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Abstract—In the recent past structural changes in the 

operation and topology of the electrical system have occurred. 

These changes have coincided with the emergence of distributed 

energy resources (DERs). Relating to supply side technologies, 

distributed generation (DG) units have become increasingly 

common. The demand side has also seen the growth of new 

technological applications, including electric vehicles (EVs). 

These changes to the electrical system are being especially felt at 

the low voltage network level. Technical Virtual Power Plants 

(TVPPs) have been used to optimally schedule these DERs to 

increase the network flexibility and at the same time increasing 

the reliability and power quality of the network and this can 

bring economic benefits to both the TVPP operator and the 

customer. This paper develops a stochastic mixed-integer linear 

programming (MILP) optimization model to maximize the 

profit of a TVPP. The main objective of the TVPP is to increase 

operational flexibility of the low voltage network by aggregating 

DERs, including DG units, Heating Ventilation and Air 

Conditioning units, and EVs. The model is examined through 

the use of the IEEE 119-Bus test system. Results demonstrate 

that the inclusion of DG units and EVs, the profit of the TVPP 

increases by approximately 45% and system flexibility is 

increased while respecting the technical constraints of the 

network and the thermal comfort of the consumers.  

Keywords—Flexibility, Distribution System, Distributed 

Generation, Electric Vehicles, Technical Virtual Power Plant 

I. NOMENCLATURE 

A. Sets/Indices 

�/Ω�  Index for of power demand 

��/Ω��  Index for of electric vehicles 
	/Ω
  Index for of generators 

ℎ/Ω�   Index for of hours 


/Ω�  Index for of lines   

�/Ω���, � ∈ ��     Index for of nodes 

�/Ω�         Index for of scenarios 
�/Ω�  Index for of market 

B. Parameters 

���,���� , ���,���� EV energy storage limit 

 ����, !� , 	�  Flow boundaries, susceptance and conductance 
of each branch l (MVA, S, S) 

"            Total number of linear segments 

#$� , #%�  Big-M parameters for active and reactive 

power flows in branch 
 
&'
 Cost of unit energy production (€)  

$
,�,�,�
(),���, $
,�,�,�

(),���
  Min, max power generation bounds (MW) 

$��,�,�
*�,���, $��,�,�

�*�,���
  Charging and discharging power limits of the 

EVs (MW) 
$+             DG unit rated power (MW) 

$�,�,� PV output per hour (MW) 

$-���,� Wind output per hour (MW) 

$.�,��  Active demand at node � (MW) 

/0
 DG power factor 

/0� Power factor of substation  

%.�,��      Reactive demand at node � (MVAr) 

1�,� Nominal voltage (kV) 

2�  PV radiation per hour (W/m2) 

2� , 3�   Resistance and reactance (Ω, Ω) 

2�4� Standard test condition for radiation (1000 
W/m2) 

�*�  Cut-in wind power (m/s) 
�*, Cut-out wind speed (m/s) 

�� Measured wind speed (m/s) 

�+     Rated wind speed (m/s) 

56 , 76        Slopes of linear segments 

8��*�   EV charging efficiency 

8���*� EV discharging efficiency 

9��� V2G price (€/MWh) 

9�:;<  TOU price associated with customers 
(€/MWh) 

9���    EV discharging cost (€/MWh)  

9�
�

     Day-ahead market price (€/MWh) 

=��        Scaling factor 

>�  Probability of scenario � 

C. Variables 

���,�,�,� Reservoir level of EV (MWh) 

?��,�,�,��*� , ?��,�,�,�*�  EV charging and discharging binary variables 
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$��,�,�,�*� , $��,�,�,��*�  EV active and reactive power from charging 

and discharging (MW) 

$�,�,�,���+6�4, %�,�,���+6�4Power purchased from grid (MW, MVAr) 

each branch 
 
$
,�,�,�() , %
,�,�,�()  Active and reactive DG power (MW, MVAr)

  
$� , %�      Power flows, active and reactive (MW, 

MVAr) 

/�,�,�,6 , @�,�,�,6       Step variables used during linearization (MW, 

MVAr) 
$A� , %A�         Power losses, active and reactive, for branch 
 

(MW, MVAr) 

