
1949-3053 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2021.3128631, IEEE
Transactions on Smart Grid

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, FEB. 2019 1

Flexibility Requirement when Tracking Renewable
Power Fluctuation with Peer-to-Peer Energy Sharing

Yue Chen, Member, IEEE, Wei Wei, Senior Member, IEEE, Mingxuan Li, Laijun Chen, Member, IEEE,
and João P. S. Catalão, Senior Member, IEEE

Abstract—Flexible load at the demand-side has been regarded
as an effective measure to cope with volatile distributed renewable
generations. To unlock the demand-side flexibility, this paper
proposes a peer-to-peer energy sharing mechanism that facilitates
energy exchange among users while preserving privacy. We
prove the existence and partial uniqueness of the energy sharing
market equilibrium and provide a centralized optimization to
compute the equilibrium. The centralized optimization is further
linearized by a convex combination approach, turning into
a multi-parametric linear program (MP-LP) with renewable
power output deviations being the parameters. The flexibility
requirement of individual users is calculated based on this MP-
LP. To be specific, an adaptive vertex generation algorithm
is proposed to construct a piecewise linear estimator of the
optimal total cost subject to a given error tolerance. Critical
regions and optimal strategies are retrieved from the obtained
approximate cost function to evaluate the flexibility requirement.
The proposed algorithm does not rely on exact characterization of
optimal basis invariant sets and thus is not influenced by model
degeneracy, a common difficulty faced by existing approaches.
Case studies validate the theoretical results and show that the
proposed method is scalable.

Index Terms—critical region, distributed renewable energy,
energy sharing, flexibility, multi-parametric program.

NOMENCLATURE

A. Indices, Sets, and Functions

I Set of consumers.
J Set of prosumers.
l ∈ L Line l in set L.
fk(.) Disutility function of user k ∈ I ∪J .

B. Parameters

I Number of consumers.
J Number of prosumers.
dk Contract demand of user k ∈ I ∪J .
wk Forecast renewable output of prosumer k ∈ J .
∆wk Real-time renewable power output deviation of

prosumer k ∈ J .
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τ Parameter in user’s objective function.
πkl Line flow distribution factors.
Fl Power flow limit of line l ∈ L.
αk,βk,ζk Parameters of the disutility function fk(.).
Dk,Dk Lower/Upper bound of demand adjustable range.

C. Decision Variables

∆dk Demand adjustment of user k ∈ I ∪J .
qc

k Actual sharing amount of user k ∈ I ∪J .
qk Expected sharing amount of user k ∈ I ∪J .
δk The gap between actual and expected sharing

amount of user k ∈ I ∪J .
rd

k Flexibility requirement of user k ∈ I ∪J .

I. INTRODUCTION

EXPLOITING distributed renewable generation is an ef-
fective remedy to reduce the dependence on fossil fuel

energy and achieve a sustainable society [1]. Meanwhile, how
to tackle the volatile and intermittent energy supply caused by
renewable generation has become a major concern. Existing
literature concentrates on two issues: 1) how to balance the
real-time power in an optimal way facing the uncertainties;
2) how to quantify the system’s potential in accommodating
uncertain renewable power.

For the first question, plenty of works developed effective
scheduling methods for the bulk power system that runs
in a centralized manner. Typical techniques are stochastic
optimization (SO) [2], robust optimization (RO) [3], and
distributionally robust optimization (DRO) [4]. In stochastic
optimization, the uncertain factors are modeled by their em-
pirical distributions, and then a stochastic programming or
chance-constrained problem is built. Though historical data
can provide some hints for the construction of empirical
distributions, the exact distributions can hardly be obtained.
This inaccuracy leads to a sub-optimal scheduling strategy.
Robust optimization utilizes an uncertainty set that contains
all possible scenarios of the renewable power output. The
worst-case performance is optimized via Benders Decompo-
sition [5] or Column & Constraint Generation (C&CG) [6]
algorithms. Despite its convenience, the RO method can be
too conservative since it treats all possible outputs with equal
probability and neglects the fact that severe events rarely
happen. Distributionally robust optimization is in-between SO
and RO, where uncertainty is described by a family of inexact
probability distributions restricted in an ambiguity set.
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As the renewable energy generations change from large-
capacity centralized units at the transmission level to small-
capacity distributed units at the distribution level, various re-
searchers seek to balance the real-time power with the help of
peer-to-peer energy trading [7]. Existing energy sharing mech-
anisms can be categorized into cooperative-game-based ones,
noncooperative-game-based ones, and optimization-based ones
[8]. For the first category, allocation rules are designed so that
all agents have the incentive to form coalitions and together
acting towards the social optimum. A coalition formation game
for peer-to-peer energy trading was established with proof
of several nice properties [9]. Network constraint [10] and
sustainable user participation [11] were further taken into
account. Though high social efficiency can be achieved, private
information is needed to design the allocation rules. For the
second category, two typical models are Stackelberg games
and (generalized) Nash games. In Stackelberg games, the
operator moves first to determine the market prices and then
the users follow as price-takers. The energy sharing among
prosumers was modeled as a Stackelberg game [12] and the
existence of a unique and stable equilibrium was proved [13].
A hybrid approach using stochastic optimization and Stackel-
berg game was developed for energy trading across the day-
ahead and real-time periods [14], [15]. User’s flexibility can
be limited as they are followers under this setting. Moreover,
it is hard to decide on an effective energy price especially
with a large number of users, since private information may be
needed and each user’s capacity is too small to be observed. In
(generalized) Nash games, the users first submit their bids and
then the operator clears the market. The energy trading was
modeled as a two-stage stochastic Nash game [16]. A gener-
alized demand function based energy sharing mechanism was
proposed [17], and a practical bidding process as well as its
convergence condition was established [18]. The above models
are for node-level sharing and how to incorporate network
constraints remains to be investigated. For the third category,
references [19] and [20] established two-stage energy sharing
schemes based on alternating direction method of multipliers
(ADMM) algorithms. They require the help of dual variables
and the economic intuition behind is hard to explain. This
paper aims to develop an energy sharing mechanism based
on generalized Nash game, which can protect users’ privacy,
take into account network constraints, has a clear economic
interpretation, and enlarge users’ flexibility by letting them be
bidders instead of followers. In this way, the flexibility of users
is enhanced and it can facilitate the energy exchange among
a wider area while network constraint is non-negligible.

For the second question, methods to quantify the flexibility
of a system are based either on regions or metrics. For
regions, the do-not-exceed limit (DNEL) region [21] and the
dispatchable region [22] are two well-known concepts. The
DNEL region is a hypercube of uncertain parameters that will
not cause infeasibility of the scheduling problem, and its size is
also optimized by the problem itself. Vast literature improves
the DNEL region by considering the historical data [23],
inexact probability distribution [24], and corrective topology
control [25]. Projecting the feasible set of the scheduling
problem on the uncertainty subspace, we can get the dis-

patchable region. In general, the DNEL region is an inner
box approximation of the dispatchable region. For metrics, the
flexibility envelope [26], the power/energy capacity [27], etc.
were proposed. A method providing both region and metric
was proposed [28]. The above works focused on centralized
operation and cannot be directly applied to the energy sharing
market. Reference [29] proposed the concept of absorbable
region, but only region information is given and it viewed
flexibility from a system level. This paper quantifies the
flexibility requirement of individual users under peer-to-peer
energy sharing by offering both region and metric information.

