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Abstract  The problem of reconfiguration for active 
distribution systems is formulated as a stochastic mixed-integer 
second-order conic programming (MISOCP) model that 
simultaneously considers the minimization of energy power 
losses and CO2 emissions. The solution of the model determines 
the optimal radial topology, the operation of switchable 
capacitor banks, and the operation of dispatchable and non -
dispatchable distributed generators. A stochastic scenario-
based model is considered to handle uncertainties in load 
behavior, solar irradiation, and energy prices. The optimal 
solution of this model can be reached with a commercial solver; 
however, this is not computationally efficient. To tackle this 
issue a novel methodology which explores the efficiency of 
classical optimization techniques and heuristic based on 
neighborhood structures, referred as matheuristic algorithm is 
proposed. In this algorithm.  the neighborhood search is carried 
out using the solution of reduced MISOCP models that are 
obtained from the original formulation of the problem. 
Numerical experiments are performed using several systems to 
compare the performance of the proposed matheuristic against 
the direct solution by the commercial solver CPLEX. Results 
demonstrate the superiority of the proposed methodology 
solving the problem for large-scale systems. 

Keywords  CO2 emissions mitigation, distribution systems 
reconfiguration, matheuristic, mixed-integer second-order conic 
programming, neighborhood search. 

I. INTRODUCTION 

A. Motivation and literature review 

The optimal operation of distribution systems (DSs) is an 
important research area that seeks to increase economical, 
technical, and environmental benefits. Nevertheless, 
optimizing a DS is a complex task, due to the presence of 
sectionalizing and tie switches that change the network 
topology, the multiplicity of distributed technologies that 
inject power in the lines and the stochasticity of parameters 
that are part of the operational environment.  

From a classical optimization approach, there are 
different ways to model this problem, however the mixed 
integer nature of variables and the stochasticity of certain 
parameters, add it a high complexity. Today's computational 
tools offer us different types of commercial solvers for 
mathematical programming. However, the implementation of 
new technologies in distribution systems has also advanced 
rapidly and analyze the mathematical model of a real system 
produces a heavy computational effort for the solver. In this 
way, are necessary new and efficient approaches to reach a 
suitable operational state of the networks. 

Based on what was explained in the previous paragraphs, 
some of the elements that add complexity to the mathematical 
model are the binary variables related to the change of 
topology, the integer variables related to the state of 
switchable capacitors and the analysis of a set of scenarios 
that represent the stochasticity of parameters such as load, 
solar radiation and energy cost. Each of these elements can 
be specifically addressed during the solution process to 
reduce computational effort and get a good-quality results. 

The distribution network reconfiguration (DNR) 
problem, is an extensively researched topic that has been 
treated mainly in two ways [1], mathematical programming 
[2], and metaheuristic approaches [3]. For large systems 
however, the optimal solution still represents a problem. 
Additionally, the use of renewable energy sources that is 
growing globally led by the continued installation of 
approximately 100 GW of grid-connected photovoltaics (PV) 
per year [4], makes the uncertainty of output from renewable 
primary sources an important aspect. This is combined with 
the variability of demand to increase the challenges 
associated with obtaining an efficient solution to the problem. 

Nowadays, several concerns have emerged due to high 
greenhouse gases emissions from the sector of electricity 
generation; therefore, it has been necessary to create policies 
that encourage the use of renewable generation to reduce the 
CO2 emissions produced by the burning of fossil fuels. In this 
regard, the inclusion of renewable energy sources (RES) in 
the DSs can help to mitigate the impact to use fossil fuels as 
primary generation sources [5]. 

All these factors should be considered when devising a 
procedure that optimizes the operation of DSs to minimize 
the cost of energy losses as well as the penalty for CO2 
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emissions. Generally, the reconfiguration problem has been 
studied as a strategy to minimize active energy losses, 
however, having different schemes working together, it is 
appropriate to be able to extend it to consider other objectives 
that also economically impact the operation of the DS.  

