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REMIT/UPT, Porto and

C-MAST/UBI, Covilha, Portugal
gerardo@upt.pt

M. Shafie-khah
University of Vaasa

Vaasa, Finland
mshafiek@uwasa.fi

M. Gough
FEUP and INESC TEC

Porto, Portugal
matthew.gough@inesctec.pt

J.P.S. Catalão
FEUP and INESC TEC

Porto, Portugal
catalao@fe.up.pt

S.F. Santos
INESC TEC and UPT

Porto, Portugal
sdfsantos@gmail.com

Abstract—End users have become active participants in local
electricity market transactions because of the growth of the smart
grid concept and energy storage systems (ESS). This participation
is optimized in this article using a stochastic two-stage model
considering the day-ahead and real-time electricity market data.
This model optimally schedules the operation of a Smart Home
(SH) to meet its energy demand. In addition, the uncertainty
of wind and photovoltaic (PV) generation is considered along
with different appliances. In this paper, the participation of an
EV (electric vehicle), together with the battery energy storage
systems, which allow for the increase in bidirectional energy
transactions are considered. Demand Response (DR) programs
are also incorporated which consider market prices in real-time
and impact the scheduling process. A comparative analysis of
the performance of a smart home participating in the electricity
market is carried out to determine an optimal DR schedule for the
smart homeowner. The results show that the SH’s participation
in a real-time pricing scheme not only reduces the operating
costs but also leads to better than expected profits. Moreover,
total, day-ahead and real-time expected profits are better in
comparison with existing literature. The objective of this paper
is to analyze the SH performance within the electrical market
context so as to increase the system’s flexibility whilst optimizing
DR schedules that can mitigate the variability of end-users
generation and load demand.

Index Terms—energy management system, energy storage sys-
tem, demand response, internet of things, smart home, smart grid,
stochastic programming
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ESS Energy Storage System
EV Electric Vehicle
IoT Internet of Things
LM Local Market
MILP Mixed Integer Linear Programming
MW Megawatt
PV Photovoltaic
RTP Real Time Pricing
SG Smart Grid
SH Smart Home

Indexes
t Time Index
ω Scenario Index
ξ EV mobility scenario Index

Variables

Pnet,dat Day-ahead transacted energy
P sold,rttωξ Energy sold from the home to the market
P pur,rttωξ Energy purchased by the home from the market
Stωξ Total spilled power of renewable sources
Lshed,shtωξ Space Heater load shedding
Lshed,swhtωξ Electric Water Heater load shedding
Pwind,dat Day-ahead wind power generation
P pv,dat Day-ahead PV generation
P b,dis,dat Discharging power of battery in day-ahead
P ev,dis,dat Discharging power of EV in day-ahead
P b,ch,dat Charging power of battery in day-ahead
P ev,ch,dat Charging power of EV in day-ahead
Pwind,rttωξ Real-time wind power generation
P pv,rttωξ Real-time PV generation
P b,dis,rttωξ Real-time discharged power of the battery
P ev,dis,rttωξ Real-time discharged power of the EV
P b,ch,rttωξ Real-time charged power of the battery
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P ev,ch,rttωξ Charging power of EV in real-time
Lsh,rttωξ Space Heater load in real-time
Lswh,rttωξ Electric water heater load in real-time
Lmrs,rttωξ Load of must-run services in real-time

Parameters

λdat Day-ahead electricity price
λsold,rtt Electricity price of the real-time sold energy
λpur,rtt Electricity price of the real-time purchased energy
πω Probability of scenarios
πξ Probability of scenarios for EV’s mobility
V S Spillage cost
V OLLsh Value of lost load of the space heater
V OLLswh Value of lost load of the storage water heater

I. INTRODUCTION

A. Motivation

Smart home consumers’ behaviour is rapidly becoming an
emerging and important field of study recently. The objective is
to optimize the scheduling of power consumption and increase
energy efficiency thus reducing the cost of energy borne by
the consumers. The introduction of competitive Electricity
Markets (EM) has been combined with the concept of Smart
Grids (SG). This combination means that clients are now
capable of buying electricity from the grid according to their
needs and preferences. The SH may also have sources of
generation from local renewable energy sources which can
improve the environmental, economic and reliability of energy
within the SG. Therefore, it is important to create a model to
better balance demand with the supply of energy.