Quantifying the flexibility requirement of individual users
involves solving a multi-parametric linear program (MP-LP)
in this paper. In the majority of the current works, multi-
parametric program algorithms rely on the computation of
critical regions where degeneracy is a key challenge. To
overcome this difficulty, reference [30] resorted to developing
an approximate algorithm, which was then generalized to
multi-parametric convex programs [31]. A prominent feature
of the approximation methods is that the critical region is
represented by simplices in the p-dimensional parameter space
with p + 1 extreme points. Such a partition may hide the
impact of parameters on the optimal bases characterized by
the exact critical regions which are not simplices in general.
This paper proposes an alternative approximate algorithm for
solving MP-LP. The basic idea is similar to [30] but no simplex
is needed. The main contributions are two-fold:

1) Energy Sharing Mechanism. A peer-to-peer energy
sharing mechanism that coordinates the energy exchange
among users is presented. Each user bids the quantity it would
like to share aiming to minimize its disutility and match the
operator’s sharing profile. The operator decides on the optimal
sharing profile according to users’ bids and the physical
constraints. Compared to existing works, our mechanism is
easy to implement without requiring private information; can
incorporate the coupling network constraints; enlarges users’
flexibility by letting them be bidders instead of followers;
and have several nice provable properties. Under the proposed
mechanism, all users play a generalized Nash game. We
prove the existence and partial uniqueness of the generalized
Nash equilibrium (GNE) theoretically. The equilibrium can be
retrieved from a quadratic optimization problem parameterized
in the renewable power output deviation, which is then turned
into a multi-parametric linear program.

2) Flexibility Characterization. We characterize the flex-
ibility under energy sharing based on the multi-parametric
linear program derived above. To be specific, we develop an
adaptive vertex generation (AVG) algorithm to partition the
set of renewable generation deviations into critical regions,
so that in each region, the demand adjustment of each user
at equilibrium is shown to be a piecewise affine function in
the deviations. Based on this unique feature, the flexibility
requirement of users can be calculated. Compared to existing
works, our method can provide both geometry information
(critical region) and metric (flexibility requirement) about
flexibility. The proposed AVG algorithm does not rely on the
exact characterization of optimal basis invariant sets and thus
is not influenced by model degeneracy, a common difficulty
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encountered by solving multi-parametric linear programs.
The rest of this paper is organized as follows. Section

II presents the energy sharing mechanism and the multi-
parametric linear program to calculate the equilibrium. An
adaptive vertex generation algorithm is developed in Section
III to solve the multi-parametric program; based on the ex-
plicit demand adjustment policy, the flexibility requirement of
individual users can be obtained. Case studies in Section IV
validate the proposed models and methods. Conclusions are
drawn in Section V.

II. PEER-TO-PEER ENERGY SHARING MODEL

We consider a microgrid of I consumers (indexed by k ∈
I = {1, ..., I}) and J prosumers (indexed by k∈J = {1, ...,J}).
All users k ∈ I ∪J have demand while the prosumers are
also equipped with renewable generators. We focus on the
energy balancing at the real-time stage [32]. At the day-ahead
stage, there are renewable power predictions wk,∀k ∈ I based
on which the users decide on their contract demands dk,∀k ∈
I∪J . Then at the real-time stage, the actual renewable power
outputs may deviate from their predictions by ∆wk,∀k ∈ J .
To maintain energy balancing, the users k ∈ I ∪J can adjust
their real-time demands by ∆dk and exchange qc

k with each
other via an energy sharing market. The disutility caused by
demand adjustment can be represented as a quadratic function
fk(∆dk) := αk(∆dk)

2 +βk∆dk + ζk, where αk, βk, and ζk are
given parameters. This paper aims to quantify how much
flexibility of individual users will be needed so that the real-
time renewable power output deviations can be balanced.

Here, we assume the hour-ahead prediction is accurate and
its deviation from the day-ahead prediction is accommodated
by users’ demand adjustments. To further consider the intra-
hour forecasted errors, there are two possible approaches:
1) Implement the proposed energy sharing mechanism in a
smaller time resolution, e.g. 15 min, where more precise
predictions can be obtained. As shown in case studies, our
mechanism is still applicable as it only takes 30 seconds
to converge. 2) Settle the real-time unbalanced energy by
buying (selling) from (to) the main grid, and introduce a
penalty mechanism as in [12], [33] to settle the real-time losses
according to each participant’s contribution to the forecast
error. Details can be found in Appendix A.

A. Energy sharing mechanism

The structure of the proposed energy sharing mechanism is
shown in Fig. 1. First, each user enters its private information
into the smart meter it links to, including its disutility function
fk(∆dk), the contract demand dk, the demand adjustable range
[Dk,Dk], and the predicted output of renewable generators wk
if it is a prosumer. Then the smart meter will determine the
optimal bid qk by solving (2) or (3) and submit the bid to
the operator. Upon receiving all the bids, the operator decides
on the optimal sharing schedule to meet users’ expectation
as much as possible while satisfying the physical constraints
by solving (1). Then the obtained optimal schedule qc

k and
unfulfilled quantity δk := qc

k − qk are returned to the smart
meter. The smart meter will adjust its bid and submit it to

Fig. 1. Market structure of peer-to-peer energy sharing. Each consumer/
prosumer offers a bid qk to the operator; the operator clears the market and
returns the sharing profile qc

k with the gap δk . The users and operators are
coordinated iteratively.

the operator again. This happens until the optimal schedule
qc

k,∀k ∈ I ∪J changes little between the last two iterations.
Finally, the users will execute the sharing schedule qc

k,∀k ∈
I ∪J . If qc

k > 0, user k is a buyer; if qc
k < 0, user k is a

seller; if qc
k = 0, it does not take part in sharing. The key of

the energy sharing mechanism design lies in how each user
chooses the optimal bid qk and how the operator decides on
the optimal sharing schedule qc

k,∀k ∈ I ∪J .
For the operator, given users’ bids qk,∀k ∈ I ∪J , it solves

problem (1) to set the optimal sharing schedule qc
k,∀k ∈ I∪J :

min
qc

k,δk,∀k∈I∪J
∑k∈I∪J δ

2
k (1a)

s.t. δk = qc
k−qk,∀k ∈ I ∪J (1b)

∑k∈I∪J qc
k = 0 (1c)

−Fl ≤ πklqc
k ≤ Fl ,∀l ∈ L (1d)

The objective function (1a) minimizes the gap between the
actual and expected sharing amount. Constraint (1c) means the
energy sold equals the energy bought. The exchanged energy
is transmitted via the power network limited by constraint (1d).