Among some of the relevant works that address the DNR 
problem for loss minimization through mathematical 
programming, it can mentioned the MISOCP proposed model 
for loss reduction presented in [2], this is characterized by 
being the first convex reconfiguration model proposed, which 
accurately calculates power losses, unlike previous works 
that only proposed approximations. In [6], the real and 
imaginary parts of the variables are separated to obtain a 
mixed-integer linear programming (MILP) model. Due to the 
advantages of convexity, the development of new conical 
models has advanced and they have been used according to 
the study approach. Two clear examples of the advantages 
offered by this type of modeling are [7] that use the big-M 
method and piecewise linearization to losses minimization 
and, [8] that joint the reconfiguration and placement of 
capacitors problems. The broad application of metaheuristics 
to solve the reconfiguration problem is demonstrated in [3], 
where the authors present a review about the used 
methodologies, some of they are Simulated annealing (SA), 
Tabu search (TS), Evolutionary algorithm (EA), Generic 
algorithms (GA), and others. The authors in [9] propose a 
differential evolution algorithm to minimize losses. The CO2 
emissions minimization is currently a topic under intense 
study but there is not a deep analysis of the relationship 
between it and the reconfiguration. Works that consider this 
link are: [10] that uses a multi verse optimization (MVO) 
algorithm to solve the reconfiguration problem and shows 
that emissions are reduced in a directly proportional way with 
losses; on the other hand, [11] formulates the emissions 
minimization as a part of the objective function that reduce 
the operational overall costs.  

B. Research gap and novelty contributions 

Matheuristic algorithms are optimization tools that joint 
metaheuristics and mathematical programming, to solve 
complex optimization problems. As such, the matheuristic 
concept has been successfully applied for much mathematical 
programming problems and is associated with the 
improvement of MIP solvers. However, the matheuristics 
have not been significantly explored on DSs field.  

Due to the above, this work contributes with a new 
neighborhood matheuristic algorithm (NMA) to solve the 
reconfiguration problem of active DSs. The mathematical 
model of the problem is a MISOCP stochastic scenario-based 
model that minimizes the total cost of energy losses and the 
taxation produced by emissions of CO2. The model solution 
determines the optimal operation of switchable capacitor 
banks (SCB), dispatchable DGs, and PV units.  

The remainder of the paper is organized as follows: 
Section II presents the mathematical model of the problem; 
the proposed methodology approach is shown in Section III; 
Section IV presents the obtained results for different systems 
and a comparing analysis of performance between the 
implemented methodology and mathematical programming 
CPLEX solver. Finally, conclusions are drawn in Section V. 

II. PROBLEM FORMULATION

A. Uncertainty

In this work it is necessary to model the uncertainty for 
the three stochastic parameters, cost of energy, electrical load 
and solar radiation. It is carried out using the k-means 
clustering technique that takes samples of historical 
measurements and generates k-scenarios of operation in order 
to represent a specific period [5]. This clustering technique 
arrange data according to their similarities with a good 
performance and simplicity [12], obtaining as a result a 
reduced set of centroids determined by the mean square 
distance between the samples. 

The time range considered for the analyses in this work in 
specific was 2160 hours (three months) that correspond to a 
year season. This set of historical data were taken from [13] 

the data is processed according to Fig. 1 where the k-means 
method obtains two groups of twelve scenarios (centroids). 
Each group represents a typical day and the probability of 
occurrence of a scenario that belongs to the first group is the 
complement to the respective probability of the scenario 
belonging to the second one. The day and night are considered 
due to the PV generation. 

B. Objective function 

The stochastic programming model optimizes the operational 
cost of the system, simulating a day of operation by 24 
weighted scenarios. This objective is obtained minimizing 
the cost of active power losses and the cost of CO2 emissions 
penalty, as is showed in Equation . 

