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Agent-Based Modeling of Peer-to-Peer Energy 
Trading in a Smart Grid Environment

 

Abstract—The energy system is undergoing a drastic 

transition towards a system where previously passive consumers 

will play important roles. These consumers who actively 

participate in the energy system with a variety of distributed 

energy resources, such as electric vehicles, solar panels, and 

battery energy storage systems, become so-called prosumers as 

they can also generate electricity. This electricity can then be 

self-consumed, sold to the existing grid, or be sold to other 

consumers connected to the same electric network through Peer-

to-Peer (P2P) trading schemes. This P2P energy trading may 

offer significant advantages to consumers involved as well as the 

wider electric system. The use of Agent-Based Modelling (ABM) 

can help address these problems. ABM models allow to 

understand complex and dynamic systems by incorporating the 

behavior of individual agents into the model as the individual 

behavior of the agents has a direct influence on the outcomes of 

the systems. In this paper, an ABM model is developed to 

examine the effects of increased consumer participation within 

a local energy system. This model utilizes a diverse set of 

consumers based on real-world data to model and provide 

insight into the interactions within a P2P energy trading system. 

The effects of P2P trading on financial outcomes as well as the 

share of renewable energy utilized within the local energy system 

is investigated. Results show that ABM models can accurately 

model P2P energy trading systems and can capture the effects of 

individual behavior of many active consumers within electrical 

systems. Also, it is shown that there may be a tradeoff between 

maximizing P2P energy trades within a community and 

maximizing the revenues of the prosumers. 

Keywords—agent-based modelling, peer-to-peer energy 

trading, prosumer 

I. INTRODUCTION  

A. Context 

The energy system is undergoing a drastic transition 
towards a system where previously passive consumers will 
play an important role [1]. These consumers who actively 
participate in the energy system with a variety of distributed 
energy resources, such as electric vehicles (EVs), solar 
panels, and battery energy storage systems, become so-called 
prosumers as they can simultaneously consume and generate 
electricity [2]. 

The self-generated electricity can then be self-consumed, 
sold to the existing grid (to retailers or last resort traders) or 
be sold to other consumers connected to the same electric 
network through Peer-to-Peer (P2P) trading schemes [3]. P2P 
energy trading may offer significant advantages to consumers 
involved (e.g. profit maximization) as well as the wider 
electric system (e.g. less congestion in higher voltage 
networks) [1].  

It is challenging to use classical, numerical based systems 
to model and understand the interactions within a P2P system 
made up of many independent consumers who may have 
different preferences or abilities to participate in the energy 
system [4]. The use of Agent-Based Modelling (ABM) can 
help to address these problems [5]. ABM models allow better 
understanding of complex and dynamic systems by 
decomposing them into numerous agents. The incorporation 
of the behavior of individual agents into the model is key as 
the agents’ behavior has a direct influence on the outcomes of 
the systems [6]. ABM provides explainable insight into the 
collective behavior of a diverse set of agents within complex 
systems. Until recently, the application of ABM to energy 
systems has been limited but, as the type and number of active 
agents within energy systems increase, ABM models are 
becoming more applicable to the energy system. 

B. Literature Review 

Regarding the specific theme of this paper, it is possible to 
find other works that address system modeling problems in 
energy. All the examples discussed in this section use Multi-
Agent Systems (MAS) modeling in some way, as does the 
present paper. MAS are a specific field of ABM in which 
multiple agents cohabit in the same environment and interact 
(with each other and with the environment), adjusting their 
behavior according to external signals received. However, 
despite also using MAS modeling, it differs from other papers 
by tackling P2P energy transactions in a smart grid 
environment. This means its scope is not limited to a 
microgrid environment but can also be applied to one. 
Additionally, it is worth to note that the present paper focuses 
on the economic point of view of the issue - the proof of 
concept, in comparison to more traditional alternatives - 
instead of focusing on its technical feasibility, which is more 
widely discussed. 