With the increasing usage of renewable energies, such
as Photovoltaic (PV) panels and wind micro-turbines, smart
homes can also produce their energy to use, store or sell
to the grid, making the client a producer beyond being a
consumer. Therefore, clients can play an important role in the
local market. It has been shown that the development of smart
devices, HEMSs, energy storage systems (battery systems) and
Electric Vehicles (EVs), allow consumers to make decisions
concerning demand-side management. Another relevant aspect
for the development of EVs and integration of renewable
sources is actions taken by governments to reduce the carbon
intensity of the energy system. These actions can include
incentives provided for installing renewable energy sources
and reduced costs for electric car charging stations. There
has been a concurrent rise in digital devices, such as sensors,
actuators, smartphones and smart appliances which increase
the potential of the so-called Internet of Things (IoT). This
means that it is possible to connect multitudes of devices and
create communications between them through the Internet [1].
Through advanced automation systems, residential customers
have access to complete supervision and control of the house
equipment. This leads to increased complexity concerning SH
modules requiring them to have integrated forecasting abilities,
decision-making algorithms, wireless networking interfaces,

amongst other features [2]. Any device connected to the grid
can be controlled by the user.

Some applications already developed are associated with
lighting, home security, thermostat regulation, medical treat-
ment and data processing. With the development of new
sensing technologies, communication tools, IoT concepts and
management optimization software, smart homes proved to be
a profitable case study to be invested in. Many studies have
already shown multiple benefits of SH to both suppliers and
costumers [3][4]. A SH can improve a consumer lifestyle in
various ways. As already mentioned, SHs aim to reduce energy
costs and consumption, but also facilitates users’ lifestyles,
providing comfort and quality of life. Furthermore, healthcare
for individuals [5] and accurate market prices information
can be provided [6]. Also, there is a need to optimize house
energy consumption to minimize costs and reduce gas emis-
sions. Despite the countless benefits associated with renewable
energies, this type of energy production comes with a series
of problems and challenges when it comes to its integration in
the Local Market (LM). The biggest challenges are related to
system management are regarding wind and solar power and
its stochastic and unpredictable nature. Consumers’ behaviour
is also unpredictable and studying each type of consumer
can help schedule and optimize the system [7]. One aspect
helping solve these challenges is increasing the flexibility of
the system, which can be achieved by the active participation
of the consumers through DR programs. It is then in the
sense of improving the performance of an SH system that
this paper seeks to work on, by increasing flexibility and
modelling a system to decrease energy costs all the while
ensuring optimal consumer comfort. The increase of renew-
able energies integration and the possibility of modelling the
demand side management allows for a reduction in electricity
tariffs. However to deal with uncertainty it is necessary to
utilize new and innovative methods which allow the model to
optimize different conflicting objectives, operation costs and
environmental restrictions [8].

B. Literature review

A significant number of studies in the literature have
evaluated the performance of a SH on the electrical grids from
different perspectives. In [9], a two-stage stochastic model for
optimal management of domestic energy use is created. The
first stage handles the aspects related to the day-ahead trans-
actions between a home energy management system (HEMS)
and a local market. While in the second stage, the real-time
energy transactions problem with both energy management
system and local market is modelled, accounting for both wind
power generation and EV mobility uncertainty. The problem
of scheduling of different SH appliances’ operation is also
formulated in [10], where a solution to minimize electricity
cost and the maximum peak-load is proposed. Using the
Mixed Integer Linear Programming (MILP) technique and a
schedule was developed for a given a load demand profile,
SH appliances, such as dishwasher, clothes washer and dryer,
refrigerator, air-conditioner, oven and EV.