 

where: 

In the objective function  ,  represents the total 
cost for active power losses and  represents the total tax 
per carbon emissions. In these equations,  is the set of 
stochastic scenarios,  is the set of branches,  is the set 
of substation nodes, and  is the set of nodes with DG 
installed. The parameter  is the probability of occurrence 
of the scenario ,  is the duration of each period (2 hours), 

 is the price per unit of energy,  is the tax per ton of 
produced carbon,  is the resistance of branch ,  and 

 are the CO2 emission factors, kg of CO2 per kWh 
generated at substations and dispatchable generators, 
respectively. Continuous variables  and  are the active 

 
Fig. 1. Scenarios generation by k-means method. 



power injected by substations and DG units,  is the square 
of the current magnitude through a branch.

Equation  determines the total cost for energy losses in 
each scenario. Equation  determines the total tax per carbon 
emissions. 

C. Operational state of the network 

The operational state of radial DSs is determined using the 
following constraint that represent the steady state of the 
system. 

 

In , the set  is the set of nodes of the system. 
The parameter  is the reactance of branch ij,  is the 
squared impedance of ij,  and  are the active and 
reactive demand at each load node,  and  are the maximum 
and minimum voltage magnitude limits respectively. The 
continuous variables  and  are the active and reactive 
power flow magnitude through the branch .  indicates 
the squared voltage magnitude,  is a slack variable,  
and  are the active and reactive power injected by the 
substation at node ,  and  represent the active and 
reactive power injected at each dispatchable DG node,  
and  are the active and reactive power injected by 
photovoltaic panels respectively,  and  are the 
reactive power injected by a CB and SCB respectively, and 
finally,  is a binary variable that indicates the status of the 
switches, i.e., if  then, the switch  is closed and the 
branch is operating, otherwise, if  then, the switch is 
open. 

he active and 
reactive power balances for each node in  and , 
respectively voltage law is represented in 

, where the slack variable  is calculated according to 
the status of the switches . The flow of current through a 
branch is calculated by the conic inequality constraint  
which guarantees optimality and convexity in term of the 
continuous variables of the problem. 

D. Radiality constraints 

Representing a DS as a spanning tree connected to a 
substation is a feasible way to maintain the radiality of the 
network [2]. For this, it is necessary to introduce two binary 
variables and  that indicate the direction of power flow 
through branch . 

If a line belongs to the spanning tree, i.e., , then the 
variable  indicates that  is the parent node of , or in 
otherwise, if  this means that  is the parent node of : 

                         

  

  

Constraint  indicates that if a line is active , it 
must have only one direction of flow, otherwise if . 
Constraint  imposes that each load node must have one 
parent. Finally, equations  and  express that a 
substation cannot have a parent node. This formulation 
guarantees the radial connectivity of the grid even in 
networks with DGs. 

E. Distributed generation 

The operation of synchronous machines is modeled by 
 . 

  

Constraint  limits the active and reactive power 
injection regarding the capacity of the machine , 
connected to node .  indicates that the active power must 
have a positive value, finally,  determine the injection of 
reactive power in the network between the limits defined by 
the capacitive  and inductive  power factors 
respectively. 

The power generated by a photovoltaic panel is presented 
in  and . 

  

 
 

Constraints  and  impose the limits of injection 
for the active and reactive power respectively where  and 

 are the power factors. 

F. Capacitor banks 

The operation of SCBs is modeled by . 
  

  

In these constraints,  is the set of nodes with a SCB, 
the parameter  is the capacity of each capacitor unit, 

is the number of installed units. Integer variable  

determines the number of connected units at node  and 
scenario . The constraints  represents the power injected 
by the CBs and  limits the number of connected modules 
at node . 