Regarding the technical aspect, it is common to see a focus 
on voltage restoration and control, having self-sustainability 
as a key objective.  
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It should not come as a surprise, considering that in most 
cases a microgrid environment is considered. Naturally, a lot 
of them also discuss the incorporation of renewable energy 
sources (RES) and energy storage systems (ESS) to help 
flatten the demand curve. Differences between these works 
mostly lie on how they approach the modeling. For instance, 
[7] highlights the use of distributed controllers instead of a 
central controller; [8] suggests a two-layered approach to 
multi-microgrids, by optimizing the management of a single 
microgrid, and then the optimization of the cluster, 
maximizing the use of ESS; [9] deals with microgrid clusters, 
and suggests dividing them into smaller "sub-microgrids" and 
optimizing each of those more simple systems in order to 
improve dynamic performance. 

An economic point of view should see its focus turn towards 
the end user experience - financial operation and modeling 
depending on end-user behavior and preferences. As [10] puts 
it: "our focus is on the improvement of community energy 
status, while traditionally research focused on reducing losses 
due to transmission and storage, or achieving economic 
gains". The goal of [10] is to achieve a zero energy 
community, in which (by definition) a neighborhood achieves 
null net balance of energy use and RES-based generation; 
although sharing demand and capacity information should 
prove necessary in order to balance any system. In turn, [11] 
exposes the concerns of creating a susceptible environment 
without privacy in the presence of P2P energy arbitrage; [12] 
explores how the interdependence between an electric storage 
unit and an electric power generator varies depending on the 
degree of their exposure to the environment, using a 
combination of MAS and distributed Reinforcement 
Learning; whereas [13] revolves around a demand-side 
management strategy that takes advantage of different 
consumption and production profiles in a neighborhood to 
shift peak loads and minimize electricity costs. 

It is possible to see that, regarding this theme, research is 
mostly dedicated towards a specific need or concern, while 
leaving the broader subject of P2P energy trading to any 
adequate means of simulation. With this paper, a broader 
view is proposed, setting out to prove this concept in any 
smart grid environment, without such limitations as the high 
costs of these technologies, the heavy presence of ESS (an 
early-stage technology), the variable policies regarding EVs 
and scalability issues using MAS modeling. With this, the 
intention is that this paper will serve a purpose as indication 
that even without very radical transformation in our present 
reality, it is possible to welcome this concept and to put it into 
motion, not being exclusive to microgrids or new grids or 
neighborhoods with extremely high financial possibilities. [4] 
makes a very similar approach, exploiting 
"generation/demand flexibility from an energy community 
perspective", and using ABM modeling to simulate social 
interactions and end-user behavior - arguably the most 
defining trait of this subject. Going one step further, [14] 
introduces non-residential members in a community 
environment similar to that of [4], with a similar objective. 
Also worth mentioning is [15], that not only evaluates its 
results based on demand-side flexibility and its impact on 
electricity costs but also end-user’ comfort - a relevant part of 
the practical popularization of this concept in the future. 

 

C. Contributions and Paper Organization 

The literature review has shown that while the use of ABM 
has grown and the benefits of this modelling technique have 
been demonstrated, there are not many examples of this 
technique being applied to P2P energy trading systems. This 
paper addresses this research gap through the development of 
an ABM model for a P2P energy trading system.  

The contributions of this paper are two-fold: 

• The development of an ABM model for simulating P2P 
energy trading between prosumers within a smart grid 
environment. 

• The analysis of the effects of agents with different roles in 
the model and market structures on the outcomes of the 
P2P market to identify critical areas for future research. 

 The rest of the paper is structured in the following manner: 
Section II introduces the details of both the developed model 
and the case study considered; Section III presents the results 
derived from the case study; lastly, the conclusions are 
discussed in Section IV.  

II. SYSTEM DEVELOPMENT 

A. The ABM platform 

The AnyLogic simulation software was used to 
implement the ABM model. The software provides an 
integrated development environment (IDE) supporting agent-
based, discrete event, and system dynamics modelling as well 
as a combination of the three [16]. It has been used in diverse 
settings, including in the energy system [4]. The software is 
based in the Java programming language and allows users to 
extend models using Java. AnyLogic has a high degree of 
flexibility which allows users to fully capture the complexity 
of the agents’ interactions at various levels of detail [17]. 
Importantly, the software allows for communication between 
agents which is key as they can transmit information 
regarding their status and preferences [16]. 

