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Abstract—This article investigates the problem of detecting 

and estimating actuator fault in direct current microgrids (DC 

MGs) with linear and nonlinear constant power loads (CPLs). 

The actuator fault is modeled by using an additive term in the 

state-space and highly influences the system response if it is not 

compensated. An advanced dual-extended Kalman filter (dual-

EKF) is proposed to estimate the system states and the accruing 

actuator fault. Though the presented approach offers a 

systematic procedure to divide the augmented state vector into 

two parts and these parts can be estimated in parallel. Thereby, 

the online computational burden is reduced as it can be 

implemented by two processes in parallel. The proposed 

approach does not require restrictive assumptions on the system 

matrices and is robust against stochastic Gaussian noises. The 

proposed approach is applied on a practical faulty DC MG 

benchmark connected to a CPL; and, the results are compared 

with other state-of-the-art methods from the computational 

burden and estimation accuracy points of view. 

Keywords—DC microgrid, Constant power load, Actuator 

Fault, Extended Kalman Filter, Estimation. 

I. INTRODUCTION 

Direct current (DC) and alternating current (AC) 
microgrids (MGs) are an effective solution to integrate 
distributed loads and renewable energy sources [1]. For recent 
power utilities involving DC wind turbine,  fuel cells, and 
photovoltaics and DC electronic loads, it is wise to consider 
the DC MGs [1]. Thanks to power electronic advances, DC 
Mgs are now widely feeding tightly controlled loads that are 
inherently nonlinear and act as constant power loads (CPLs). 
The main issue associated with CPLs is that possess a 
destabilizing negative incremental resistance behavior. The 
CPL stability issue has been attracting many attentions and 
different linear and nonlinear control strategies have been 
presented [2]–[4]. However, in none of those references the 
issue of fault detection and fault tolerant control is 
investigated.  

Indeed, reviewing the state-of-the-art methods reveals that   
the faulty operation of islanded DC MGs with CPLs has been 
rarely investigated. Nevertheless, occurring rigorous faults not 
only degrades the DC MG efficiency and reliability but also 
damages the MG connected elements if they are not detected 
and treated accordingly. In [5], the influence of several faults 
on a DC MG with multiple CPLs is investigated, and a fault-
tolerant control (FTC) method was suggested to the closed-
loop system robust against faults. However, that approach 
suggests the FTC for each CPL connected to the DC MG.  

By increasing the number of CPLs, that approach is not 
cost-effective. In [6], the effect of sensor fault on a typical DC 
MG was investigated. However, the other classes of faults 
were ignored. A robust controller and monitoring technique 
was developed in [7] to alleviate the consequence of occurring 
faults. Though, the faults were not reconstructed. In [8], the 
actuator and sensor faults were detected by developing a 
robust linear observer. However, the detected faults were not 
estimated. Also, the detection performance degrades when the 
system contains nonlinear elements. In [9], both the actuator 
and sensor faults were detected and reconstructed. In that 
approach, a sliding mode observer was suggested.  

However, to design the observer gains, several 
assumptions on the ranks of the system were required. In 
parallel to the abovementioned attempts dealing with faults, 
several estimation methods have been presented in MGs to 
estimate the states, including estimating the’ flux of rotor in 
motors [10], the state-of-charge in energy storage systems 
[11], and the currents in DC MGs [12]. However, in none of 
those approaches, the issue of occurring faults in the power 
system has been not investigated. This is the main motivation 
for this work. This paper focuses on the problem of detecting 
and estimating actuator faults in DC MGs with linear loads 
and CPLs. A model-based dual-extended Kalman filter (dual-
EKF) is presented through which the system states and 
actuator fault are evaluated and constructed in parallel. The 
developed approach extends the results of the conventional 
extended Kalman filter (EKF) such that it not only capable of 
dealing with faulty systems but also requires almost the same 
computational time burden as the EKF.  

The main advantages of the proposed approach over the 
state-of-the-art method [9] are that I) it does not expose 
restrictive assumptions on the system matrices and II) is robust 
against stochastic Gaussian noises. To show the merits of the 
developed dual-EKF approach, it is tested on a DC MG 
benchmark that feeds CPLs and resistive loads. The 
comparative results are also presented to verify that the 
computational burden, implementation complexity, and 
estimation accuracy of the proposed approach outperforms the 
conventional version of nonlinear Kalman filters.  