III. MATHEURISTIC APPROACH APPLIED TO THE NETWORK 

RECONFIGURATION PROBLEM 

The reconfiguration model (1)  presented in the 
previous section is highly complex which directly impacts the 
computational time required to solve it by a commercial 
solver. In this regard, matheuristics optimization techniques 
appear to be suitable alternative to solve the problem. These 
techniques combine classic optimization and heuristic 
algorithms to solve high complexity problems [14]. This 
combination results in a process with efficiency driven by the 
heuristics while maintaining the accuracy of classic 
optimization [15]. In this way, during the solution process, 



the heuristics oversees exploring new search spaces and 
escaping from local optimum, while the mathematical model 
is iteratively evaluated exploiting their characteristics, on 
these different neighborhoods. 

The proposed neighborhood matheuristic algorithm 
(NMA) is based on neighborhood search around a current 
solution, then an efficient strategy to determine a high-quality 
neighbor solution is required. In this work, this neighborhood 
search is based on the solution of simplified MISOCP models 
obtained from (1) . These MISOCP models; simpler than 
the original, allow to explore the search space through 
changes in a current solution. The following subsections 
present details of proposed matheuristic algorithm. 

A. Reduction of the search space 

Since the DNR model  is used to define the 
neighborhood structures, it is convenient to reduce the search 
space to reduce the computational effort. In this regard, the 
optimal operation of the SCBs that is defined using integer 
variables, could be an issue to find efficient solutions. 
Therefore, constraints  and  are introduced.  

 
 

  

For each SCB node, constraint  ensures that the 
change in the number of active modules between two 
scenarios is in unit steps. Between one scenario and the next, 
constraint  controls the variation in the total number of 
modules connected to the system. This variation can be of  
units. 

B. Neighborhood structure 

An efficient criterion to generate neighboring solutions, 
directly influences the development time of an algorithm. For 
the reconfiguration case, efficiency can be obtained by 
touring a neighborhood structure where all possible solutions 
are radials. In the relevant literature, branch-exchange is the 
most popular technique to obtain radial neighbor topologies 
for the DNR problem [16]. It consists of closing a (normally 
open) tie switch forming a loop, and opening a (normally 
closed) sectionalizing switch that belongs to the loop. Based 
on this idea, a neighborhood depends on an algorithm to 
recognize the loops and the candidate lines to be opened. In 
order to perform this procedure, the implemented algorithm 
uses the variables  and  from (9)-(12) as is shown in the 
Fig. 2 and it is following explained. 

In the example of Fig. 3a, the system has a radial topology 
with two open lines L8 and L9. If line L9 is closed, as shown 
in Fig. 3b, the algorithm identifies the pair of connected 
nodes,  5 and  9 and searches a path from each of them 
until a substation. For the node 5, , which 
indicates that the parent of the node 5 is the node 1, then line 
L2 is marked and the algorithm identifies that this parent node 
is a substation. The same procedure is repeated from node . 
In this case, , indicate that the parent of  
is the node 8, then L6 is marked; however, this is not a 
substation node, thus the new analyzed node is ; the 
variables , show that the parent node of 8 is 
the node 2. Thus, L7 is marked; this parent node is a 
substation, so consequently the process stops. As result, the 

vector of candidate lines to be opened (VL) contains L2, L6 
and L7, as is shown in Fig. 3b. The set of lines that do not 
belong to VL are fixed in their current open/closed status, and 
the solution of the MISOCP model (1)-(21) determines the 
optimal neighbor radial solution by opening one of the lines 
in VL. Note that, the optimal solution also allows changes on 
SCBs. In this example, it was possible to reduce the number 
of candidate lines from 9 to 3. If some lines are closed 
simultaneously, the process is repeated simultaneously too. 

C. Heuristic and mathematic programming interoperation 

Heuristic approach is an optimization technique 
characterized by its greedy behavior. The process is always 
generating a better neighbor solution than the previous one. 
Once it is not possible to generate a better neighbor solution, 
the process stops. In general, the last found solution by the 
above process, is a local optimum. To tackle this, it can be 
applied some principle to escape from this not global 
optimum and the heuristic process can continue. 