The smart meter decides on its optimal bid qk by solving
For consumer k ∈ I:

min
∆dk,qk

fk(∆dk)+
τ

2
(qc

k−qk)
2 (2a)

s.t. qk +δk = dk +∆dk (2b)

Dk ≤ dk +∆dk ≤ Dk (2c)

For prosumer k ∈ J :

min
∆dk,qk

fk(∆dk)+
τ

2
(qc

k−qk)
2 (3a)

s.t. wk +∆wk +qk +δk = dk +∆dk (3b)

Dk ≤ dk +∆dk ≤ Dk (3c)

The objective of each user k ∈ I ∪J consists of two parts: its
disutility fk(∆dk) and the gap between its bid qk and operator’s
schedule qc

k. Parameter τ indicates the trade-off between
the above two parts and help evaluate the gap in monetary
terms. Constraints include the power balance conditions for
consumers (2b) and for prosumers (3b), and the demand
adjustable range limits (2c) and (3c).
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The proposed energy sharing mechanism well fits the
practice in that the users do not need to know the network
constraint (1d) available only to the operator, and the operator
does not require local constraints (2c) and (3c) private to each
user. Compared to centralized dispatch, our mechanism has
two advantages: 1) Regarding privacy. Centralized dispatch
needs to gather information from all users to make the central
decision. However, the users may be unwilling to provide this
sort of private information. In the proposed peer-to-peer energy
sharing, each user only needs to submit a bid to the operator
with its private data input only to its own smart meter, so
privacy can be preserved. 2) Less communication burden.
Under peer-to-peer energy sharing, the only information ex-
changed will be the bid, which is a scalar. However, under
centralized dispatch, the operator needs to collect information
such as cost coefficients, demands, and demand adjustable
boundaries, from all users, which incurs a high communication
burden overhead. Meanwhile, this mechanism can achieve a
social optimal outcome (proved in Proposition 1 later).

Remark 1: Our proposed energy sharing mechanism fo-
cuses on the real-time market [32], which will be conducted
hourly. In real-time, when the uncertainty is realized, we
resort to a mechanism similar to the economic dispatch [34]
(happens every several mins or an hour) to balance the system.
Specially, instead of balancing the real-time power via central-
ized dispatch, we develop an energy sharing mechanism that
allows the users to adjust their elastic demands and exchange
energy with each other. Automatic Generation Control (AGC)
that happens at a smaller time resolution and usually at the
transmission level is not considered in this paper as most of
the economic dispatch works [4], [34].

Remark 2: In this paper, deciding on the optimal bids
and finally the sharing quantities involve solving optimization
problems (2) or (3) and two-way communication with the
operator. With the current technology, advanced smart meters
have certain data processing abilities and enable two-way
communication between the meter and the central system
[35]. Therefore, it is reasonable to assume that with the
assist of a smart meter, the user would be able to decide
on the optimal bids. When taking into account various kinds
of appliances and facilities, the decision-making may become
more complex. In that case, we may need a more sophisticated
energy management system to handle all the devices.

B. Market equilibrium
The above peer-to-peer energy sharing market can be re-

garded as a generalized Nash game [36] with its elements sum-
marized in TABLE I. For simplicity, we use G = {K,X ,Π}
to denote the sharing game in an abstract form, where K is
the set of players, X the action set, and Π the collection of
cost functions. It’s worth noting that, the action sets of users
depend on the strategies of the operator (the qc

k,δk,∀k∈I∪J );
the action sets of the operator depends on the strategies of
the users (the ∆dk,qk,∀k ∈ I ∪J ). Therefore, it constitutes a
generalized Nash game, whose equilibrium is harder to analyze
than the standard Nash game due to the complex coupling [37].
The equilibrium of the generalized Nash game, from which
every player has no incentive to deviate, is defined below.

Definition 1. (Generalized Nash Equilibrium) A profile
(∆d∗,q∗,qc∗,δ ∗)∈X is a generalized Nash equilibrium (GNE)
of the energy sharing game G = {K,X ,Π} if ∀k = 1, ...,(I+J)

(∆d∗k ,q
∗
k) = argmin∆dk,qk

Πk(qc∗
k ,δ ∗k )

s.t. (∆dk,qk) ∈ Xk(qc∗
k ,δ ∗k ) (4)

and

(qc∗,δ ∗) = argminqc,δ ΠI+J+1

s.t. (qc,δ ) ∈ XI+J+1(∆d∗,q∗) (5)

In the following proposition, we prove the existence of the
equilibrium and offer a centralized optimization problem to
compute it, which casts down to multi-parametric program
parameterized in the renewable power output deviations. De-
note Q := {qc | (1c) and (1d) are met}, Dk := {∆dk | Dk ≤
dk +∆dk ≤ Dk} for all k ∈ I ∪J .

Proposition 1. The energy sharing game G = {K,X ,Π} has
at least one GNE if (6) is feasible, and (∆d∗,q∗,qc∗,δ ∗) is an
GNE if and only if ∆d∗ is the unique optimal solution of

min
∆dk,∀k∈I∪J

∑k∈I∪J fk(∆dk) (6a)

s.t. qc
k =

{
dk +∆dk,∀k ∈ I
dk +∆dk−wk−∆wk,∀k ∈ J

: ηk (6b)

∆dk ∈ Dk,∀k ∈ I ∪J (6c)
qc ∈Q (6d)

with δ ∗k = −η̂k/τ for all k ∈ I ∪J , where η̂ is the value of
dual variable at optimum, and qc∗

k = q∗k +δ ∗k with

q∗k =

{
dk +∆d∗k −δ

∗
k , ∀k ∈ I

dk +∆d∗k −wk−∆wk−δ
∗
k , ∀k ∈ J

(7)

The proof of Proposition 1 can be found in Appendix B.
It offers a more convenient way to calculate and analyze the
energy sharing game equilibrium by solving (6). As problem
(6) minimizes the total disutility of all users, ∆d∗ is social
optimal. Take the real-time renewable power output deviation
∆w as parameters, problem (6) can be regarded as a quadratic
multi-parametric optimization problem.

