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Abstract This work presents an extension of a second-order 
conic programming model (SOCP) to handle the multi-objective 
optimal power dispatch problem considering the probabilistic 
nature of some parameters related to power demand and the 
renewable energy sources (RES) generation, such as wind speed 
and solar irradiation level. Three objective functions are 
considered in this study: 1) costs of RES and non-RES 
generation; 2) active power losses in the transmission system; 
and, 3) emission pollutant gases produced by fossil fuel-based 
generating units. The stochastic nature of power demands and 
RES are developed through a set of representative operational 
scenarios extracted from historical data and via a scenario 
reduction technique. The results obtained in the SOCP model 
are compared with a nonlinear programming (NLP) model to 
check the robustness and precision of SOCP model. To this, both 
models are implemented and processed to simulate the optimal 
flow for the IEEE 57- and 118-bus systems. 

Keywords  Emission pollutant gases, multi-objective 
optimization, optimal power dispatch, renewable energy, 
second-order conic programming. 

NOMENCLATURE 

Indices and sets: 
Index for time block; 
Index for thermoelectric, hydroelectric, wind, and 
photovoltaic generations; 
Index for buses; 
Index for branches; 
Index for level of demand, wind speed, and solar irradiation; 
Index for stochastic scenarios; 
Set of branches; 
Set of generation buses; 
Set of nodes; 
Set of time blocks; 
Set of scenarios in time block  

Parameters: 
Shunt susceptance/conductance in the bus; 

Series susceptance/conductance in the branch; 
Shunt susceptance/conductance in the branch; 
Quadratic, linear, and constant cost coefficients of 
non-renewable generations; 
Linear and constant cost coefficients of hydroelectric, 
wind, and photovoltaic generations; 
Active power loss cost coefficient; 
Duration of the time blocks. 
Active and reactive power demand; 

Minimum limit of active/reactive power injected; 

Maximum limit of active/reactive power injected; 

Nominal active power of the wind and photovoltaic 
generators; 
Maximum apparent power flow through branch ; 
Apparent power limit for thermoelectric, 
hydroelectric, and wind generators; 

Reactive power injection factors of wind generations; 

Reactive power injection factors of photovoltaic 
generations; 
Minimum/maximum voltage magnitude limits; 
Emission coefficients for active power generation in 
thermal generators.; 
Voltage transformation and angular offset of the 
transformer; 
Mean value and probability of random variables; 
Rated solar irradiation level; 
Minimum, maximum, rated wind speed; 
Objective function weight; 

Variables: 
Auxiliary variables related with the nodal voltage in the 
conic model; 
Auxiliary variables related to the voltage drop in the branch 
in the conic model; 
Active power injected by the thermoelectric, hydroelectric, 
wind, and photovoltaic generations, respectively; 
Active and reactive power flow in the branch ; 
Active power injected by the thermoelectric, hydroelectric, 
wind, and photovoltaic generations; 
Bus voltage angle; 
Objective function; 

I. INTRODUCTION 

The optimal power dispatch (OPD) is a complex and 
large-size constrained nonlinear programming (NLP) 
problem that aims to optimize the power generation of the 

Lucas do Carmo Yamaguti, Juan M. Home-Ortiz, and José Roberto 
Sanches Mantovani acknowledge the support by the São Paulo 
Research Foundation (FAPESP) under grants 2019/01841-5 
2019/23755-3 and 2015/21972-6, in part by the Coordination for the 
Improvement of Higher Education Personnel (CAPES) finance code 
001, and in part by the Brazilian National Council for Scientific and 
Technological Development (CNPq) under Grant 304726/2020-6. 

J.P.S. Catalão acknowledges the support by FEDER funds through 
COMPETE 2020 and by Portuguese funds through FCT, under POCI-
01-0145-FEDER-029803 (02/SAICT/2017). 