$��,�,�,�*� , $��,�,�,��*�  Power charged to and discharged from EVs 

(MW) 
1� , 1� Voltage magnitudes at bus � and B (kV) 

Δ1�,�,� Voltage deviation magnitude (kV) 

D� , D� Voltage angle at node � and B (radians) 
D�  Voltage angle difference of branch 
 (radians) 

E�,�     Binary switching variable of line 
 
II. INTRODUCTION 

A) Context 

The energy sector has benefited in recent years from 
general economic growth as well as an emergence of new 
technologies. The amount of energy available to meet demand 
has become a critical issue. Likewise, generation from 
renewable energy sources (RES) plays a key role in the 
decarbonization of the sector. However, RESs are very 
susceptible to variations, posing new challenges for the 
operator [1]. Some negative outcomes of RES adoption can be 
minimized, and system flexibility enhanced, by redesigning 
market structures; implementing demand response programs; 
deploying energy storage systems and electric vehicles (EVs) 
on a large scale; and aggregating heterogeneous distributed 
energy resources (DERs) for efficient management [2].  

It is within this context that EVs and their batteries can go 
beyond their simple mobility role and be even more relevant 
and important in the decarbonization of the economy. 
Depending on the type of EVs, different charging-discharging 
strategies can be adopted. This factor makes the charge-
discharge process of a fleet of EVs a demand-side 
management (DSM) platform, and rather than simply being 
one more load on the system, also increases its flexibility [3], 
[4]. One of these strategies is the vehicle-to-grid (V2G) 
concept. While some limitations currently exist, especially 
concerning the life span of EVs batteries, this approach allows 
for a bidirectional interaction between grid and vehicle. In 
practice, power may flow either from the network to the 
vehicle, or from the vehicle to the network. The aggregation 
of EVs under this process can lead to several advantages, both 
technical and economic, which is extremely important with the 
growing adoption rates of RES in electricity generation [5], 
[6]. 

To aggregate these forms of production and to increase 
control of the operational interface of the system, a new entity 
to analysis and operate the electrical system is introduced. This 
entity is a technical virtual power plant (TVPP). Figure 1  
describes the VPP structure and digital transformation in 
power systems, both now and in the future[7]. 

A TVPP aggregates power from different sources, such as 
DG points or power provided by discharging EVs. It is 
important to understand how this aggregation can contribute 

to increasing the flexibility of the entire system and whether 
this aggregation will bring both economic and power quality 
benefits to the system. 

B) Literature Review 

The development of new tools and technologies, as well as 
the increasing use of RES-based power generation, both as 
centralized production units and as distributed generation, has 
created new challenges for the energy sector. The main 
concerns arise due to the unpredictability of production, and it 
is in this context that the concept of VPP appears. 

Over the last few years, several studies concerning VPPs 
have been carried out. Some studies have addressed topics 
such as classification, modelling, optimization and solutions 
for optimization problems concerning VPPs while considering 
uncertainty such as Yu et al. [7], while others focus mainly on 
the role of VPP in energy management, for example, Naval et 
al. [8], where the design of an optimal VPP management 
model with two integration levels of RES is discussed. Some 
other researches, target mainly the financial aspects of VPPs, 
as is the case of the work done by Hany Elgamal et al. [9], 
where market participation and optimization trading of VPPs 
stands out when day-ahead prices are unknown and possibly 
volatile or by Hadayeghparast et al. [10], with the main 
objective is to maximize the VPP daily profit and minimize 
daily emissions. 

The introduction of the TVPP concept has created an 
emerging additional area of research in this field. Within the 
scope of optimal scheduling, the operation of a TVPP in the 
presence of DERs while considering grid constraints. 
Pourghaderi et al. [11] formulate a model to maximize a 
TVPP’s profit during participation in the day-ahead energy 
market by scheduling the DERs.  

The authors in [12] present an energy management 
framework for a TVPP in an active distribution system with a 
diverse set of DERs. The performance of a TVPP as a price 
maker agent participating in the wholesale energy market is 
presented in [13]. 

