In Table I are the values of total PV 
generation for one day and is possible to see that these values 
decrease with the increase of uncertainty. The BESS is used 
to charge the excess of supply using in the future, improving 

the flexibility of the consumers. In Figure 4, is shown that 
the state of charge (SOC) of the BESS increase over the first 
hours of the day, this is a result of the off-peak period in 
those hours so, the battery is only charged, which is verified 
by Figure 5.  

The battery discharges a total of 112.83 kW and charge a 
total of 165.90 kW for a value of 𝛤 =  0. For 𝛤 =  7, the 
battery discharge 105.30 kW and is charged 154.90 kW.  

 
Figure 2. Profit of DR aggregator considering the PV generation 

uncertainty budget. 

 
Figure 3. PV generation for different values of uncertainty Γ for all time 

slots of one day. 

TABLE I: PV GENERATION FOR AN ENTIRE DAY USING DIFFERENT Γ 

VALUES  

Uncertainty budget (Γ) Total PV generation (kW) 

0 3227.30 

2 2998.60 

7 2486.40 

15 2153.70 

24 2151.50 

 
Figure 4. Energy stacked in the BESS for each time slot with Γ.  

Also, for 𝛤 =  15, the battery discharge 107.80 kW and 
is charged with 158.5 kW. Comparing both cases the charged 
power increase when 𝛤 =  15 due to higher load reduction 
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of the consumer resulted from the decrease of PV generation 
d when the uncertainty increases. The behavior of time-of-
use program implemented is in Figure 6 It is possible to 
observe that at on peak periods the difference between the 
initial demand and the demand after applied the TOU tariffs 
is positive, so the DR aggregator is increasing the supply to 
consumers in 117.9 kW per hour. At on peak period, the 
consumer is decreasing the demand in 335.9 kW per hour.  

In Figure 7 is represented the results for the reward-based 
DR program of the load reduction of the consumers at each 
hour and for different values of budget uncertainty. During 
the off-peak period, the values of increased load to 
compensate the decrease at the on peak period are the same 
for all hours and Γ. At on peak period, with the increase of 
PV generation the load reduction decreases, and the opposite 
happens. 

 
Figure 5. Charge and Discharge power in kW for all time slots with different 

Γ, in the BESS. 

 
Figure 6. Time-of-use program results in kW. 

 
Figure 7. Load power reduction by consumers in kW, for reward-based 

program for several Γ. 

IV. CONCLUSION 

The addition of ESS and DR programs to the solar PV 
generation is essential to overcome the uncertain nature of 

PV, improving the flexibility of the power system in terms 
of demand by the consumers and supply by the PV-battery 
system. It was possible to observe when the uncertainty 
from PV generation was not considered, it reached the 
maximum generation of 3227.30 kW, which decreased as 
expected when the uncertainty parameter Γ was considered, 
the worst-case PV uncertainty scenario from PV with 
2151.50 kW.  

The integration of DR programs through aggregators 
motivates the participation of the consumers in DR 
programs, contributing to the decentralization of the power 
system, promoting an active role to the consumer in the grid 
and electricity energy markets, where their consumptions 
profiles will impact the price of electricity. Hence, the 
application of this work in a power market was to 
understand how the consumers energy behavior would 
affect the price of electricity. Introducing the participation 
uncertainty of the consumers in DR programs would be an 
interesting theme for a future work. Also for future work, 
the integration of other sources of RER, such as wind 
together with the uncertainty of generation could be 
implemented.  
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