C. Linearization and compact form

For the sake of analysis, the objective function is linearized
via a convex combination approach [38]. Take a univariate
convex objective function z = g(ξ ), ξl ≤ ξ ≤ ξu for example.
The function is evaluated at some discrete points ξ1, · · · ,ξK ,
and z1 = g(ξ1), · · · ,zK = g(ξK). By introducing variables
σ1, · · · ,σK ≥ 0 and ∑

K
k=1 σk = 1, ξ and g(ξ ) in the optimization

problem can be replaced with linear functions ∑
K
k=1 σkξk and

∑
K
k=1 σkzk in σ , respectively. Applying this technique to (6a),

problem (6) turns into a multi-parametric linear program (MP-
LP) with the compact form as:

v(θ) = min
x

c⊤x

s.t. Ax≤ t +Bθ

(8)

where x ∈ Rn and θ ∈ Rp are vectors of decision variables
and parameters, respectively; A∈Rm×n, t ∈Rm, B∈Rm×p and
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TABLE I
ELEMENT OF THE ENERGY SHARING GAME

Players K Actions X Cost functions Π

consumer k = 1, · · · , I Xk(qc
k,δk) := {(∆dk,qk) | (2b) and (2c) are met.} Πk(qc

k,δk) := fk(∆dk)+ τ/2(qc
k−qk)

2

prosumer k = (I +1), · · · ,(I + J) Xk(qc
k,δk) := {(∆dk,qk) | (3b) and (3c) are met.} Πk(qc

k,δk) := fk(∆dk)+ τ/2(qc
k−qk)

2

operator k = I + J+1 Xk(∆d,q) := {(qc,δ ) | (1b)-(1d) are met.} ΠI+J+1 := ∑k∈I∪J δ 2
k

Fig. 2. A linear program (8) for computing the market equilibrium is derived
based on Proposition 1 and linearization techniques. Then AVG algorithm is
applied to calculate the flexibility requirement.

c∈Rn are input data. The decision variables x is bounded due
to the lower and upper bound constraints. Denote v(θ) and
x∗(θ) as the optimal value and optimal solution associated
with given parameter θ , respectively.

Based on the above MP-LP (8), in the following, we develop
an adaptive vertex generation (AVG) algorithm to approximate
the optimal cost and the demand adjustment at equilibrium
under different renewable output deviations and quantify the
flexibility requirements of individual users.

III. FLEXIBILITY CHARACTERIZATION

In this section, we first define the flexibility requirement of
individual users under energy sharing; then, an adaptive vertex
generation algorithm is developed to construct a piecewise
linear estimator of the optimal total cost and the demand
adjustment at equilibrium subject to a given error tolerance,
based on which we calculate the flexibility requirement. The
processing framework of the algorithms is shown in Fig. 2.

A. Definition of flexibility requirement

Let Θ̄ be the maximum set of θ such that problem (8) has at
least one feasible solution x, known as the dispatchable region
[22]. We assume θ ∈ Θ, a bounded polyhedral subset of Θ̄.
The flexibility requirement of each user is defined below.

Definition 2. (Flexibility Requirement) Suppose ∆d∗k (θ),∀k ∈
I ∪ J are users’ demand adjustment at equilibrium under
renewable deviation θ . The flexibility requirement of user
k ∈ I ∪J is defined as a region [rd

k ,r
d
k ] with

rd
k = min{∆d∗k (θ),∀θ ∈Θ} (9)

and

rd
k = max{∆d∗k (θ),∀θ ∈Θ} (10)

The flexibility in this paper is a kind of reserve capacity
[34]. It defines the backup adjustable capacity the demand
can provide in the occurrence of renewable generation output
deviations due to uncertainty. Since ∆d∗(θ) involves solving
problem (6), getting [rd

k ,r
d
k ] directly by definition can be

difficult. In this paper, an MP-LP based approach is proposed
to obtain the flexibility requirement. To be specific, we divide
Θ into non-overlapping critical regions CR1, · · · , CRN such
that in each region CRi, the optimal value v(θ) and optimal
solution x∗(θ) are linear functions in the parameter vector θ .
Then (9)-(10) is equivalent to finding the maximum/minimum
point of a piecewise linear function, which is easier to solve.

B. Adaptive vertex generation algorithm

The majority of current MP-LP related works identifies the
critical regions by leveraging the graph of optimal bases based
on which the expression of x⋆(θ) and v(θ) are obtained [28].
However, degeneracy that indicates the existence of multiple
primal or dual optimal solutions may cause difficulties in
building the critical regions [39]. In this paper, we develop an
adaptive vertex generation algorithm to approximate v(θ) via
dual variables without the information of critical regions first,
and then retrieve the critical regions and x∗(θ) accordingly. In
this way, the impact of degeneracy can be avoided. The details
of the algorithm are as follows:

1) Lower bound of v(θ) from dual problem
Suppose the optimal value function v(θ) can be represented

by a piecewise linear function

v(θ) =


m1 +n⊤1 θ , θ ∈ CR1

m2 +n⊤2 θ , θ ∈ CR2
...

mN +n⊤N θ , θ ∈ CRN

(11)

where m1, · · · ,mN are constant scalars; n1, · · · ,nN are constant
vectors. For any fixed θ , the dual problem of (8) is

v(θ) = max
γ

γ
⊤(t +Bθ)

s.t. A⊤γ = c, γ ≤ 0
(12)
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where γ is the dual variable, and its feasible region is denoted
by Γ =

{
γ
∣∣A⊤γ = c,γ ≤ 0

}
. According to strong duality, the

optimal value of (12) is bounded and equals to v(θ) for any
given θ . Since v(θ) is finite, the dual optimal solution γ must
belong to the set of extreme points of Γ [vert(Γ) for short],
although Γ may be unbounded and contain extreme rays. In
this regard, by enumerating the vertices of Γ, v(θ) can be
equivalently expressed as

v(θ) = max
i

{
γ
⊤
i t + γ

⊤
i Bθ

}
{γ1,γ2, · · ·} ∈ vert(Γ)

(13)

Comparing (13) and (11), coefficients mi and ni and dual
variable γi have the following relation

mi = γ
⊤
i t, ni = γ

⊤
i B (14)

Nevertheless, vertex enumeration is an exhaustive task, and
only a small fraction of vertices correspond to valid pieces
in (11) and (13), but we do not know which one in vert(Γ)
appears in (13) in advance. Let Γ be a subset of vert(Γ), and

v(θ) = max
i

{
γ
⊤
i t + γ

⊤
i Bθ

}
,{γ1,γ2, · · ·} ∈ Γ (15)

Hence, v(θ) is an underestimator of v(θ). The approximation
quality depends on the choice of Γ. In the following, an
adaptive vertex generation algorithm is developed to construct
Γ so that the gap between v(θ) and v(θ) can be small.

2) Recover the critical regions
Suppose (15) is a non-redundant representation. Intuitively,

if the value of any piece γ⊤i t + γ⊤i Bθ can reach maximum
for some θ ∈ Θ, (15) is non-redundant. The exact definition
and redundancy elimination methods are in Appendix C. Then
the critical region associated with each piece can be retrieved
from (15). Recall the original piecewise linear form (11) and
the point-wise maximum form (15), the value of mi + n⊤i θ

achieves maximum in CRi, i.e.:

CRi =
{

θ

∣∣∣mi +n⊤i θ ≥ m[−i]+n⊤[−i]θ

}
(16)

where [−i] = {1, · · · , i− 1, i+ 1, · · · ,n} stands for the set of
complementary indexes of i, so CRi is described by n− 1
inequalities in (16). It can be represented in a matrix form
(17), where H ∈ R(n−1)×p, h ∈ Rp.