New specific control strategies and optimized models
for managing energy service of HEMSs were increasingly
developed recently, as many home appliances induce vari-
ations in power consumption during their working cycle.
For instance, different control approaches to optimize energy
flow management in a smart home were studied in [11].
A mixed-integer linear programming (MILP) approach was
designed to solve the optimization problem between binary
variables for representing the ON/OFF status of critical loads
or continuous variables, mainly used to model energy storage
systems. Generally, MILP is efficient in terms of the objective
function (minimizing total energy cost for the consumer view),
however, it requires higher computational time compared to
other control approaches, due to the large number of variables
and constraints in the system model. The problem of schedul-
ing of different SH appliances’ operation is also formulated
in [10], where a solution to minimize electricity cost and
the maximum peak-load is proposed. Based on the MILP
technique and given a load demand profile, SH appliances,
such as dishwasher, clothes washer and dryer, refrigerator,
air-conditioner, oven and EV, were scheduled for minimizing
cost. It was proven the effectiveness of the proposed solution
regarding the objective functions. Furthermore, a PV panel was
added to the model and it showed that also provided profit to
the consumer, lowering electricity bills by using energy from
the PV or selling it to the grid.

In [12], an optimal HEMS considering appliance op-
erational dependencies is proposed. It considers both real-
time pricing and demand charge tariff, and each appliance
operational constraint is defined taking into concern the con-
sumer’s lifestyle. Recently demand charge tariffs have become
popular which are defined as a one-off tariff based on the
maximum demand recorded during a month. Therefore, this
paper shows that this tariff creates an extra impact on the
HEMS and it should be considered in this type of system.
Numerical studies also illustrate that appliance operational
management is relevant to secure better user-oriented HEMSs.
In addition to providing a high level of comfort to consumers,
residential energy management systems should handle the
practical difficulties due to the uncertainty and technical limits.
To this end, a two-stage model considering the uncertainties of
residential load and small-scale renewable energy generation
is proposed in [13], with the purpose of day-ahead and real-
time energy management and regulation. Based on forecasted
values of uncertain parameters, the authors achieved an opti-
mal scheduling solution for the day-ahead stage. An adaptive
neuro-fuzzy inference system is used on the real-time stage to
regulate errors between real values and forecasted ones.

The proposed model showed that, for real-time manage-
ment, the algorithm can optimize the control of the output
power of the battery and controllable loads in comparison
with ideal results. However, the model does not have total
success and requires special strategies to improve its rate.
Another control strategy for HEMSs is used in [14], which
is a stochastic model predictive control strategy designed for
a smart residential building. The model aims for the reduction

of electricity cost and EV’s battery degradation cost and the
predictive HEMS ensures that all constraints regarding PV
system, EV system, consumer’s comfort and load demand. The
results of the model system proposed showed that the system
managed to reduce electricity costs.

As already described, various studies are concerned with
energy management systems and optimization algorithms for
energy cost and peak-load reduction. However, none of the
papers provides a relevant study on the utilization of electricity
bought from the LM and the electricity sold back to the
grid. In [15], a new structure with small-scale renewable
energy sources and energy storage systems where is taken
into account the use of grid’s electricity and the electricity
selling is proposed. Particle swarm optimization is used to
optimize mathematical formulas for energy cost and peak ratio.
In comparison to previous work on this topic, the HEMS
developed by the authors achieved the goal of energy cost
reduction. Still, it is important to comment that in this paper
user comforts, such as thermal comfort and consecutive tasks,
are not considered within the problem’s constraints.

II. METHODOLOGY

The model’s performance was evaluated through a pre-
liminary case study, taking into account a casual behaviour of
a SH consumer using smart appliances. The model outputs are
the hourly consumption, electricity bill and battery charge and
discharge. The test system that is used to assess the proposed
energy management system is taken from [9], [16] and [17].
However, both PV and wind power generation are used, and
must-run services are specified as smart appliances, as it is
shown in figure 1.

The smart home is considered to be relatively well lit
and so the lighting system was modelled to consume energy
mostly during the night (8:00 PM - 05:00 AM). Also, a
10W LED light power consumption per hour is considered.
Furthermore, the washing machine consumption is assumed
to be equal to 1.850 kW per cycle, based on the equipment’s
electrical connection rating. The dishwasher is considered to
have an energy consumption of 1.5 kW per cycle. For a matter
of simplicity, both the washing and dishwasher machines’
operational cycles are assumed to equal to 1 hour, however,
both machines have different daily schedules. Additionally,
the price scheme used in the model is a real-time price (RTP),
table I states it in $/kWh for a period of 24h. For a matter of
comparison analysis, flat rate price is stated as 0.2384 $/kWh.
The proposed model used the General Algebraic Modeling
System (GAMS) for development and implementation [18].