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 E

nv
iro

nm
en

t a
nd

 E
le

ct
ric

al
 E

ng
in

ee
rin

g 
an

d 
20

21
 IE

EE
 In

du
st

ria
l a

nd
 C

om
m

er
ci

al
 P

ow
er

 S
ys

te
m

s E
ur

op
e 

(E
EE

IC
 / 

I&
C

PS
 E

ur
op

e)
 | 

97
8-

1-
66

54
-3

61
3-

7/
21

/$
31

.0
0 

©
20

21
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
EE

EI
C

/IC
PS

Eu
ro

pe
51

59
0.

20
21

.9
58

48
17



electrical power system (EPS) to satisfy the power demand 
while considering 
constraints [1]. The NLP model is difficult to solve through 
classical optimization techniques due to its multimodal nature 
and high mathematical complexity. In this regard, recently in 
the literature, several convexification techniques have been 
developed to obtain the optimal global solution for the OPD 
problem through algebraic manipulations in the objective 
function and constraints. The second-order conic 
programming (SOCP) models are one of the most prominent 
in this area. These approaches allow a good trade-off between 
computational effort and the accuracy of the results. Besides, 
a convex formulation for the OPD permits that this problem 
can be approached from different views to be adapted to the 
new challenges of the modern EPS control operation. 
However, these convexification techniques may not 
accurately represent the original nonlinear model, therefore 
feasibility problems in the power balance equations can occur 
[2]. 

Nowadays, the EPS generation matrix is in 
transformation, and the fossil generation sources are replaced 
by renewable energy sources (RES) to reduce greenhouse gas 
(GHG) emissions and preserve the environment. 
Consequently, the generation of electric energy that uses fossil 
fuels started to be accompanied by RES due to the policies of 
environmental protocols that were established among the 
major world economic powers aiming to guarantee, among 
other objectives, the reduction of greenhouse gas emissions 
[3], [4]. The inclusion of RES models in the EPS analysis 
increases the complexity of the problem due to uncertainties 
in the parameters that define the behavior of different types 
of RES [5]. In this way, stochastic approaches are more 
adequate to consider the uncertainty behaviors of RES and 
power demand, obtaining a more realistic, but complex model. 
On the other hand, GHG emission mitigation changes the 
single objective of OPD for a multi-objective problem, so 
new optimization models and procedures for analysis and 
planning of operation of the EPS must be developed. 

In the literature, the OPD problem has been proposed to 
solve the economic and environmental dispatch, through 
probabilistic and metaheuristic approaches [6] [10]. In [6], a 
multi-objective economic power dispatch model was 
proposed, where the objective function minimizes the cost of 
generation and the emission of pollutants from generation 
sources that use fossil fuels. The problem is modeled as an 
integer NLP problem and solved using an evolutionary 
algorithm that preserves the diversity of the population and 
provides an optimized Pareto front in small-size systems. In 
[7], the problem of optimal dispatch of active power was 
solved using the multi-objective differential evolution 
algorithm to minimize generation costs, losses of active power 
in the network, and emission of GHG. In [8], the problem of 
economic dispatch of thermoelectric generations (TG) in EPS 
was formulated through two models of fractional nonlinear 
programming to minimize the total cost of generation and 
greenhouse gas emissions from generating units that use fossil 
fuels. The solutions to the problem were determined by 

fractional objective function into a sequence of non-fractional 
minimization problems. In [9], the multi-objective 
probabilistic optimal power flow (OPF) model for the 
medium-term operation of EPS considering high penetration 
of RES was proposed. To deal with the nonlinearities of the 
model, an NSGA-II algorithm was used to solve the problem. 

The uncertainties of the RES parameters and the demands are 
incorporated through a fast and efficient point-estimate 
method probabilistic, while the operational state of the system 
was determined by the classical Newton AC power flow 
method. In [10], a probabilistic multi-objective OPF problem 
was used to minimize the generation cost and GHG emission. 
This approach considered the TG, hydroelectric generation 
(HG), and wind turbines. Uncertainties were taken into 
account with random variables of wind speed and demand 
levels. The solutions to the problem were determined by a 
biogeography-based optimization algorithm, while the 
analysis of uncertainty parameters was developed using the 
point estimate method. 