AnyLogic is well suited for the modelling of dynamic 
systems characterized by a non-linear behavior, agent 
memory, non-intuitive interactions between agents and 
variables, and time and causal dependencies [18]. In addition, 
these systems generally include many agents and various 
forms of uncertainty, similarly to what happens in energy 
systems 

AnyLogic has a graphic environment with programmable 
blocks. In this model, a population type agent ("people") was 
placed inside the main environment ("main"). The upper level 
("main") code influences the entire model and runs before 
entering the lower-level code ("people"). In the lower level, 
the code effects each agent individually in a successive 
manner, although interaction between agents must be coded 
differently. Each function and event parameter can be 
individually coded and customized: events can be timed to 
activate other code blocks; agents, connections and even 
environments can be customized to set actions and code for 
individual agents or functions. 

The AnyLogic environment used to develop the model is 
shown in Fig. 1.  The various user created functions, the input 
data files, various variables and options for altering the 
environment of the model are shown in Fig. 1.  

 



 
Fig. 1: User created environment in AnyLogic 

B. Case Study 

The model includes a virtual population of 100 agents. 
Each agent represents a household with a unique load and 
generation profile. All agents are randomly placed in a virtual 
environment and are connected to each other, which enables 
them to participate in energy transactions with each other. 
Note that although agents are randomly distributed by the 
software, they are placed in the same place in every 
simulation, allowing for consistent analysis. 

Each simulation is run for 24 hours. The simulations are 
run in varying conditions to make a sensitivity and cost 
analysis. The varying inputs are seasonality and weather 
conditions, since these factors influence load and generation 
profiles, and the share of prosumers and consumers in the mix 
of agents. Considering price signals and messages from other 
agents, a prosumer agent can decide when to self-consume 
their self-generated energy, when to buy energy from the grid, 
when to establish P2P energy trades with other agents or when 
to sell energy to the grid. In turn, the range of decisions made 
by consumer agents is more constrained since they only 
interact to buy energy from the grid or from prosumers in the 
system. 

The individual load profiles were retrieved from [19], a 
North American database including data from more than 1000 
locations for at least 12 years. This ensures data is not 
influenced by specific events (e.g., financial crisis, 
microclimates or unique cultures) and is as generic as possible, 
allowing the model to be replicated in other scenarios. The 
retrieved profiles provide yearly and seasonal (summer and 
winter) average demand data, with a discretization of one hour 
and are adjusted according to the household size. 

The self-generated energy is solely provided by 
photovoltaic (PV) panels installed in each agent's facilities 
(distributed configuration). No other type of energy 
production was considered. The PV generation data was 
retrieved from [20] and represents the yearly averages, 
aggregated per hour.  

The PV installed capacity was defined according to the 
household size established by the demand profiles as the 
bigger houses tend to have more PV panels installed.  

Also, to simulate price signals, the following assumptions 
were made: the market energy price (representing the price 
paid for the energy deficits bought from a retailer) was taken 
from [4]; the price of selling electricity to the grid was set at 
90% of the hourly price of the market, in accordance with [21]; 
and the price for P2P transactions was set at 45% of the hourly 
price of the market according to [22]. 

III. RESULTS 

A. Baseline 

To establish a basis for comparison, the most common 
case for a generic neighborhood was selected - a population 
made of 100% consumers. This, of course, implies 0% 
prosumers which means that there is no local self-generated 
energy, users are completely dependent on grid supply and 
P2P energy transactions are not possible. 

In this setting, only the demand profiles were considered 
and, collectively, the 100 consumer agents demanded a total 
of 4070 kWh during the 24-hour period. The energy mix of 
the consumers is shown in Fig. 2. As expected, the demand 
was completely satisfied by importing energy from the grid 
(“From Grid”).  