A. Optimization Model

The developed model’s objective function is to maximize
the Expected Profit (EP) obtained by HEMS operating in the
day-ahead and real-time local markets, and it is presented in
equation 1 [9]. This system is capable of buying from or
selling energy to the LM.



Fig. 1. Home energy management system (Modified from [9] and [17])

TABLE I
REAL TIME PRICE DATA (ADAPTED FROM [9])

Time (h) Real-time price ($/kWh)
1 0.17
2 0.18
3 0.19
4 0.22
5 0.23
6 0.24
7 0.24
8 0.23
9 0.31

10 0.28
11 0.27
12 0.26
13 0.24
14 0.23
15 0.25
16 0.25
17 0.26
18 0.31
19 0.27
20 0.26
21 0.23
22 0.21
23 0.21
24 0.19

Maximize EP =
∑
t

λdat P
net,da
t +

+
∑
ω

πω
∑
ξ

πξ
∑
t

[λsold,rtt P sold,rttωξ − λpur,rtt P pur,rttωξ −

−V SStωξ − V OLLshLshed,shtωξ − V OLLswhLshed,swhtωξ ]

(1)

The first element presents the EP derived from energy
trading in the day-ahead LM, due to the day-ahead price
tariff (λdat ) and the day-ahead transacted energy (Pnet,dat ),
which is a profit when the home sells energy, and a cost
when the home buys energy. The day-ahead stage constraints
do not consider wind power and PV generation uncertainty.
Equation 2 displays the power balance equation for the day-
ahead schedule, depending on generation from wind micro-
turbine (Pwind,dat ), PV system generation, battery charging or
discharging power (P b,dis,dat and P b,ch,dat , respectively), the

EV charging and discharging power (P ev,dis,dat and P ev,ch,dat ,
respectively), the energy transacted with the LM (Pnet,dat ) and
the point forecasting of loads (Lsh,pred,dat + Lswh,pred,dat +
Lmrs,pred,dat ).

Pwind,dat + P pv,dat + γbP
b,dis,da
t + γevP

ev,dis,da
t =

= Lsh,pred,dat + Lswh,pred,dat + Lmrs,pred,dat +

+γbP
b,ch,da
t + γevP

ev,ch,da
t + Pnet,dat

(2)

The uncertainty of the generation from wind power and
EV mobility is included in the real-time stage through the
use of stochastic scenarios. Also, a SH can both purchase and
sell energy in real-time. Taking that into account, equation
3 displays the real-time power balance equation, where each
parameter is described as it follows:

• Generation from the micro wind turbine (Pwind,rtt );
• Generation from the PV system (P pv,rtt );
• Discharged and charged power of the battery (P b,dis,rtt

and P b,ch,rtt , respectively);
• EV Charging and discharging power (P ev,dis,rtt and
P ev,ch,rtt , respectively);

• Energy transacted with the LM (Pnet,dat );
• Point forecasting of loads (Lsh,rttωξ + Lswh,rttωξ + Lmrs,rttωξ );
• Load shedding constraints, related to the lost energy of

loads, such as the space heater and the storage water
heater (Lsh,shed,rttωξ + Lswh,shed,rttωξ ).

Pwind,rttωξ + P pv,rttωξ + P b,dis,rttωξ + P ev,dis,rttωξ + P pur,rttωξ =

= Lsh,rttωξ + Lswh,rttωξ + Lmrs,rttωξ − (Lsh,shed,rttωξ + Lswh,shed,rttωξ )+

+P b,ch,rttωξ + P ev,ch,rttωξ + Pnet,dat + P sold,rttωξ

(3)

Within the day-ahead stage, it is noticeable that only one
variable is used to detail traded energy between the SH and the
LM, Pnet,dat . Furthermore, in this stage, P pur,rttωξ and P sold,rttωξ

represent the purchased and sold energy, respectively, as the
buying and selling prices may vary in real-time. In light of this,
equation 4 states the line limitation of the power distribution
network. This takes into account the energy purchased or sold
from or to the grid in the real-time and day-ahead stages,
which helps to simultaneously solve the day-ahead and real-
time problems. Also, energy purchased and sold by the SH
must be a positive value.