CRi = {θ |Hθ ≤ h} (17)

For notation conciseness, index i of critical region for matrix H
and vector h are omitted; H jθ ≤ h j, j = 1, · · · ,(n−1) represent
the individual constraints in CRi.

3) Overall algorithm
Suppose we already have an approximation (15) for the

optimal value function, as well as critical regions retrieved
from (16), then we have to investigate the quality of this
approximation in each CRi. The task comes down to evaluating
the maximal approximation error through

εi = max v(θ)− v(θ)

s.t. θ ∈ CRi
(18)

where v(θ) is the true optimal value function of problem (8),
which is unknown. εi must be nonnegative because v(θ) is an
underestimator. First, due to strong duality, we have

εi = max
θ∈CRi

{
max
γ∈Γ

γ
⊤(t +Bθ)− (γ⊤i t + γ

⊤
i Bθ)

}
(19)

Problem (19) is nonconvex due to the product term γ⊤Bθ

in the objective function. Since the parameter space has a low
dimension, we can solve (19) by numerating the vertex of
CRi = {θ |Hθ ≤ h}, which is

εi = max
i

max
γ

(γ− γi)
⊤(t +Bθi)

s.t. {θ1,θ2, ...} ∈ vert(CRi)

A⊤γ = c, γ ≤ 0

(20)

Another approach to solve (19) is the big-M method [40],
but our approach is more robust since it avoids the difficulty of
choosing a proper M. The proposed adaptive vertex generation
algorithm is summarized in Algorithm 1. The output is an ε-
optimal underestimator of the true optimal value function.

Algorithm 1 : Adaptive Vertex Generation Algorithm
1: Initiation: Error tolerance ε > 0; parameter set Θ; initial

sampled parameters θ1, · · · ,θn;
2: Underestimation

For i = 1 : n
Solve LP (12) with θi and the solution is γ∗i .
Update Γ← Γ∪ γ∗i if γ∗i /∈ Γ.

end
Construct v(θ) by (15); retrieve CR1, · · · , CRn by (16).

3: Check approximation error
For each critical region i

Solve LP (20) with CRi. Record ε∗i , γ∗.
If ε∗i > ε , update Γ← Γ∪ γ∗.

end
If ε∗i ≤ ε , ∀i, terminate.

4: Update v(θ) by (15) with the current Γ, and remove
redundant pieces (see Appendix C).

5: Retrieve critical regions from the current v(θ); remove
redundant constraints (Appendix C), and go step 3.

Remark 3: Because the set vert(Γ) has finite elements,
Algorithm 1 must terminate in a finite number of steps.
Nonetheless, as only a small fraction of elements in vert(Γ)
corresponds to the pieces in the optimal value function, Algo-
rithm 1 is efficient in practice. In contrast to the existing ap-
proaches where critical regions are obtained from the analysis
of optimal bases invariancy, in Algorithm 1, critical regions are
retrieved from the optimal value function. Therefore, model
degeneracy does not affected the proposed algorithm.

C. Calculation of flexibility requirement

To obtain the flexibility requirement of individual users, we
need to recover an approximate optimizer x∗(θ) as a function
of θ . In CRi, the optimal value is v(θ) = γ⊤i t + γ⊤i Bθ , the
complementarity and slackness condition of (8) implies

γ
∗
i j < 0→ (Ax∗−Bθ − t) j = 0 (21)
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Fig. 3. Topology and parameters of the 5-bus system. The adjustable ranges
of elastic demands are in red, the line flow limits are in blue, and the fixed
demands are in dark green.

Let A′i/B′i/t ′i denote the rows of A/B/t corresponding to the
indexes of nonzero elements in γ∗i , we obtain a set of linear
equations:

A′ix
∗ = t ′i +B′iθ , θ ∈ CRi (22)

If A′i is invertible, the optimizer is obtained by

x∗(θ) = (A′i)
−1(t ′i +B′iθ), θ ∈ CRi (23)

Otherwise, we can calculate the flexibility requirement [rd
ik, rd

ik]
by the following optimization problems. Without loss of
generality, suppose the first I + J terms in x correspond to
the decision variables ∆dk,∀k = 1, ...,(I + J).

rd
ik = min

θ∈CRi

xk (24a)

s.t. A′ix = t ′i +B′iθ (24b)

Dk ≤ dk + xk ≤ Dk,∀k = 1, ...,(I + J) (24c)

and

rd
ik = max

θ∈CRi

xk (25a)

s.t. A′ix = t ′i +B′iθ (25b)

Dk ≤ dk + xk ≤ Dk,∀k = 1, ...,(I + J) (25c)

Therefore, the flexibility requirement of user k ∈ I∪J over
the entire parameter set θ is [rd

k ,r
d
k ], where

rd
k = min

i
{rd

ik}, rd
k = max

i
{rd

ik} (26)

In general, the obtained critical regions CRi,∀i can provide
geometry information of how uncertainty be handled under
energy sharing, while the flexibility requirement [rd

k ,r
d
k ],∀k

offers a quantitative metric.

IV. CASE STUDIES

We first use a 5-bus system for illustration; then 69-bus and
123-bus microgrid systems are tested to show the scalability
of the proposed model and algorithm. Data is available in [41].

A. 5-bus system

The topology of the 5-bus system is given in Fig. 3 with
other parameters in TABLE II-III. There are three users with
elastic demands and two renewable generators at nodes C
and E, respectively, so θ = [∆w1,∆w2]

⊤. The maximum set

1Wind farms locate at buses C and E with w1 = 220 kW, w2 = 450 kW.
2170 kW elastic demand and 15 kW inelastic demand.

TABLE II
SYSTEM PARAMETER OF THE 5-BUS SYSTEM

From To X Fl

A B 0.0281 600
A D 0.0304 300
A E 0.0064 200
B C 0.0108 100
C D 0.0297 401
D E 0.0297 300

TABLE III
DEMAND DATA OF THE 5-BUS SYSTEM1

Node dk (kW) Bound αk ($/kW2) βk ($/kW) ζk ($)

A 230 [200, 300] 0.003 1.80 255.30
B 35 - - - -
C 25 - - - -
D 185 2 [150, 350] 0.006 2.76 295.80
E 200 [100, 250] 0.005 2.56 312.00

of parameters Θ̄ is the dispatchable region [22], the grey
region in Fig. 4. The θ can vary within the rectangle subregion
Θ. Applying Algorithm 1, we can obtain six critical regions
as in Fig. 5. Note that the quadratic objective function (6)
is linearized by 5 segments. The approximate optimal cost
function v(θ) in each critical region is as follows.

v(θ) =



814.92+4.00∆w1 +2.81∆w2, θ ∈ CR1

835.39+2.13∆w1 +2.81∆w2, θ ∈ CR2

810.04+4.50∆w1 +2.31∆w2, θ ∈ CR3

837.26+2.01∆w1 +2.31∆w2, θ ∈ CR4

819.08+1.92∆w1 +1.92∆w2, θ ∈ CR5

780.51+5.07∆w1 +1.93∆w2, θ ∈ CR6

(27)