This current paper focuses on the maximization of the 
profit of a TVPP operating in a day-ahead market, with the 
integration of DERs and V2G energy supplied by EVs. This 
work distinguishes itself from previous research through a 
new mathematical formulation and its approach to provide 
flexibility to the distribution system, jointly with the economic 
advantages and technical benefits. This new focus leads to an 
increase in the quality standards of the power supplied, and 
consequently to an increase in the system reliability, which are 
not addressed in the other works. 

 

Fig 1. VPP structure. 



C) Contributions and Paper Organization 

In this paper, a mathematical optimization model is 
formulated to manage the TVPP in an optimal manner. The 
literature review has shown that there is a growing area of 
research considering the technical impacts of VPPs but very 
few VPP models consider technical impacts from operations. 
This work extends the state of the art in the following two 
aspects:  

• A stochastic mixed-integer linear programing (SMILP) 
model for TVPP in a day-ahead energy market using a 
penalty function to minimize the impacts of the TVPP 
operation on consumers thus increasing their incentive 
to engage with the TVPP. 

• An extensive analysis regarding the economic and 
technical impacts of the TVPP operation on the 
distribution grid focusing on the flexibility delivered by 
DGs and EVs is carried out. This leads to a holistic 
investigation of the potential impacts of TVPP 
operations on consumers.  

The rest of the paper is organized as follows: Section III 
presents the model’s mathematical formulation. The results of 
the model as well as a discussion of these results in shown in 
Section IV. Section V contained the conclusions and ideas for 
future research. 

III. MATHEMATICAL FORMULATION 

A. Objective Function 

The main objective of this paper is to maximize the profit 
of a TVPP through the optimal scheduling of its resources 
during its participation in the day-ahead energy market. The 
objective function was formulated in Equation (1) as the 
difference between two main relevant cost terms, namely, the 
cost associated with the power sold to the loads (PSC) and the 
cost imposed by the TVPP (TVPPC).  

 $FG0�H = $ ' − L1$$' (1) 

The cost term related to the power sold to the loads is 
presented in Equation (2). It represents the profit generated 
from retailing power to the loads using the TOU tariff price at 
a given hour, where the power supplied to the loads is 
considered, as well as the charging of EVs. In this equation, 
the probability of a given scenario occurring is shown by >�. 
In the context of this work, all the different scenarios will have 
the same probability of occurrence.  

$ ' = M >�
�∈NO

M 9�:;<$�,�,�
�∈NP

+ M >�
�∈NO

M M 9�:;<$��,�,�,�*�
��∈NRS�∈NP

 
(2) 

The total cost imposed by TVPP is defined in Equation (3) 
and is the result of the difference between the operating costs 
of DGs and the sum of the energy cost purchased from the 
market and V2G power supplied by the EVs. In addition, the 
TVPP should provide some compensation for the excess costs 
incurred by customers, with a penalty factor associated with 
the EVs scheduling.  

The compensation for consumers extra cost due to the EVs 
scheduling is thus defined in Equation (4) and it can be seen 
as an incentive for consumers to participate in the TVPP 
schedule. This cost is derived from the difference between the 
optimal cost of customers EVs and the expressed cost of 
scheduling EVs load cycles. 

L1$$' = M >�
�∈TO

M M &'
$
,�,�,�()

∈TU�∈TP

− M >�
�∈TO

M M 9�
� $�,�,�,���+6�4

�∈TV�∈TP

− M >�
�∈TO

M M 9���$��,�,�,��*�
��∈TRS�∈TP

+$��W
HX

 (3) 

 

$��W
HX = M >�
�∈NO

M M 9�:;<$��,�,�,�*�
��∈NRS�∈NP

− M >�
�∈NO

M M 9���$��,�,�,��*�
��∈NRO�∈NP

− 'G�H��
;Y�+�4�,�

 (4) 

B. Constraints 

The first constraint is related to the linearized AC power 
flows in each feeder. These are illustrated in inequalities (5) 
and (6). Both respect Kirchhoff’s Voltage Law. The Big-M 
formulation is used place an upper bound on the transfer 
capacity. The linearization of the equations is described in 
[14]. 