As expected, in a scenario with only consumers, there is 
only the hourly load profile ("Load") that overlaps with the 
energy bought from the grid ("From Grid"). At every point in 
time, given that there is no generation, all agents must buy 
their energy directly from the grid. This is a good opportunity 
to observe the demand curve, where a very high demand can 
be seen at the later hours of the day, reflecting typical 
residential consumption patterns. 

B. Altering the penetration of prosumers 

This section exploits the incorporation of prosumers in the 
mix of agents to analyze their contribution to the validation 
of the model. Different shares of prosumers were tested 
starting with 25%, then 50%, 75% and 100% of prosumers in 
the mix of agents. By including increasing numbers of 
prosumers, local generation is increasingly brought into the 
system and self-consumption and P2P transactions are 
enabled.  

Following such reasoning, the higher the penetration of 
locally produced RES, the more self-sustainable and 
independent the microgrid will be from external energy 
suppliers. With this model in place, costs should also 
decrease. Of course, this will only be applicable when there 
is generation (when solar power is available), so there should 
be a clear difference when the natural resources allow it to be.  

 
Fig. 2: Energy balance of the baseline with no prosumers 



This does mean that we should still witness a considerable 
amount of energy being purchased from the grid during the 
periods of no solar availability (e.g., night/dawn). 

The amounts of energy coming from the different sources 
when different shares of prosumers are considered are shown 
in TABLE I. In the baseline case (no prosumers), 100% of the 
energy is imported from the grid. As more prosumers are 
introduced into the model, the amount of energy required 
from the grid decreases and the amounts of energy self-
consumed and traded locally increase. The level of self-
consumption increases linearly with the penetration of 
prosumers. Interestingly, the amount of energy traded 
between peers decreases when all the agents are prosumers. 
This could be because all the agents are generating power and 
cannot easily find a buyer for the excess generation.  

In Fig. 3, 4, 5 and 6 the results from the simulations with 
25%, 50%, 75% and 100% penetration of prosumers are 
presented.  When 25% of agents are prosumers (Fig.3), 
although part of the demand can be supplied by self-
generation and energy coming from P2P transactions, the 
system remains heavily dependent on grid power supply, even 
during the periods of solar availability. With the introduction 
of more prosumers in the system (Fig.4) the dependence on 
grid supply is reduced and nullified during peak PV 
generation periods. Finally, when the number of prosumers is 
dominant in the system (Fig.5 and 6), much of the demand 
during periods of PV availability is supplied by self-
consumption and energy traded between prosumers, 
contributing to the temporary self-sufficiency of the system. 
In these settings, the self-generated energy exceeds the 
demand (“load”) in some periods and surplus energy is 
exported and sell to the grid which allows to foresee profits 
for prosumers. When all the agents are prosumers (Fig. 6), an 
interesting behavior is registered: less energy is traded 
between peers when compared to the previous cases. This fact 
happens due to the abundance of self-generated energy and 
the reduced need to purchase energy from other prosumers 
during periods of solar availability. 

These results allow to infer that the highest percentage of 
P2P energy traded in these conditions would likely be 
somewhere between 50 to 75% of prosumers in the agents 
mix. 

 
TABLE I: IMPACT OF CHANGING PENETRATION OF PROSUMERS (%) 

 From 
Grid 

Self-
Consumption 

P2P 
trades 

To 
Grid 

Baseline 100 0.0 0.0 0.0 
25% 87.4 5.2 7.4 0.0 
50% 74.2 10.4 15.4 1.0 
75% 68.7 15.3 16.0 7.2 

100% 65.8 20.8 13.35 18.2 

 

 
Fig. 3: Energy balance with 25% penetration of prosumers 

 
Fig. 4: Energy balance with 50% penetration of prosumers 

 
Fig. 5: Energy balance with 75% penetration of prosumers 

 
Fig. 6: Energy balance with 100% penetration of prosumers 

That balance is where the model would reach most 
success. Nevertheless, a 25% prosumer presence already had 
considerable impact and could be a reasonable starting point. 
The 75% prosumer presence setting was the one performing 
better. After this point we saw a drop in the model efficiency, 
providing relevant clues. These results reinforce the need to 
adjust the installed generation capacity according to the 
demand needs as best as possible. The oversizing of systems 
and the production of surpluses may not be advantageous, 
especially if local exchanges are not possible and if the 
surpluses remuneration is not economically attractive. 
Also, the results reveal that the scalability of this model should 
not be a problem. It should work in any neighborhood scale if 
the relative geographical distribution of the agents is not 
highly unfavorable, in which case transmission losses could 
come into discussion.  