In this paper, a SOCP multi-objective stochastic scenario-
based model for the OPD problem with renewable (eolic, 
photovoltaic, and hydroelectric generations) and non-
renewable (thermoelectric generation) energy sources is 
proposed. Three simultaneous objective functions are 
considered in the formulation: 1) costs of RES and non-RES 
generation; 2) active power losses in the transmission 
branches and 3) GHG emission mitigation. These objective 
functions are considered through the a priori decision method 
based on their weighting of the objective. A set of 
representative operational scenarios is generated from 
historical data using a scenario reduction technique over one 
year, (8760 h), to considering the uncertainty of RES in the 
period. Two cases of studies are performed through 
simulation with IEEE 57-, and 118-bus systems, considering 
some operating scenarios. The obtained results with the 
SOCP multi-objective model are compared with those of an 
equivalent multi-objective exact NLP model. 

The main contributions of this paper are the following: 

1. Proposal of a SOCP stochastic model for the OPD 
problem that includes renewable and non-renewable 
generation units. 

2. Development of a multi-objective approach for the 
OPD problem with three objectives, where a sum 
weighted method is used to reformulate the multi-
objective problem into a single objective optimization 
model. 

3. Critical analysis of the convex model comparing the 
results obtained with the proposed SOCP multi-
objective model with those from an equivalent NLP 
model. This analysis aims to verify the precision and 
validity of the solutions obtained with the convex 
model. 

The remainder of this paper is organized as follows: 
Section II presents the modeling of the uncertainties and the 
formulations of the NLP and SOCP models for the OPD 
problem. In Section III, the results and discussion are 
presented. Finally, relevant conclusions are drawn in Section 
IV. 

II. MATHEMATICAL MODELS 

The uncertainties of variables and parameters that describe 
the EPS behavior have a significant impact on operational 
costs of the network. To handle this issue, a stochastic 
scenario-based approach is considered. In this paper, a SOCP 
multi-objective model is used to find the global optimization 
of the problem, and the weighted objectives are used to find 
its Pareto front. 



A. Modeling uncertainty

The equations representing the operation of the system are 
modeled by a set of representative stochastic scenarios  
derived from measurements of energy demand and RES, to 
guarantee an adequate representation of the uncertainties in 
the behavior of these parameters. In this approach, the 
considered horizon planning (8760h) is divided into  time 
blocks, as presented in Fig. 1, to duly represent seasonal 
characteristics and weather effects. To reduce the 
computational complexity, in each time block  in , the 
load behavior, wind speed, and solar irradiation are 
represented through a set of scenarios using the duration 
curves methodology presented in [11]. This methodology uses 
cumulative distribution functions to determine different levels 
and probabilities of load behavior, wind speed, and solar 
irradiation. In this way, it is possible to describe scenarios in 
each block of time for each variable using pairs of information 
of average value and probability. Therefore, the sets of 
scenarios in each time block  for the level of demand, wind 
speed, and solar radiation is obtained according to 

 respectively. 

Fig. 2 shows the load curves, wind speed, and solar 
radiation and their respective pairs of  in each time 
block . Fig. 1 shows the correlating of scenarios. A one-by-
one combination of scenarios contained in the same block of 
time is carryout as follows: . 
The probability of each scenario is determined by the product 
of individual probabilities of each variable arranged in the 
same block of time, according to .For 
simplicity, it is assumed that all locations of the RES are 
subject to the same weather and seasonal conditions. 
Similarly, it is considered that all load buses are subject to the 
same variability. 

B. Renewable energy sources modeling  

The power produced by the wind generators (WG) is 
described in (1) as a piecewise formulation according to [12], 
[13]. The power produced by the photovoltaic (PV) generation 
is calculated according to (2) [13].  