 
Z$�,�,� − [1�,�\Δ1�,�,� − Δ1�,�,�]	�− 1�,�^ !�D�,�,�_Z

≤ #$� 
(5) 

 Z%�,�,� − [−1�,�\Δ1�,�,�
− Δ1�,�,�]!� −  1�,�^ 	�D�,�,�_Z
≤ #%� 

(6) 

Equation (7) and Equation (8) express active and reactive 
power flow, respectively, with the application of Kirchhoff’s 
Current Law. This requires that all outgoing flows from a node 
must be equal to the sum of all incoming flows.  

∑ $
,�,�,�()
∈NU + ∑ \$��,�,�,��*� − $��,�,�,�*� ] +��∈NRS

 $�,�,���+6�4 +  ∑ $�,�,���,�∈Nb −  ∑ $�,�,�,c4,�∈Nb = $.�,�� +
∑ d

^ $A�,�,���,�∈Nb + ∑ d
^ $A�,�,�,c4,�∈Nb ;  ∀� ∈ �  

(7) 

  

∑ %
,�,�,�()
∈NU +  %�,�,���+6�4 + ∑ %�,�,���,�∈Nb − ∑,c4,�∈Nb

%�,�,� = %.�,�� + ∑ d
^ %A�,�,���,�∈Nb + ∑,c4,�∈Nb

d
^ %A�,�,� ∀� ∈ �  

(8) 

The apparent power flow,  � , of a given line, is 

g$�̂ + %�̂ . This power flow cannot be greater than the rated 
value which is indicated in Equation (9). 

 $�̂ + %�̂ ≤  ( ����)^ (9) 

Equation (9) deals with the quadratic expressions of active 
and reactive power flow. Through piecewise linearization, 
these expressions can be linearized by considering an 
adequate number of linear segments ". This easily applied 
approach uses a first-order approximation of the non-linear 
curve. In this context, two non-negative additional variables 
are used for the flows $�  and %� . These variables represent the 
positive and the negative flows and are given as $� = $�j −
$�k  and %� = %�j − %�k  respectively. Using this approach, 
only the positive quadrant of the non-linear curve is 
considered. This results in a reduction in mathematical 
complexity as well as the computational burden.  

The linear constraints associated with this approach are 
given by Equation (10) to Equation (13) with /�,�,�,6 ≤
$����/" and @�,�,�,6 ≤ %����/". 



 $�,�,�^ ≈ M 5�.6
n

6od
/�,�,�,6 (10) 

 
%�,�,�^ ≈ M 7�.6

n

6od
@�,�,�,6 (11) 

 
$�,�,�j + $�,�,�k = M /�,�,�,6

n

6od
 (12) 

 
%�,�,�j + %�,�,�k = M @�,�,�,6

n

6od
 (13) 

An approximation of the active and the reactive power 
losses in line 
 are shown in Equation (14) and Equation (15), 
respectively. However, these equations are strongly non-
linear and non-convex, making the problem difficult to solve. 

 

$A� = $A�,�p + $A�,p� ≈ 21�,�^ 	�(1 − sG�D�)
≈ 1�,�^ 	�D�̂  

 

(14) 

 %A� = %A�,�p + %A�,p� ≈ −21�,�^ !�(1 − sG�D�)
≈ −!�1�,�^ D�̂  

(15) 

To overcome this problem the expressions are rewritten, 
in Equation (16) and Equation (17), in terms of the active and 
the reactive power flows.  

Expressing the losses in this manner reduces the number 
of non-linear terms and removes redundant constraints 
relating to the angle differences when the branch between two 
nodes is not connected. The complete method used in the 
linearization is shown in [15]. 

 $A�,�,� = 2�\$�,�,�^ +  %�,�,�^ ]
1�,�^  (16) 

 %A�,�,� = 3�\$�,�,�^ + %�,�,�^ ]
1�,�^  (17) 

The scheduling of EVs by the TVPP should satisfy some 
technical constraints that can be modeled using Equation (18) 
to Equation (23). 