C. Effect of weather 

The impact of seasonality and weather in the results was 
also examined. The configuration mix of 50% prosumers and 
50% consumers was considered. Simulations were performed 
by using demand hourly average data of summer months. 
While the comparison in this section is between a sunny 
summer day and a cloudy winter day, the demand profiles of 
the summer day were used for both scenarios to allow for the 
comparison between the scenarios. This was done to show 
how the weather conditions affect generation and thus the 
number of P2P transactions.  



The demand to be supplied in summer is much lower than 
the yearly average, but the generation values stayed the same.  

To further test the impact of the weather on the results, 
two scenarios were analyzed: the “sunny” summer day and 
the “cloudy” winter day. The simulation of a “sunny” summer 
day is shown in Fig. 7 while Fig. 8 displays the simulation 
results of a “cloudy” winter day. By comparing both figures, 
the influence of the weather variability on the model self-
consumption, local trading and dependence on external 
energy suppliers is clearly revealed. 

In the “sunny” summer day, considerable generation 
surplus amounts are made available at peak generation hours. 
This shows that agents can be, at some extent, self-sufficient 
from external suppliers during some periods. In this scenario, 
up to 17% of the demand may be supplied by P2P transactions 
while a 70% dependency from the grid is kept. In turn, in the 
“cloudy” winter day, the dependency from the grid increased 
by 7% as the demand supplied by both P2P transactions and 
self-consumption decrease. This worsening of the results is 
expected due to the decrease of PV availability. In this 
scenario, there is no generation surplus, and no energy being 
sold to the grid. Thus, at no point in time, agents can be 
completely self-sufficient from external energy providers. 
This shows that weather has indeed a great influence on 
systems’ autonomy and P2P transactions since they are 
dependent on generation surpluses at a given time. 

D. Financial Analysis 

Finally, the financial results were calculated to compare all 
cases. Costs associated with self-consumption were not 
calculated as operational and the maintenance costs of PV 
panels were not considered. Keeping in mind that these 
results aim to benefit the population of agents, the costs 
related to P2P transactions will be noted but not accounted as 
positive nor negative since while one agent is paying this 
value, another one is gaining the same - as such, no financial 
gains nor losses from the transactions are considered. In the 
situations where there was no surplus, no energy was sold to 
the grid and no currency was made.  

 

 
Fig. 7: Energy mix for a “sunny” summer day 

 
Fig. 8: Energy mix for a “cloudy” winter day 

The same goes for the situation where no P2P transactions 
happened - there were no costs nor gains. 

The "winter" scenarios registered worse financial outcomes 
compared to the normal cases with the same number of 
prosumers, with 19% and 29% higher costs from the grid due 
to the increase in demand and decrease in self-generation 
which means more energy has to be bought from the grid. The 
simulations in which least money was spent by buying energy 
from the grid were the two "summer" scenarios, in which the 
costs were reduced by nearly half (49% and 54%) when 
compared with the baseline case. When considering the 
energy sold to the grid, the scenarios with a higher presence 
of prosumers are the ones performing better. When all the 
agents are prosumers, the energy sold to the grid accounts for 
almost 17% of all costs, meaning that the costs from the grid 
would be halved compared to the baseline case. 

The financial impacts of differing levels of prosumers are 
shown in TABLE II. Due to the lower levels of P2P trading 
taking place in the 100% prosumer setting, the P2P costs are 
lower than those of the 75% prosumers presence case. 
However, the revenues generated by the prosumers in the 
100% case by selling surplus energy to the grid far exceeds 
the 75% case. This shows that there may be a tradeoff 
between maximizing P2P energy trades within a community 
and maximizing the revenues of the prosumers. 