Following the procedure in Section III-C, we can get the
demand adjustment at equilibrium in each critical region as
well. Take CR4 as an example, we have ∀[∆w1,∆w2]

⊤ ∈ CR4:

∆d∗1 = 18.75+0.76∆w1

∆d∗2 =−20.00
∆d∗3 =−3.75+0.24∆w1 +∆w2 (28)

If we choose a scenario inside CR4, say [∆w1,∆w2] =
[−10,−20]⊤kW, then according to (27), the approximate
optimal cost is $770.96 (= 837.26− 2.01× 10− 2.31× 20);
according to (28), the approximate demand adjustments at
equilibrium are ∆d∗1 = 11.10 kW, ∆d∗2 = −20 kW, ∆d∗3 =
−26.10 kW. Both the optimal cost and demand adjustments
are the same as the one we get by solving problem (8) directly
with given parameters θ = [∆w1,∆w2] = [−10,−20]⊤kW. This
validates the effectiveness of our algorithm. The optimal cost
of the original quadratic problem (6) is $767.24, so the relative
error is only 0.48%, showing the linearization is accurate
enough. Moreover, the obtained ∆d∗k ,∀k = 1,2,3 are the same
as well. We calculate the flexibility requirement of each user,
shown in TABLE IV. To accommodate the volatile renewable
generation, all users need to have the ability to both increase
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Fig. 4. Dispatchable region Θ̄ (maximum set of θ such that problem (8) has
at least one feasible solution) and parameter range Θ (we assume θ ∈ Θ) of
the 5-bus system.
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Fig. 5. Critical Regions of the 5-bus system. The parameter range is divided
into six critical regions and within each region, the optimal cost is a linear
function in θ given in (27).

and decrease their demand. User 3 requires the most flexibility
since the value of rd

3− rd
3 is the largest.

TABLE IV
FLEXIBILITY REQUIREMENT OF 5-BUS SYSTEM

Elastic demand 1 2 3

dk (kW) 230 170 200
rd

k (kW) -8.16 -20.00 -70.24
rd

k (kW) 27.11 36.75 48.83
rd

k − rd
k (kW) 35.27 56.75 119.07

Given [∆w1,∆w2] = [−10,−20]⊤kW, the equilibrium of the
energy sharing game (4)-(5) can be reached via a best-response
algorithm. The change of ∆d and δ during iterations are shown
in Fig. 6 and Fig. 7, respectively. We can find that the demand
adjustments converge to the above approximate values. The
value of dual variables of problem (6) at optimum can be
retrieved by γi in CRi, i.e. η∗1 = −1.92, η∗2 = −2.08, η∗3 =
−2.31, which are very close to the value of −δ/τ plotted in
Fig. 7. The above analysis validates Proposition 1.

B. 69-bus system

A modified 69-bus microgrid [42] is tested with topology
in Fig. 8. There are three renewable generators connected
to nodes 9, 30, and 60, respectively. Suppose their real-time
output may deviate within [−30,30] kW. Applying Algorithm
1, the change of the maximum approximation error (defined in
(18)) during iterations is shown in Fig. 9. The error decreases
fast and the algorithm can output 10 critical regions (as in

 

Fig. 6. Change of ∆d during iterations and the energy sharing market reaches
an equilibrium after about 20 iterations.

 

Fig. 7. Change of δ during iterations and δ∗
τ
=−η∗ validates Proposition 1.

Fig. 10) after three iterations. The approximate optimal cost
function v(θ) in each critical region is

v(θ) =



353.05+[2.90,2.90,2.90]θ , θ ∈ CR1

489.83+[4.58,4.58,4.58]θ , θ ∈ CR2

527.73+[5.21,5.21,5.21]θ , θ ∈ CR3

538.89+[5.52,5.52,5.52]θ , θ ∈ CR4

549.33+[6.00,6.00,6.00]θ , θ ∈ CR5

560.98+[8.09,8.09,8.09]θ , θ ∈ CR6

548.24+[9.52,9.52,9.52]θ , θ ∈ CR7

485.84+[11.47,11.47,11.47]θ , θ ∈ CR8

361.11+[13.32,13.32,13.32]θ , θ ∈ CR9

−9.46+[17.81,17.81,17.81]θ , θ ∈ CR10

(29)

To examine the accuracy of the approximation, let’s take
CR4 as an example. Following the procedure in Section III-C,
the demand adjustments at equilibrium are:

∆d∗1 =−17, ∆d∗2 =−9, ∆d∗3 =−4, ∆d∗4 = 8
∆d∗5 = 5, ∆d∗6 = 6+∆w1 +∆w2 +∆w3 (30)

For scenario θ = [−30,−30,30]T kW ∈ CR4, according to
(29) and (30), the optimal cost is $373.29 and ∆d∗1 = −17
kW, ∆d∗2 =−9 kW, ∆d∗3 =−4 kW, ∆d∗4 = 8 kW, ∆d∗5 = 5 kW,
∆d∗6 = −24 kW, which are the same as the one obtained by
solving problem (6). Similarly, we can calculate the flexibility
requirement for each elastic demand as in TABLE V. We
notice that while elastic demands 2, 3, 4 still have some
redundancy, the adjustable ability of elastic demands 1, 5, 6
has been fully exploited as dk + rd

k = Dk and dk + rd
k = Dk, for

k = 1,5,6. Therefore, in long-term planning, we may put more
emphasis on increasing the flexibility of demands 1, 5, 6.
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Fig. 8. Topology of the 69-bus system. Three wind farms are connected to
nodes 9, 30, and 60; six elastic demands are located at nodes 12, 23, 32, 42,
53, and 62.

 

Fig. 9. The maximum approximation error of the AVG algorithm during
iterations. The algorithm can output the critical regions after three iterations.

To test the practicability of the proposed energy sharing
mechanism, we compare the computational time under differ-
ent numbers of users in TABLE VI. Our proposed mechanism
focuses on the real-time market, so the computational time
analysis is over an hour. We begin with the case with 69
users, where each node has one representative user. Then,
we divide the demand at each node randomly to 5 (or 10)
users and get the case with 345 (or 690) users. As we can
see, the computational time does not change much when the
number of users increases as the decision-making for each
user can be done in parallel. Moreover, it only takes about
30 seconds to converge, so our proposed mechanism is still
applicable in a market with smaller time resolution such as
15 minutes. The sequence of demand adjustment generated
by the energy sharing mechanism was given in Fig. 11. The
demand adjustments converge to the value at equilibrium (i.e.
∆d∗1 = −17kW, ∆d∗2 = −9kW, ∆d∗3 = −4kW, ∆d∗4 = 8kW,
∆d∗5 = 5kW, ∆d∗6 =−24kW) after a few iterations. This shows
the effectiveness of the proposed method.