For this work, was used the concept of memory, in the 
same way that Tabu search method does. When the process 
arrives at a local optimum, it cannot return to previously 
visited solutions. These visited solutions, are saved in the 
memory and remain forbidden for the rest of the process. In 
this way, the process escapes from a local optimum by 
moving towards the next best unvisited neighbor solution. 
This allows the algorithm to visit a low-quality neighbor 
solution, then, the heuristic keeps moving throughout new 
neighborhoods. 

The proposed heuristic methodology is a combination 
between a heuristic method and mathematical programming 
forming the matheuristic method. 

 
Fig. 3. Example of loop recognition. a) Initial topology. b) Recognition of 
the candidate lines to be opened. 

 
Fig. 2. Loop recognition algorithm. 



As is shown in Fig. 4, the implemented algorithm starts 
defining the objective function of the initial topology and 
saves the current open lines vector and  variables in 
memory. Then, the neighborhood structure uses the current 
topology to generate  neighbors closing  different lines. 
The algorithm chooses the best neighbor for each 
neighborhood and updates the memory including the current 
visited solution. Each enhanced objective function value is 
defined as incumbent and it is not necessary that the best-
neighbor be better than the incumbent to advance in the 
development; allowing for a reduction in the quality of 
solutions to explore new search spaces. The neighborhood 
structure varies according to the  parameter that closes a 
different number (for this work ) of lines per 
iteration giving dynamism during the move among solutions.  

IV. TESTS AND RESULTS 

The MISOCP model, defined by , and the 
proposed NMA approach were implemented in AMPL. The 
solver CPLEX was used to optimize the models considering 
as stopping criteria an optimality gap of 0.1% or a maximum 
CPU time of 6 hours. Numerical experiments were carried 
out in a computer with Intel(R) Xeon(R) CPU E5-2650 v4 @ 
2.20GHz processor and 64 GB of RAM. The tests are 
performed to compare the quality of solutions and the CPU 
time. 

The CO2 emission factor of the system is 
 and the emission factor of dispatchable 

generators is . The cost per ton of 
CO2 produced is . 

In this paper, the data of solar irradiation were obtained 
from [13] and the k-means clustering technique is used to 
reduce the historical data to a suitable set of stochastic 
scenarios. This historical data comprises cost of energy, load 
level and solar irradiation. The quantity of analyzed hours 
was 2160 to represent a typical day of a quarter. In Fig. 5 is 
showed the stochastic scenarios obtained by k-means 
clustering method. 

For all the dispatchable DG units the set power factor are 
= 0.8, while for the PV units are 0.9.

These data are the same for all the test systems. 

A. 33 Bus System 

This system was presented in [17]. Additionally, the 
following equipment were considered: a dispatchable DG of 
250 kVA at node 23, two fixed CB of 150 kVAr at nodes 10 
and 27, a SCB with 4 units of 150 kVAr each at node 19, 
finally, a photovoltaic panel with 250 kVA at node 32. 

B. 69-Bus System 

This system from [18], has three dispatchable DGs 300 
kVA connected at nodes 6, 20 and 34. Two fixed CBs of 150 
kVAr at nodes 17 and 20; two fixed CBs of 300 kVAr at 
nodes 53 and 68, a SCB with 4 units of 150 kVAr each at 
node 13. Finally, four photovoltaic units of 1 MVA at nodes 
24, 28, 50 and 66. 

C. 118-Bus System 

This system from [19], has four dispatchable DGs of 250 
kVA connected at the nodes 11, 25, 35 and 86, eight fixed 
CBs of 120 kVAr respectively at the nodes 9, 30, 48, 57, 58, 
59 73 and 88. Two SCBs of 4 units and 120 kVAr each at the 
nodes 7 and 73. Six photovoltaic panels of 1MVA at nodes 
17, 28, 50, 61, 107 and 111. 