IV.  DISCUSSION OF MODEL ASPECTS 

Despite the relevant results for the design of more efficient 
P2P schemes, some limitations of this approach must be 
further discussed as they influence the results. First, we must 
discuss the quality of the input data. Average generation and 
demand data discretized in hourly time frames was considered, 
bringing a degree of uncertainty to the results. Energy must be 
delivered when requested, and non-immediate availability is a 
major fault. In light of this, in a scope of a 24 hours planning 
period, a 1 hour time frame can hide a lot of issues, such as the 
time that it takes for the communication between the agents 
and the market and to check for the availability of energy 
before going to the next alternative.  

Secondly, the model calibration and validation would only 
be possible by collecting data from a real energy system with 
similar characteristics. The current lack of such systems does 
not allow to know how accurate the model is or how far away 
is it from reality. Thus, although the model's assumptions were 
made to reproduce a real system as best as possible, the 
modeling would benefit from the access to real consumption 
and generation data and preferably with smaller temporal 
discretization. 

Third, the results are affected by the price assumptions. As 
the current legislation stands in most countries, as Portugal, 
prosumers would always make more money selling generation 
surpluses to the grid than to a fellow consumer. The price of 
selling surplus energy to the grid was set as 90% of the hourly 
electricity market price, while the P2P transaction price was 
set as 45% of the market price.  

 
TABLE II: FINANCIAL IMPACTS ON THE AGENTS (€) 

 P2P Costs Import Costs Export 
Revenues 

Total 

Baseline 0.0 1001.45 0.0 1001.45 
25% 33.62 882.79 0.0 916.41 
50% 69.71 751.94 0.22 821.43 
75% 72.38 704.84 67.2 710.05 

100% 58.9 669.755 166.56 562.1 



This could be managed by a new mechanism like the 
government subsidizing the other part of the price. It would 
decrease dependency on the grid and favor RES-based energy 
(which favors the government) but that would mean to keep 
relying on subsides. 

Lastly, when generation surplus is sold to the grid, 
especially if the amounts are significant, storage devices and 
demand-side management approaches must be exploited as it 
would have a great impact on the results. In a configuration 
with 50% prosumer presence: in the first time there is enough 
surplus to have energy sold to the grid, if storage was 
available, this energy could have been passed on to the next 
hour, increasing savings and decreasing grid dependency. As 
another example, in a setting in which all agents are 
prosumers: energy is not bought from the grid between 10am 
and 6pm (period of PV availability). However, as the highest 
peak of the demand curve comes at periods of no generation, 
there is always a big dependency on the grid. The only way to 
change this would be to shift part of the demand or store 
surplus energy during PV availability periods and consume it 
to flatten the demand peak. 

V. CONCLUSIONS 

In this work, an ABM model was presented to examine the 
effects of increased prosumer participation within a local 
energy system (e.g., neighborhood, local energy community, 
etc.). This model utilizes a diverse set of agents representing 
residential consumers and prosumers and is supported by real-
world data to model and provide insight into the interactions 
within a P2P energy trading system. The effects of P2P trading 
on the agents’ financial outcomes as well as the share of 
renewable energy utilized within the local energy system was 
investigated. 

Even without considering supportive (but expensive) 
systems, such as storage, the model proved to be feasible by 
reaching up to 50% energy savings and decreasing grid 
dependency. Also, the results revealed that to maximize local 
P2P energy trading, between 50% and 75% of the members of 
the system must be prosumers. That balance is where the 
model would reach most success and future approaches will 
focus on the optimal composition of the system to maximize 
the energy traded between peers. Still, the results also show 
that even a small prosumers participation (25%) already has 
considerable impact on the system performance.  

The sensitivity analysis also proved that the model is 
viable in both seasons but performs better during the summer 
months even facing intermittent conditions. The model proved 
to be highly influenced both by climatic conditions 
(seasonality and intermittence) and by fluctuating 
consumption patterns: months with higher-than-average 
demand curves and lower than average generation profiles 
could render the results near redundant. 
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