II. FAULTY DC MC WITH CPLS 

A typical DC MG involves some power generators, 
storage, and loads. These loads can be resistive or constant 
power, as shown in Fig. 1.  

The difference between the resistive loads and CPLs is 
appearing power electronic load converters. The CPLs are 
commonly integrated into DC MGs at the input point of the 
load converter by assuming the converters are ideal or 
consume constant power. 
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Fig. 1. Power system illustration of a DC MG. 

The simplified electric schematic of the DC MG is shown 
in Fig.  2, where comprises a DC source, a controllable 
DC/DC converter, �  CPLs, and �  RLs. Since the resistive 
loads ��  for � � 1, … ,�  and CPLs 
��
�  for � � 1, … ,�  are 

in parallel, their equivalent resistive load (i.e. �) and CPL (i.e. 
) are computed as follows: � � ����� � ⋯ � ���� ��� (1) 
 � 
��
� � ⋯ � 
��
�  (2) 

The DC/DC buck converter is described by an averaged-
model and by the duty cycle � ∈ �0,1� . The system is 
subjected to actuator and sensor faults. Merging the nonlinear 
DC MG system with actuator and sensor faults results that: 

⎩⎪⎨
⎪⎧�  !� " � #
 $ !�� $ 
!�     

%  #
 " � &'� $ !� � &'()* � !+                                 
 (3) 

where the !+  and #
  are voltage and current of the 
capacitor and inductor, specified by the capacitance and 
inductance �  and % , respectively. &'  is the source voltage. 
Furthermore, the () is the actuator additive fault. As can be 
seen in (3), the actuator fault appears in the control input 
channel. This fault affects the control action and degrades the 
DC MG performance.  

The state-space representation of the dynamics (3) is as 
follows: 

⎩⎪⎨
⎪⎧,-� � 1� ,. $ ,��� $ 
�,�  

,-. � &'% � $ 1% ,� � &'% ()* � ,�                               
 (4) 

 

Fig. 2. A basic diagram of the DC MG with / CPLs, 0 resistive loads, and 

actuator fault 12. 

The goal is to estimate the actuator fault as well as the state 
vector based on the available voltage measurement. This is 
done by presenting an improved nonlinear dual-Kalman filter. 

III. PROPOSED NONLINEAR STATE AND FAULT ESTIMATOR 

A. Modifying the state-space representation 

Estimating information of (4) has two main challenges due 

to appearing the actuator fault and the nonlinear term 1/,�. 

Initially, to tackle with the actuator fault (), it are considered 
as an augmented state. On the other hand, since its time 
derivative is unknown, it is considered that (-) � 0 (5) 

It is worthy to note that, if there is any pre-knowledge of (), the dynamics (5) can be updated. Now, by defining the 

augmented vector 4 � 5,�   ,.    ,678 � 5,8   ()78  and 

reminding (4) and (5) one has: 

9 4- � :;4< � =;4<�> � ?;4<                    (6) 

where 

:;4< � @:�;4<:.;4<:6;4<A �
⎣⎢⎢
⎢⎡1� ,. $ ,��� $ 
�,�$ 1% ,� � &'% ,60 ⎦⎥⎥

⎥⎤ ; 

=;4< � I 0&'%0 J , ?;4< � ,� 

(7) 

Now, the continuous-time representation (6) is discretized 

by the Euler approach with the sample time K� and subjected 

to system and measurement noises ! and L. Thereby 

M4;N � 1< � :O�4;N<� � =̅�4;N<��;N< � !;N<>;N< � ?�4;N<� � L;N<                                      (8) 

where :O�4;N<� � 4;N< � K�:�4;N<� =̅�4;N<� � K�=�4;N<� 

B. Dual-Extended Kalman Filter 

The main objective is to estimate the state vector 4Q in the 
presence of noise. Although is feasible to use the conventional 
EKF approach, the overall computational burden increases 
due to the fact that the dimension of the augmented state 
vector increases. Besides, it is not needed to estimate the 
faults, whenever they do not appear. Thereby, the 
conventional EKF is modified such that it estimates the actual 
system states and faults separately and simultaneously. 
Consequently, the part of faults estimation can be sopped, 
whenever it is needed. Additionally, the overall computational 
burden decreases by splitting the augmented states 4;N< into 
two vectors.  