(1) 

(2) 

C. Optimal power dispatch model  

The OPD problem is formulated through a multi-objective 
stochastic scenario-based nonlinear programming 
optimization model (3) (26). In this formulation, three 

objectives are considered (3) (5) [9]. In (3), the function  
determines the energy generation cost considering that are in 
operation on the system RES (HG, WG, and PV) modeled as 
a linear function, and non-RES (TG) modeled as a quadratic 
function. In (4), the function  determines the cost of active 
power losses considering an active power loss cost coefficient, 

 Finally, in (5) the function  determines the emission of 
polluting gases (carbon, nitrogen and sulfur) in the 
environment by TGs [6]. In this formulation, the emission of 
polluting gases by RES is not considered. 

(3) 

(4) 

(5) 

In the objective function , presented in (6), the functions 
, and  are considered through the a priori decision 

method of weighting the objective functions, i.e., the objective 
functions are weighted by the positive parameters  and 

 respectively. These weight parameters represent a convex 
combination since . 

(6) 

The physical and operational conditions of EPS are 
determined through the set of restrictions (7) (26). 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

Fig. 2 - Demand, Wind speed, and Solar Ir. duration curves  

Fig. 1 - Combined stochastic scenarios in time block  



(17)

(18) 

 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

The physical and operational constraints of the problem 
are represented for each time block of time, , and operating 
scenario, . Equations (7) and (8) represent the active and 
reactive power balances, respectively. Constraints (9) (12) 
represent the active and reactive power flows through the 
system lines, respectively. Constraints (13) (21) represent the 
power generation limits for TG, HG, WG, and PV units, 
respectively. Constraint (22) represents the active and reactive 
powers provided by RES and non-RES in the generating bars 
and considering the presence of multi-generators in each bar. 
The voltage limits and angular opening limits of transmission 
lines are represented in constraints (23) and (24). Constraint 
(25) determines the transformation ratio and voltage 
magnitudes of the transformers with tap controls. Finally, in 
equation (26), the conic voltage restriction is defined using the 
auxiliary variables of the module ( ), and real-imaginary 
voltage components ( ). 

Formulation (3)-(26) can be represented as a convex 
equivalent model of SOCP relaxing the conic voltage relation 
(26), as presented in (27). All other constraints of the SOCP 
model are the same as the NLP programming model (3)-(25). 

(27) 

III. TESTS AND RESULTS 

The proposed NLP and SOCP models to solve the OPD 
problem considering RES and non-RES are programmed in 
AMPL [14]. The NLP model (3) (26) is solved using 
KNITRO and the SOCP model (3) (25), (27) is solved using 
CPLEX. The IEEE 57- and 118-bus system simulated in this 
work are available in the PGLib-OPF v19.05 [15]. The 
adopted costs for generations can be found in [6], [9], [15], 
[16]. Of note, during the simulations, minimum resistance 
equal to  [p.u] was adopted for branches where the 
resistance is zero for a more accurate SOCP model [17], [18]. 
Numerical experiments were processed on a server with an 
Intel Xeon processor, 2.2 GHz, and 64 GB of RAM. 

In the simulations, two case studies with different sources 
of generations were considered as follows:  

 Case E1  only TG generation is considered. 
 Case E2  all the generation technologies are 

considered (TG, HG, WG, and PV). 

In Case E2, the wind turbines, VESTAS v80 2 MW, and 
the photovoltaic panels GCL-P6/72 330 were used. RESs 
replaced some non-RES units installed in the EPS and were 
dimensioned to provide a maximum total power of 1 GW. The 

 used  was 120 US$/MWh [19]. The uncertainty in the 
behavior of the electrical demand of the system was 
determined using a normal distribution.  