−fmax ≤ Pnet,dat + P sold,rttωξ − P pur,rttωξ ≤ fmax (4)

III. DISCUSSION AND RESULTS

This section contains information related to the the per-
formance of the proposed model and a comparative analysis
within the project outputs and results of previous work is
shown. The model assumes that a SH iss able to buy or sell
electricity from the LM, store energy using ESS and produce
electricity using small-scale renewable energy. Furthermore,
PV and wind systems are integrated into the home energy



management problem as renewable sources of electricity. Ad-
ditionally, an EV and a battery system are considered as ESSs
and there are smart appliances integrated into the problem,
including the space heater, electric water heater, washing and
dishwasher machines and other small-scale load appliances.
It should be noted that multiple charging and discharging of
the EV and ESS may have negative impacts on their lifetime.
Figure 2 shows the traded energy with the LM during the
day-ahead stage. In figure 3, the energy sold and purchased in
real-time are shown.

Fig. 2. Traded energy in the Day-ahead stage

Fig. 3. Traded energy in the Real-time stage

In figures 4 and 5, the charging and discharging of the
battery are shown. It is noticable that the battery helps the
HEMS at time, t = 9, t = 10 and t = 18, which constitute
the system peak-load periods.

Fig. 4. Battery charging energy which is traded with the SH

Fig. 5. Battery discharging energy which is traded with the SH

Charging od the EV occurs in periods 2 and 3 as it
is required to be fully charged by 7 AM. Figures 6 and 7
represent the charging and discharging energy from the EV,
which is traded with the DEMS excluding the discharged
energy caused by EV’s.

Fig. 6. EV charging energy which is traded with the SH

Fig. 7. EV discharging energy which is traded with the SHThe expected profits for the total, day-ahead and real-
time stages of the stochastic HEMS problem using the real-
time price is shown in Table II. Table II there is a negative
day-ahead EP. This is because the SH consumes more energy
that it produces, therefore, it buys more electricity than it sells.
This is reversed in the real-time stage as the SH produces more
electricity than it consumes so it has a positive EP.



TABLE II
EXPECTED PROFIT OF THE SH IN BOTH DAY-AHEAD AND REAL-TIME

EP ($) Day-ahead EP ($) Real-time EP ($)
-2.640 -7.211 4.570

IV. CONCLUSION

This paper has described a two-stage stochastic HEMS
has been modelled using the MILP technique. The system
can trade energy with the day-ahead and real-time LMs.
Furthermore, PV and wind systems are integrated into the
home energy management problem as renewable sources of
electricity. The first stage modeled the day-ahead home energy
management problem while the second stage considered the
real-time problem, which also considered uncertainty related to
wind power. The energy costs of the SH were reduced through
careful scheduling of the loads. The model’s performance was
tested using the hourly energy consumption of a SH, end-
users electricity bill and battery’s charge and discharge rate.
The simulation results reveal that the SH alternates between
a consumer and a producer depending on the time period.
Considering the Day-ahead market, the SH was expected to
consume more electricity than it would generate resulting in
a negative profit. This was reversed in the real-time stage
where the SH exported energy thus deriving a profit from
its transactions with the LM. Moreover, total, day-ahead and
real-time expected profits are better in comparison with results
obtained from previous works.

The model can be extended to integrate several smart
homes or smart buildings as one system. As the number of
consumers increases, there is an increase in the number of
constraints and, in turn, the MILP technique loses efficiency
when solving the energy management problem. In this sense,
heuristic and metaheuristic approaches for this problem to
reduce search space and better find the optimal solution,
providing a more reliable model can be studied. Furthermore,
HEMSs with more smart appliances integrated into the model
can be studied to provide better distribution and total manage-
ment of energy usage.
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