The rationale behind the dual-EKF is to define two vectors R  and S , as 4;N< � 5R8;N<  S8;N<78  and R;N< �5,�;N<  ,.;N<78  and S;N< � 5();N<78 . Then, both the state 
and fault vectors are estimated by two modified EKFs which 
operate in parallel.  

The EKF algorithm is a nonlinear extension version of the 
linear KF, which uses the Jacobian matrix of the dynamics (8). 
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For the ease of summarizing the dual-EKF algorithm, the 
dynamics (8) is represented by its Jacobian matrix, as follows: 

⎩⎪⎨
⎪⎧XR;N � 1<S;N � 1<Y � XΨ));N< Ψ)[;N<Ψ[);N< Ψ[[;N<Y XR;N<S;N<Y �                

                                             X\)\[Y �;N< � X!);N<![;N<Y*;N< � �5R8;N<   S8;N<78 � L;N<                              
 (9) 

where !;N< � 5!)8;N<, ![8;N<78 and !;N< are the system and 

measurement noise vectors, characterized by Gaussian 

function ℊ with mean vector and variance matrix, as follows: 

X!);N<![;N<Y ~ℊ _0, X`);N< 00 `[;N<Ya (10) 

L;N<~ℊ;0, �;N<< (11) 

Also,  

Ψ)[;N< � ⎣⎢⎢
⎡b:O�;4<bSb:O.;4<bS ⎦⎥⎥

⎤cc
ded;f<

� g 0K�&'% h (12) 

Ψ));N< � ⎣⎢⎢
⎡b:O�;4<bRb:O.;4<bR ⎦⎥⎥

⎤cc
ded;Q<

� ⎣⎢⎢
⎡1 � $K��� � 
K��,�.;N< K��$ K�% 1 ⎦⎥⎥

⎤
 

(13) 

Ψ[);N< � Xb:6;4<bR Yided;Q< � 0 (14) 

Ψ[[;N< � ⎣⎢⎢
⎡b:O6;4<bSb:Oj;4<bS  ⎦⎥⎥

⎤cc
ded;f<

� k1 00 1l (15) 

\) � X0  K�&'% Y8 ;  \[ � 0 (16) 

�) � 51 07; �[ � 0 (17) 

As can be seen in (17), the system output only contains the 
vector R;N< . This is mandatory in the proposed dual-EKF 
approach, so that the EKF of R;N<  can be estimated 
independent to the EKF filter of S;N< , the later filter is 
stopped. Based on the dual estimation idea [13]–[15], in the 
following, two nonlinear KFs will be developed for the system 
(9): 

• Initial conditions for state filter 

9Rmn;0< � o�R;0<�                                                    
)n;0< � o�;R;0< $ Rmn;0<<;R;0< $ Rmn;0<<8� (18) 

• Initial conditions for fault filter 

pSqn;0< � o�S;0<�                                                      
[n;0< � o r�S;0< $ Sqn;0<��S;0< $ Sqn;0<�8s (19) 

where Rmn;. < and Sqn;. < are the estimation of the vectors R 

and S ; and 
)n;. <  and 
[n;. <  covariance matrices of the 

estimation errors. For N � 1,2, …  the following recursive 

algorithms are performed: 

• State filter time update 

9Rm�;N< � Ψ));N<Rmn;N $ 1<                                       
)�;N< � Ψ));N<
)n;N $ 1<Ψ))8 ;N< � `);N $ 1< (20) 

• Fault filter time update 

MSq�;N< � Ψ[[;N<Sqn;N $ 1<                                       
[�;N< � Ψ[[;N<
[n;N $ 1<Ψ[[8 ;N< � `[;N $ 1< (21) 

• State filter measurement update 

vw);N< � 
)�;N<�)8;�)
)�;N<�)8 � �;N<<��Rmn;N< � Rm�;N< � w);N<;*;N< $ �)RmQ�<  
)n;N< � ;T $ w);N<�)<
)�;N<                       (22) 