For all case studies, historical data on the behavior of wind 
speed and solar radiation were obtained from [20] over one 
year, (8760 h), for the Northeast region of Brazilian. In this 
work, the uncertainty of wind speed, and solar irradiation was 
modeled into 04 blocks of time, and the demand in 03 levels 
(light, nominal and heavy), resulting in 108 scenario analyses. 
The levels of wind speed and solar radiation used in 
simulations are shown in TABLE I. Previous experiments 
showed that these scenarios satisfactorily describe the 
operational behavior of the analyzed systems during one year. 
For both cases, to obtain the Pareto front, the weight 
parameters in the objective function take values in steps 
of 0.1, considering all possible convex combinations. 

A. IEEE 57-bus system 

The IEEE 57-bus system is small-sized and has relative 
computational difficulty. TABLE II presents the average 
levels and the probabilities of the demand scenarios. For Case 
E1, all the generation units are TG. For Case E2, buses 8 and 
12 are HG units, buses 1 and 2 are WT, buses 6 and 9 are PV, 
and the remainder of the generation units are TG.  

TABLE III and TABLE IV present the solution giving by 
NLP and SOCP models, highlighting the extreme points of the 
obtained Pareto front and the lower value of the objective 
function  for Cases E1 and E2, respectively. The results of 
the NLP and SOCP models obtained with the simulation of 
IEEE 57-bus are presented graphically in Fig. 3, where it is 
highlighted the weightings with lower values of . The results 
obtained show that the lowest values of of the NLP model 
for Cases E1 and E2 occurred with the weights (0.3, 0.3, 0.4) 
and (0.2, 0.2, 0.6), respectively. On another hand, the results 
of the SOCP model show that the lowest values of  for Cases 
E1 and E2 occurred with weights (0.4, 0.4, 0.2) and (0.3, 0.3, 
0.4), respectively. Both the lower values of the NLP and 
SOCP models are similar for the case studies, then, the 
analysis of both models will be similar.  

TABLE I 
Wind and solar irradiation levels 

 (850) 
9.9728 0.30 860.8997 0.3000 32.9691 
8.5662 0.40 224.4728 0.2376 28.3823 
7.3690 0.30 0.0000 0.4624 23.4981 

 (3000) 
8.8486 0.30 754.3633 0.3000 32.6124 
7.5551 0.40 162.6225 0.2417 27.8632 
6.1259 0.30 0.0000 0.4583 23.3531 

 (4150) 
10.9971 0.30 755.4192 0.3000 30.9607 
9.0462 0.40 165.9477 0.2414 25.8010 
7.6863 0.30 0.0000 0.4586 21.2029 

 (760) 
10.4605 0.30 812.4897 0.3000 32.8750 
8.7318 0.40 213.2312 0.2474 28.2776 
7.1472 0.30 0.0000 0.4526 23.2798 



Taking Case E1 as a reference, when the power system 
combines RES and non-RES (Case E2), it appears that the 
values of  (energy generation cost) and  (emission of 
polluting gases) are reduced, while in some cases an increase 
in of  (active power loss) is observed. The reduction in  
and  is due to the lower energy generation costs and the 
absence of pollutant emissions in the environment of the WGs 
and PVs in comparison with TGs. The increase in  in some 
weights is a consequence of the dependence of the climatic 
conditions of the WGs and PVs to generate energy. In this 
way, other generation types must produce energy to meet 
demand. 

In Case E2, with a weight of , the SOCP model 
presents a higher  value when compared to the NLP model 
owing to two factors: (i) The RES was not installed optimally 
in the system because, in this study, the TG generations with 
less generation capacity and higher connected loads were 
replaced; and, (ii) Because of relaxation (27), the SOCP 
model is unable to find the optimal point of operation, which 
was found by the NLP model.  

The conflicting behavior between the functions  and  
in all cases analyzed of the NLP and SOCP models is 
presented in Fig. 3. Because of the high penetration of RES 

in the system, it is noted that the results presented in Case E2 
for both models are considerably different from those of Case 
E1. The objective functions  and  present conflicting 
behavior in Cases E1 and E2 for both models. In Cases E1 and 
E2 for both models, the objective functions  and  are not 
in conflict owing to both the high concentration of the RES 
and the system configuration. In this way, if the operator of 
the electrical system knows that information, it will be able to 
make better quality strategic decisions based on the results of 
developed simulations.  