 0 ≤  $��,�,�,�*�  ≤  ?��,�,�,�*� $��,�,�
*�,���

 (18) 

 0 ≤  $��,�,�,��*�  ≤  ?��,�,�,��*� $��,�,�
�*�,���

 (19) 

 ?��,�,�,�*� + ?��,�,�,��*� = 1 (20) 

 ���,�,�,� =  ���,�,�,�kd + 8��*�$��,�,�,�*� −  $��,�,�,��*�

8���*�  (21) 

 ���,���� ≤  ���,�,�,�  ≤ ���,����  (22) 

 ���,�,�,�u =  =�����,���� ;  ���,�,�,�^v =  =�����,���� (23) 

Equation (18) and Equation (19) limit the amount of 
charging or discharging power, respectively. In addition, 
Equation (20) safeguards against simultaneous charging and 
discharging.  

On the other hand, (21) model the state of charge of each 
EV, while inequality (22) guarantees that the EV storage level 
is always within the allowed range. Equation (23) sets the 
initial storage level and guarantees at the end of the operating 
period that the final charge level is the same as the initial 
level. 

Equations (24) and (25) are responsible for limiting the 
active and reactive power from the DG, respectively. The 
inequality in (26) details the capacity of DGs to inject or use 
reactive power according to the system’s need. It shows that 
the solar and wind DGs are capable of operating between a 
lagging power factor leading power factor, /0
. 

 $
,�,�,�
(),��� ≤  $
,�,�,�() ≤  $
,�,�,�

(),���
 (24) 

 %
,�,�,�
(),��� ≤  %
,�,�,�() ≤  %
,�,�,�

(),���
 (25) 

 −HW� wsG�kd\/0
]x $
,�,�,�()  ≤  %
,�,�,�()

≤ HW� wsG�kd\/0
]x $
,�,�,�()  
(26) 

Due to technical reasons, there are limits placed on 
purchases of active and reactive power from the grid. Such 
constraints are set by (27) and (28). For this study, the limits 
of active power generation are placed at 1,5 times the 
minimum and maximum limits. The inequality (29) governs 
the bounds of the amount of reactive power that can be 
transferred from the grid and is determined by the substation’s 
power factor. 

 $�,�,�
��+6�4, ��� ≤  $�,�,���+6�4 ≤  $�,�,�

��+6�4,���
 (27) 

 %�,�,�
��+6�4,��� ≤  %�,�,���+6�4 ≤  %�,�,�

��+6�4,���
 (28) 

 −HW� wsG�kd\/0�]x $�,�,���+6�4  ≤  %�,�,���+6�4

≤ HW� wsG�kd\/0�]x $�,�,���+6�4 
(29) 

IV. NUMERICAL RESULTS 

A. Data and Assumptions 

The model is tested on the standard IEEE 119-Bus system 
to simulate and validate the mathematical model defined and 
explained in the previous section. The system is shown in 
Fig.2. Two types of DG units are considered which are wind 
power and solar power. The installed capacity of these units is 
1MW in both cases. It is also necessary to describe the data 
used for the Day-Ahead Market pricing and the TOU tariff 
pricing. Both can be seen in Fig. 3. and are extracted from the 
Italian energy market since the scenarios used are extracted 
from this market. Also considering the case of Italy, the 
penetration level of EVs is set to 1%, a number below those 
seen globally, due, among other reasons, to the country’s focus 
on vehicles powered by natural gas [16].  

The value assumed for the nominal voltage is 12.66 kV, 
with a voltage deviation of ±5% in each node. The value of the 
power factor is 0,95 at the DG units and 0.8 at the substation. 
EVs charging and discharging rates are identical and set at to 
90%. The operating cost of EVs during charging and 
discharging are 5 €/MWh. Operation costs of solar DG and 
wind DG units are 40 €/MWh and 20 €/MWh, respectively.  

The variability and uncertainty associated with RESs are a 
major challenge facing the electricity system. One of the issues 
in the operation of a distribution system is the intermittency of 
renewable sources, which are related to the variations in power 
output across time. To account for these factors a reasonably 
large range of possibilities must be assumed, providing a 
strong variety of potential scenarios. A scenario can be defined 
as the evolution or the progression of an uncertain parameter 
over a given period. In the case of the power demand 
scenarios, long-term demand profiles based on historical data 
are considered. Each one of the resulting annual scenarios has 
8760 snapshots, where a snapshot refers to a specific hour’s 
demand or generation profile.  
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Fig. 1. 119-Bus test system representation. 