• Fault filter measurement update 

vw[;N< � 
)�;N<�x8;N<;�x;N<
[�;N<�x8;N< � �;N<<Sqn;N< � Sq�;N< � w[;N<;*;N< $ �)RmQ�<                     
[n;N< � ;T $ w[;N<�x;N<<
[�;N<                               (23) 

where the matrix �x;N< will be updated as follows: 

�x;N< � � bRmn;N<bS y[e[qz;Q< (24) 

and, the approximation of the derivative term is computed 

recursively, as follows: 

⎩⎨
⎧bRmn;N<bS � ;T $ w);N<�)< bRm�;N<bS               bRm�;N � 1<bS � Ψ));N< bRmn;N<bS � Ψ)[;N< (25) 

Reminding the iterative algorithm given in (20)-(25), the 
flowchart of the dual-EKF algorithm is summarized in Fig. 3. 

Remark 1 (Advantages of the proposed approach): 
Although several control approaches have been developed for 
model-based control and monitoring of nonlinear DC MGs 
with CPLs, few approaches considered the issue of faults in 
DC MGs. Also, few approaches have been considered in the 
literature. Comparing with these approaches, the proposed 
approach, has some advantages summarized as follows: I) it 
does not need any restrictive assumption, II) it offers a low 
online computational burden and can be implemented by two 
processors, III) it is robust against uncertainties, which is not 
the case in the existing results. The overall system 
implementation is shown in Fig. 4. As can be seen in Fig. 4, 
the voltage of the MG bus is measured continuously with the 
sampling time K� . Then, the dual-EKF is performed to 
estimate the states and faults. This information can be then 
considered for different actions including monitoring, 
controlling, and repairing or replacing the converter. 

 
Fig. 3. Flowchart of the nonlinear dual-Kalman filter algorithm. (The index 
of notations in this figure shows the discrete-time instance). 



 

IV. SIMULATION RESULTS 

The developed approach is applied the DC MG dynamics 

(3) with the parameters � � 10 ;Ω< , � � 500 ;}:< , % �39.5 ;�?< , 
 � 300 ;�< , &' � 200 ;&< , and � � 0.5 . 

Also, the sampling time is K� � 1 ;����<  and the 

measurement noise variance is 0.1. To show its merits, it is 
compared with conventional EKF in which the fault is not 
estimated. Two scenarios of fault-free and actuator fault are 
considered in the following. 

Scenario 1 (Fault-free system): In this scenario, the 
effectiveness and computational burden of the proposed 
approach and the conventional EKF are compared. The 
closed-loop system states are presented in Fig. 5. Since the 
issue of designing a controller is not considered in this paper, 

the duty cycle is set as � � 0.5, and the DC MG bus voltage 
and current reach 100 (V) and 13 (A) in about 0.1 (sec). 

The estimation errors of the system states are shown in Fig. 
6, in which the blue and red lines resent the conventional EKF 
and the developed dual-EKF, respectively. As can be seen in 
Fig. 6, both approaches offer the same estimation accuracy for 
both the voltage and current of the DC MG. Comparing with 
the nominal values of the system states in Fig. 5, one infers 
that the Kalman filters robustly estimate the system states in 
Figs 6(a) and (b) in the presence of white noisy measurement.  

 

Fig. 4. The implementation of the dual-EKF for the DC MG. 

 
(a) 

 
(b) 

Fig. 5. The actual system states of Scenario 1: (a) ,� � !� , (b) ,. � #
. 

 

Moreover, Fig. 6 (c) shows the estimation of the actuator 
fault for the dual-EKF approach. Due to noisy measurements, 
it estimates the zero actuator with the error amplitude of the 
order 0.002 with is neglectable by comparing with the 
amplitude of the applying duty cycle � � 0.5.  

To have a better insight of computational burden and 
estimation accuracy of both estimators Table I is provided. 
The computational burdens are calculated as the mean value 
of each iteration of 100 simulations with different white 
noises via core-5 computer environment. The results reveal 
that the computational burdens of both approaches are almost 
the same. Additionally, the dual-EKF slightly needs more to 
perform the estimations. The difference is originated from the 
fact that the Dual-EKF needs to perform two state and 
actuator estimators, simultaneously.  