B. IEEE 118-bus system 

The IEEE 118-bus is a medium-sized system with a high 
reactive capacity that presents considerable computational 
complexity for simulating stochastic models. For Case E1, all 
the generation units are TG. For Case E2, buses 4, 24, 26, 31, 
40, 42, and 69, are HG units; buses 1, 15, 19, and 56 are WG 
buses 73, 91, 99, and 107 are PV; and the remainder of the 
generation units are TG. TABLE V shows the average demand 
levels for each operational scenario. 

The extreme points of the Pareto front and the minimum 
values of the objective function  for Cases E1 and E2 are 
presented in TABLE VI and TABLE VII, respectively. The 
results of the NLP and SOCP models are shown in Fig. 4 for 

TABLE II
Mean and probability demand levels 

IEEE 57-bus 

 
1.0203 
1.0032 
0.9947 

0.9837 
0.9692 
0.9561 

0.9405 
0.9022 
0.8495 

0.8240 
0.8073 
0.7811 

 
0.30 
0.40 
0.30 

0.30 
0.40 
0.30 

0.30 
0.40 
0.30 

0.30 
0.40 
0.30 

TABLE III 
Case E1 results  IEEE 57-bus system 

Model [US$ ] [US$ ] [kTon] Time[s] 

NLP 

1.0, 0.0, 0.0 30.01 5.54 40.46 6 
0.0, 1.0, 0.0 32.05 1.27 23.94 4 
0.2, 0.2, 0.6 30.80 1.56 22.84 4 
0.0, 0.0, 1.0 31.07 1.37 22.45 37 

SOCP 

1.0, 0.0, 0.0 30.00 5.55 40.58 30 
0.0, 1.0, 0.0 32.05 1.26 23.94 25 
0.3, 0.3, 0.4 30.78 1.56 22.87 25 
0.0, 0.0, 1.0 31.07 1.36 22.45 18 

TABLE IV 
Case E2 results  IEEE 57-bus system 

Model  [US$ ] [US$ ] [kTon] Time[s] 

NLP 

1.0, 0.0, 0.0 26.30 2.07 0.36 7 
0.0, 1.0, 0.0 27.01 1.43 0.28 4 
0.2, 0.2, 0.6 26.52 1.69 0.29 4 
0.0, 0.0, 1.0 26.99 1.97 0.26 53 

SOCP 

1.0, 0.0, 0.0 26.30 2.05 0.36 28 
0.0, 1.0, 0.0 27.00 1.42 0.28 23 
0.3, 0.3, 0.4 26.51 1.68 0.30 28 
0.0, 0.0, 1.0 27.85 5.84 0.26 9 

Fig. 3 - Pareto frontiers - IEEE 57-bus system 

TABLE V
Mean and probability demand levels 

IEEE 118-bus 

 
1.0979 
1.0542 
1.0346 

1.0106 
0.9783 
0.9528 

0.9271 
0.8884 
0.8362 

0.7962 
0.7717 
0.7211 

 
0.30 
0.40 
0.30 

0.30 
0.40 
0.30 

0.30 
0.40 
0.30 

0.30 
0.40 
0.30 

TABLE VI 
Case E1 results  IEEE 118-bus system 

Model  [US$ ] [US$ ] [kTon] Time[s] 

NLP 

1.0, 0.0, 0.0 77.19 11.65 98.03 36 
0.0, 1.0, 0.0 93.91 8.14 67.15 40 
0.3, 0.3, 0.4 77.42 10.98 97.86 44 
0.0, 0.0, 1.0 94.18 8.83 56.74 83 