D. 136-Bus System 

This system from [20], has three dispatchable DGs of 
250 kVA at nodes 15, 42 and 63 and two DGs of 400 kVA at 
nodes 83 and 156. Six fixed CBs of 150 kVAr at nodes 18, 
35, 48, 55, 87, 135 and 155. Two SCBs with 2 units of 120 
kVAr each at nodes 5 and 21. Two SCBs with 4 units of 120 
kVAr each at nodes 59 and 136. Finally, six photovoltaic 
panels of 1 MVA connected at nodes 12, 30, 83 and 87. 

E. Discussion 

TABLE I shows a comparison between the NMA and 
CPLEX solver solutions for (1) . For the 33-bus and 69-
bus systems, the proposed NMA algorithm finds the same 
solutions as CPLEX, while for the 118-bus system, the NMA 
the solution is only US$ 0.09 better than the 
solution. On the other hand, better solutions are obtained for 

 
Fig. 5. Parameter values a) Probability occurrence of the scenarios. b) Cost 
of the energy. c) Load level and d) Solar irradiance. 

Start

- Define: k n; IterMax
- Obtain the current state of the 
system
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Update
- Iter = Iter+1
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- Memory

Iter  
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yes

no

yes

no

no

yes  
Fig. 4. Proposed matheuristic algorithm. 



the 136-bus systems where NMA  is 12.9% better 
than the CPLEX one. 

A similar context occurs for the time of solution; for the 
two last systems, the imposed was 
required to stop the CPLEX process while the NMA obtained 
solutions in 75.36% and 73.96% less time. This demonstrates 
the efficiency of the methodology as an alternative to solve 
complex problems. 

In addition, TABLE II shows the reduction in the 
objective function,  tax and cost of losses are compared 
before the reconfiguration (BR) and after (AR) where the 
major reduction is obtained for the 136 Bus system with a 
reduction of approximately $500. The major reduction in 

was obtained for the 118 Bus system where the reduction 
was $271.05. 

V. CONCLUSIONS 

Conforming to the results, this NMA presents quality 
solutions in less computational time than CPLEX solver. This 
superiority occurs as the size of the system increases. 
Regarding the objective function, it was possible to achieve a 
noticeable reduction in the operating cost considering that the 
increased presence of DG results in a reduction of up to $ 270 
from gas emissions taxes in a hypothetical day. On the other 
hand, the proposed neighborhood structure and search space 
reduction can be applied to other planning problems that 
require radial topologies. Similarly, the proposed approach 
can be used to implement other matheuristic algorithms based 
on neighborhood structures. 
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TABLE I.  
COMPARISON OF RESULTS OBTAINED BY CPLEX AND 

PROPOSED MATHEURISTIC
System Results Before Reconfig. CPLEX Matheuristic 

33-Bus 
OF (US$) 903.68 853.60 853.60 
Iterations - - 3 
Time (s) - 217.53 204.46 

69-Bus 
OF (US$) 860.60 563.94 563.94 
Iterations - - 4 
Time (s) - 5,788.83 2,667.00 

118-Bus 
OF (US$) 5,350.61 5,025.02 5,024.93 
Iterations - - 12 
Time (s) - 21,600 5,322.47 

136-Bus 
OF (US$) 3,631.22 3,595.95 3,132.15 

Iterations - - 16 
Time (s) - 21,600 5,625.12 

TABLE II. 
CO2 TAX AND LOSSES COST FOR THE TESTED SYSTEMS 

BEFORE AND AFTER OF RECONFIGURATION 
 33-Bus 69-Bus 118-Bus 136-Bus 

Results BR AR BR AR BR AR BR AR 
CO2 141.32 99.7 338.47 90.92 865.03 593.98 200.82 110.08 
Losses 762.36 753.9 522.13 473.02 4485.58 4430.95 3430.4 3022.07 
Total 903.68 853.6 860.6 563.94 5350.61 5024.93 3631.22 3132.15 