The state and fault estimators require 11.4017  and 8.1267  milliseconds, respectively. If these estimators are 
implemented by two processors in parallel, then the overall 

computation burden would be 11.4017 milliseconds, which 

is the same as the conventional EKF time of 11.4012 
milliseconds.  

Additionally, the estimation error indices of Table I 
illustrate that the dual-EKF slightly outperforms the 
conventional EKF for the steady-state amplitude error and the 
norm 2 (, which is related to the energy) of the estimation 
error. Though, this small improvement may be spoiled if the 
system is resituated and with a different white noise signal. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Estimation error of Scenario 2 (Conventional EKF by the blue line 
and dual-EKF by the red line): (a) estimation of  ,� � !� , (b) estimation of ,. � #
, (c) estimation of (). 
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TABLE I. PERFORMANCE COMPARISON OF TWO APPROACHES FOR  
SCENARIO 1. 

 EKF Dual-EKF  

Mean of the computational 
burden 

1.14 × 10�j 1.95 × 10�j 

Norm 2 of the estimation error 

of !+ 
21.0625 20.9638 

The maximum steady-state 

error of !+ 
0.3975 0.3987 

Norm 2 of the estimation error 

of #
 
8.2180 8.0936 

The maximum steady-state 

error of #
 
0.1940 0.1932 

 

Scenario 2 (System with actuator fault): In this scenario, 
the accuracies of the proposed dual-EKF approach and the 
conventional EKF in the presence of actuator fault are 
evaluated. The actuator fault is assumed to be time-varying 

as () � 0.2 sin;4/3�"< . The systems states are influenced 
by the actuator fault and behave oscillatory, as shown in Fig. 
7.  As discussed before, the voltage regulator is not 
considered to keep the DC bus voltage constant.  

The estimation errors of the system states and actuator 

fault are shown in Fig. 8. Fig. 8 reveals that the first state, !+, 
is estimated accurately based on both approaches. The reason 
is that the noisy measured output is the voltage and therefore, 
both approaches only need to decompose the noise signal for 
the measurement. Though, the dual-EKF again offers better 
performance than conventional-EKF.  However, the 

estimation of the second state, #
 is affected by the additive 
actuator fault. Since the conventional EKF cannot estimate 
the actuator fault, it does not provide an accurate estimation 

of  #
; and, its estimation involves an evolution of the fault (). 

However, the dual-EKF estimates the state ,. more precisely. 
The minor error is produced, because the actuator fault is 
varying and its estimation has one step lag, as shown in Fig. 

8. If the sampling time K� � 0.001 ;���< decreases, the dual-
EKF performance improves.  

 

 
(a) 

 
(b) 

Fig. 7. The actual system states of Scenario 2: (a) ,� � !� , (b) ,. � #
. 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Estimation error of Scenario 1 (Conventional EKF by the blue line and 
dual-EKF by the red line): (a) estimation of  ,� � !� , (b) estimation of ,. �#
, (c) estimation of (). 

V. CONCLUSION 

In this article, the issue of state and actuator fault 
estimation for DC MGs with nonlinear dynamics was studied. 
It was assumed that the considered DC MG feeds linear 
resistive loads and nonlinear CPLs. A novel dual-EKF 
approach was suggested for the power system. This enhanced 
version dual-EKF combines two EKFs each estimates the 
system states or the actuator fault. It was shown that the state 
EKF can work indecent to the fault EKF. So, it is possible to 
use only one Kalman filter whenever the actuator fault does 
not happen. Or, each Kalman filter is implemented on a 
processor. The performance improvement of the dual-EKF 
over the conventional EKF is shown through numerical 
simulations and by scenarios of fault-free and fault-affected 
systems. The results showed that in the presence of actuator 
fault, the conventional EKF leads to poor accuracy. In 
comparison, the dual -EKF not only estimates the states and 
the fault accurately but also requires almost the same 
computational burden as the conventional EKF. For future 
work, considering system and sensor faults and incorporating 
the developed approach with the model predictive controller 
are suggested. 
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