SOCP 

1.0, 0.0, 0.0 77.19 11.65 98.03 143 
0.0, 1.0, 0.0 93.73 7.27 66.80 108 
0.5, 0.5, 0.0 77.41 11.97 97.89 124 
0.0, 0.0, 1.0 94.18 8.83 56.74 79 

TABLE VII 
Case E2 results  IEEE 118-bus system 

Model  [US$ ] [US$ ] [kTon] Time[s] 

NLP 

1.0, 0.0, 0.0 59.94 11.90 38.28 42 
0.0, 1.0, 0.0 87.17 6.48 42.80 44 
0.3, 0.3, 0.4 60.39 10.81 38.55 31 
0.0, 0.0, 1.0 77.10 10.54 23.42 134 

SOCP 

1.0, 0.0, 0.0 59.93 11.88 38.27 164 
0.0, 1.0, 0.0 87.08 5.85 42.26 129 
0.2, 0.2, 0.6 60.39 10.80 38.55 141 
0.0, 0.0, 1.0 76.65 10.50 23.43 84 

Fig. 4- Pareto frontiers  IEEE 118-bus system 



Cases E1 and E2, highlighting the weightings with the 
minimum values of . The solution of the NLP model 
presents the minimum value with the weigh combination (0.3, 
0.3, 0.4) for Cases E1 and E2. On the other hand, the solution 
of the SOCP model presents the minimum objective function 
values with the weight combinations (0.5, 0.5, 0.0) and (0.2, 
0.2, 0.6), for Cases E1 and E2, respectively. 

Considering Case E1 as a reference, when the system 
combines RES and non-RES,  and  decrease thanks to 
lower energy generation costs and non-emission of pollutants 
from WGs and PVs, and an increase in some values of  
results from the climate dependence of the WGs and PVs in 
electricity generation (non-dispatchable sources). Thus, TG 
and HG sources must supply the demand when RESs are not 
producing energy.  

The results presented by the NLP and SOCP models in 
both Cases E1 and E2 were similar. However, the extreme 
points with weight  for both cases present the greatest 
difference between the results of models, approximately 11%, 
due to the absence of a previous study of optimal RES 
allocation in the system and the imprecision caused by the 
relaxation (27). 

The conflicting behavior between the functions  and  
in all cases analyzed of the NLP and SOCP models can be 
observed in Fig. 4. The functions  and  in Case E1 present 
conflicting behavior for both models. The functions  and  
present conflicting behavior only in Case E2 and NLP and 
SOCP models, unlike Case E1, because of the absence of RES 
in the network. In Case E2,  and  do not present 
conflicting behavior, owing to the network configuration and 
the climatic dependence of RES (non-dispatchable sources). 

IV. CONCLUSION 

This paper presented a multi-objective second-order conic 
programming model to solve the optimal power dispatch in 
power systems regarding the inclusion of renewable energy 
sources. Uncertainties were considered through a stochastic 
scenario-based approach to duly represent the behavior of 
RES and load of the system. The objective functions: cost of 
electricity generation, cost of active loss, and the emission of 
polluting gases from non-RES, present conflicting and non-
conflicting behaviors depending on the location, 
concentration, climatic dependence of RES in the power 
system, and the network configuration. Thus, these objective 
functions were satisfactorily combined into a single objective 
function through a weighted approach to obtain a Pareto front 
for the problem.  

Results showed that by changing the energy matrix of a 
system with the installation of RES, the emission of pollutants 
and generation costs of the system are reduced, but the values 
of active losses of the network increase because of RES 
allocation problems and climatic dependence of WG and PV 
generation allocation (non-dispatchable sources). This 
problem could be mitigated through an initial study of the 
optimized allocation of RES in the EPS.  

Numerical experiments revealed that the SOCP model 
presents some deviations in the objective function value when 
compared with the solutions obtained with the exact NLP 
model. The consideration of the minimum resistance in the 
branches improve the convexity of the SOCP model; however, 
a more detailed analysis of the solution is necessary. Future 
works can compare not only the objective function value but 
also the active and reactive power dispatches. 
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