To show the scalability of Algorithm 1, we test its perfor-
mance under different numbers of renewable generators and
users in TABLE VII. The impact of the number of users on
the computational time is marginal. The time needed increases
with the number of RGs, but in this paper, we only consider
the distributed renewable generators with a relatively large
scale (say about 500kW) while the uncertainties from small-
scale units are neglected. Usually, in a residential community,
there are few such relatively large-scale units so our proposed
method can still be applied.
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Fig. 10. Critical region of 69-bus system. The parameter range is divided
into ten critical regions and within each region, the optimal cost is a linear
function in θ given in (29).

TABLE V
FLEXIBILITY REQUIREMENT OF 69-BUS SYSTEM

Elastic demand dk (kW) rd
k (kW) rd

k (kW) Range

1 40 -30 10 [10, 50]
2 20 -10.09 15 [0, 35]
3 30 -25 24 [5, 70]
4 10 -2 10 [0, 20]
5 10 -5 10 [5, 20]
6 40 -30 10 [10, 50]

C. 123-bus system

A larger distribution network, the modified IEEE-123 bus
system, is tested to show the capability of the proposed model.
The topology of the system is shown in Fig. 12. Suppose the
real-time outputs of renewable generators may vary within [-
40,40]kW. We run Algorithm 1 and get 12 critical regions in
128.97s, as shown in Fig. 13. The approximate optimal cost
function v(θ) in each critical region is

v(θ) =



803.74+[4.71,4.71,4.71]θ , θ ∈ CR1

853.97+[5.21,5.21,5.21]θ , θ ∈ CR2

885.45+[5.66,5.66,5.66]θ , θ ∈ CR3

909.57+[6.24,6.24,6.24]θ , θ ∈ CR4

953.97+[7.12,7.12,7.12]θ , θ ∈ CR5

952.46+[8.09,8.09,8.09]θ , θ ∈ CR6

953.3+[8.30,8.30,8.30]θ , θ ∈ CR7

943.22+[9.42,9.42,9.42]θ , θ ∈ CR8

931.12+[9.82,9.82,9.82]θ , θ ∈ CR9

852.86+[11.51,11.51,11.51]θ , θ ∈ CR10

778.3+[12.32,12.32,12.32]θ , θ ∈ CR11

670.27+[13.32,13.32,13.32]θ , θ ∈ CR12

(31)

We take the scenario θ = [−40,40,40]T kW in CR9 as an
example. According to (31), the approximate optimal objective
value is 931.12+[9.82,9.82,9.82]θ = $1323.92, which is the
same as the real optimal objective value obtained by problem
(6). Moreover, we compare the computational time under
different system settings in TABLE VIII, and find that the time
for a larger system increases but is still reasonable compared
to the frequency of market clearing, which is typically every
15 minutes.
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TABLE VI
COMPUTATIONAL TIME OF THE ENERGY SHARING MECHANISM

Number of users 69 345 690
Time (s) 29.74 30.06 30.21

Fig. 11. Change of demand adjustment during iterations.

V. CONCLUSION

The prosperity of distributed renewable generators calls for
effective management of end-users to hedge against uncer-
tainty. In this paper, an innovative energy sharing mechanism
that can facilitate the energy exchange among end-users with
local information is proposed. The interaction among users and
the operator is formulated as a generalized Nash game, whose
equilibrium is proved to exist and can be obtained by a multi-
parametric program parameterized in the renewable generation
deviations. To quantify the flexibility requirement of individual
users, an alternative vertex generation algorithm is developed
to output a piecewise linear estimator of both the optimal cost
function and demand adjustment strategies at equilibrium via
dual problem. It can avoid the impact of degeneracy since it
does not require visiting the graph of degenerate base. Case
studies validate the accuracy and scalability of our method.

Future research may further improve the proposed energy
sharing mechanism by considering more realistic situations:
1) Bounded rationality of users. In this paper, the users are
assumed to be fully rational while in practice they may have
bounded rationality. This can be analyzed with the prospect
theory [43]. 2) AC power flow model. Lossless DC power flow
model is adopted in this paper for simplification, which shall
be extended to incorporate AC power flow model with the help
of convex relaxation [44] or linearization techniques [45]. 3)
Diversity of devices. Different types of flexible devices such
as energy storage shall be integrated by changing the proposed
model to a multiple time step version. More future research
directions can be found in [8].

APPENDIX

A. Penalty Mechanism for the Energy Sharing Market

The hour-ahead sharing quantity for user k ∈ I ∪J is qc∗
k ,

which satisfies ∑k∈I∪J qc∗
k = 0. If qc∗

k > 0, the user imports
energy and if qc∗

k < 0, the user exports energy. Suppose the
real-time buying (selling) price from (to) the main grid is λ b

(λ s), the hour-ahead sharing price λ c can be set as λ s ≤ λ c ≤
λ b. Since ∑k∈I∪J qc∗

k = 0, we have ∑k∈I∪J λ cqc∗
k = 0 which

means the energy sharing market is self-budget balanced.
Denote the intra-hour deviation of renewable generator and
load as ∆ŵk and ∆d̂k, respectively. Then the actual renewable

TABLE VII
COMPUTATIONAL TIME OF THE AVG ALGORITHM

Cases 3 RGs,69 users 3 RGs,345 users 3 RGs,690 users
Time (s) 103.28 122.34 92.37

Cases 6 RGs,69 users 6 RGs,345 users 6 RGs,690 users
Time (s) 1507.94 1314.58 1644.23

Fig. 12. Topology of the IEEE-123 bus system.

generator output is wk +∆wk +∆ŵk and the actual demand is
dk +∆dk +∆d̂k, where wk and dk are day-ahead predictions,
∆wk and ∆dk are hour-ahead deviations. Denote

χk =

{
(dk +∆dk +∆d̂k)−qc∗

k ∀k ∈ I
(dk +∆dk +∆d̂k)− (wk +∆wk +∆ŵk)−qc∗

k ∀k ∈ J
(A.1)

If ∑k∈I∪J χk > 0, meaning that we need to buy electricity
from the main grid in real-time, the operator’s extra cost will
be λ b

∑k∈I∪J χk which should be covered by the net payments
from users. Then the billing mechanism with penalty for each
user can be designed as:
•When qc∗

k > 0 and χk > 0, user k is a buyer and it is buying
more in real-time. Therefore, the operator needs to buy from
the main grid to supply the additional demand. The user k
will pay λ c(qc∗

k +χk)+(λ b−λ c)χk, where (λ b−λ c)χk is the
penalty.
• When qc∗

k > 0 and χk < 0, user k is a buyer and it is
buying less in real-time. This won’t contribute to extra cost,
so no penalty will be imposed and user k will pay λ c(qc∗

k +χk).
• When qc∗

k < 0 and χk > 0, user k is a seller and it is
selling less in real-time. Therefore, the operator needs to buy
from the main grid instead to supply the buyers. The user k
will get −λ c(qc∗

k + χk)− (λ b−λ c)χk, where (λ b−λ c)χk is
the penalty.
•When qc∗

k < 0 and χk < 0, user k is a seller and it is selling
more in real-time. This won’t contribute to extra cost, so no
penalty will be imposed and user k will get −λ c(qc∗

k +χk).
Overall, the net payment from users is

∑k∈I∪J λ
c(qc∗

k +χk)+∑k∈{k|χk>0}(λ
b−λ

c)χk

≥ ∑k∈I∪J λ
c(qc∗

k +χk)+∑k∈I∪J (λ b−λ
c)χk

= λ
b
∑k∈I∪J χk (A.2)

Therefore, the net payment from users can cover the extra
cost for the operator, so that the market can still run in
a subsidy-free way. The case when ∑k∈I∪J χk < 0 can be
discussed in a similar way.
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Fig. 13. Critical regions of the 123-bus system. The parameter range is divided
into twelve critical region, and within each region, the optimal cost is a linear
function in θ given in (31).

TABLE VIII
COMPUTATIONAL TIME FOR DIFFERENT SYSTEMS

Setting 5-bus with Fl 5-bus with 2Fl 5-bus with 4Fl

Time (s) 22.09 13.89 10.31

Setting 69-bus with Fl 69-bus with 2Fl 69-bus with 4Fl

Time (s) 103.28 60.32 64.19

Setting 123-bus with Fl 123-bus with 2Fl 123-bus with 4Fl

Time (s) 128.97 76.31 112.97

B. Proof of Proposition 1

Problem (1) can be equivalently written as

minqc
k,∀k∈I∪J ∑k∈I∪J (qc

k−qk)
2

s.t. qc ∈Q (B.1)

Suppose (∆d∗,q∗,qc∗,δ ∗) is an GNE of the sharing game, then
qc∗ is the optimal solution of (B.1). Therefore, we have

∑
k∈I∪J

(qc
k−qc∗

k )(qc∗
k −q∗k)≥ 0,∀qc ∈Q (B.2)

Also, (∆d∗,q∗) is the optimal solution of problem (2) or (3),
which is equivalent to

min
∆dk,bk

{
fk(∆dk)+ τ/2(qc∗

k +δ
∗
k −dk−∆dk)

2,∀k ∈ I
fk(∆dk)+ τ/2(qc∗

k +δ
∗
k −dk−∆dk +wk +∆wk)

2,∀k ∈ J
s.t. ∆dk ∈ Dk (B.3)

where Dk := {∆dk | Dk ≤ dk +∆dk ≤ Dk}. Therefore,

fk(∆dk)− fk(∆d∗k )− τ(∆dk−∆d∗k )δ
∗
k ≥ 0,∀k ∈ I ∪J (B.4)

Similarly, let (∆d̂, q̂c) be the optimal solution of problem
(6) and η̂ the value of the dual variable. Then, we have
∀(∆d,qc,η) ∈∏k∈I∪J Dk×Q×R(I+J):[

fk(∆dk)− fk(∆d̂k)+(∆dk−∆d̂k)η̂k
]
≥ 0,∀k ∈ I ∪J

− ∑
k∈I∪J

(qc
k− q̂c

k)(η̂k) ≥ 0

∑
k∈I

(ηk− η̂k)(dk +∆d̂k− q̂c
k)

+ ∑
k∈J

(ηk− η̂k)(dk +∆d̂k−wk−∆wk− q̂c
k) ≤ 0 (B.5)

Based on the above optimality conditions, we can analyze
the existence and uniqueness of the GNE of the game G =
{K,X ,Π} as follows.

Existence. When problem (6) is feasible, since the objective
function (6a) is strictly convex and the constraints constitute
a close convex set, problem (6) has a unique optimal solution
(∆d̂, q̂c, η̂). Let ∆d∗ = ∆d̂, δ ∗ =−η̂/τ , qc∗ = q̂c, q∗ = q̂c−δ ∗.
It is easy to check that condition (B.2)-(B.4) are satisfied so
that (∆d∗,q∗,qc∗,δ ∗) is an GNE of the game G.

Uniqueness. Suppose (∆d∗,q∗,qc∗,δ ∗) is an GNE of the
game G, we have qc∗

k = dk+∆d∗k ,∀k∈I, qc∗
k = dk+∆d∗k −wk−

∆wk,∀k ∈J due to constraint (2b), (3b) and qc∗ = δ ∗+q∗. Let
∆d̂ = ∆d∗, q̂c = qc∗, η̂ = −τδ ∗, then condition (B.5) is met.
Therefore, ∆d∗ is the optimal solution of (6) and is unique.

C. Redundancy Elimination
Before introducing methods to eliminate redundancy, we

first give the following definitions:

Definition B1. (Redundant Constraint) A constraint is said to
be redundant if removing the constraint does not change the
critical region.

Definition B2. (Minimal Representation) Polyhedron (17) is
said to be a minimal representation of CRi if all constraints
are non-redundant.

To remove redundant constraints to construct a minimal
representation of CRi, a method based on Nonhomogeneous
Farkas Lemma is proposed.

Lemma B1. (Nonhomogeneous Farkas Lemma [46]) In the
following two sets

P1 = {u|Au≤ t, a⊤u > t ′}
P2 = {v|A⊤v = a, t ′ ≥ v⊤t, v≥ 0}

Matrix multiplication is compatible in dimension. Then P1 is
empty if and only if P2 is non-empty.

Consider constraint H jθ ≤ h j, if it is redundant, the poly-
hedron {θ |H[− j] ≤ h[− j]} defined by the remaining constraints
must be a subset of {θ |H jθ ≤ h j}. In other words, {θ |H[− j] ≤
h[− j]}∩{θ |H jθ > h j}= /0. So we have

Theorem B1. Constraint H jθ ≤ h j in Polyhedron (17) is
redundant if the following LP has a feasible solution

v⊤H[− j] = H j, h′j ≥ v⊤h[− j], v≥ 0 (C.1)

If all constraints in polyhedron (17) are screened, and
redundant ones are removed, then the remaining constraints
constitute a minimal representation of CRi. Similarly, we can
define and eliminate redundancy in v(θ) as follows.

Definition B3. (Redundant Piece) In the piecewise linear
function (15), a piece γ⊤i b+ γ⊤i Bθ is said to be redundant
if it never reaches maximum for all θ ∈Θ.

Claim B1. The j-th piece in v(θ) is redundant if the j-
th constraint in the polyhedron epi[v(θ)] is redundant. The
epigraph of the piecewise linear function (15) is the following
polyhedron

epi[v(θ)] =

(θ ,κ) ∈ Rp+1

∣∣∣∣∣∣∣∣
κ ≥ γ

⊤
1 t + γ

⊤
1 Bθ

...

κ ≥ γ
⊤
n t + γ

⊤
n Bθ

 (C.2)
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Similarly, according to Theorem B1, the redundancy in v(θ)
can be removed.
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