 
Fig. 2. Time-of-Use Tariff and Day-Ahead Market Price. 

To verify the tractability of the problem, this multi-
dimensional input data is reduced using the k-means clustering 
technique which aggregates the snapshots that are more 
similar, reducing the total number in each scenario. For this 
study, three different scenarios are considered for the power 
demand, as well as three different scenarios for solar power 
production and three different scenarios for wind power 
generation.  

These scenarios are combined to form a set of 27 distinct 
scenarios, all of them with the same probability of occurring. 
Importantly, it was verified that considering a larger number 
of scenarios and all their possible combinations contributes to 
a more complex matrix. This leads to a higher computational 
effort, without achieving significant advantages in the final 
solution. This resulted in 27 scenarios which were reduced 
using k means techniques as is described in [17]. 

The model is formulated using GAMS 24.0. The solver 
used in this paper is CPLEX 12.0. An HP Z820 workstation 
with two 3.1GHz E5-2687W processors and 256 GB of RAM 
was used to for the simulations. 

 

 
B. Discussion of Numerical Results 

Three different case studies will be assessed in the 
analyses: 

• Case 1 – Considers that all the power needed to meet 
the loads will be supplied exclusively by the market; 

• Case 2 – Includes the power supplied by the market, 
as well as the aggregation of RESs-based DGs present 
in the distribution grid; 

• Case 3 – Considers the power obtained from the 
market, aggregation of power from the DGs and 
power provided by EVs through V2G operation. 

Table I presents the financial results for the TVPP in all 
three case studies. In the first case, the TVPP schedules only 
the power provided by the market. In the second case, there 
is an increase in the total profit of TVPP, with an increase of 
45.33% compared to the first case. Similarly, in the third case, 
there is an increase in the profit of the TVPP by 45.42% 
compared to the first case and 0,15% compared with the 
second case. Comparing the three cases, it can be seen that 
Cases 2 and Case 3 have an increase in revenue from power 
sold over Case 1 in the order of 1.55% for both cases. 
Concerning the TVPPC there is a decrease of 47.39% in the 
costs when comparing Case 2 to Case 1. Similarly, there is 
also a reduction of 47.55% in the costs of Case 3 relative to 
Case 1 and 0.30% relative to Case 2. Therefore, the presence 
of aggregation of RESs-based DGs leads to lower costs, 
which in turn is reflected in an increase in profits. The 
integration of EVs in Case 3 also contributes to these results 
in a similar manner, but the magnitude of the effect is lower 
due to a small percentage of EVs integration. 

Studying the generation and demand profiles is an 
essential part of the flexibility analysis of the system. In this 
model, the TVPP is organized and aggregates energy to 
respond to the demand in the day-ahead market, for the various 
cases considered. With the aggregation of different power 
sources in the TVPP, the dependence on the market decreases 
substantially, leading not only to an increase in profit of the 
TVPP but also to an increase in the flexibility level of the 
system. The average energy mix (in percentage) for the day-
ahead operation of the TVPP for Case 2 is presented in Fig. 4. 
From this figure, it is possible to calculate an average 
reduction of 72,55% in the amount of energy needed from the 
market, in comparison to the first case. The amount of power 
purchased is reduced from 100% (Case1) to 26,93% of the 
total. Wind power DG represents the largest share of 
production, with 66,73% and the remaining 6,34% belong to 
solar power DG.  

Fig. 5 presents the average energy mix for the day-ahead 
market for the TVPP in Case 3. The aggregation of V2G 
power in the TVPP, estimated at 0,96%, reducing dependence 
on the external market and increases the flexibility of the 
system, with the amount of power purchased being reduced to 
26,51% of the total. Wind DG represents 66,18% and the 
remaining 6,35% belong to solar DG. In this case, it was 
possible to estimate an average reduction of 73.5% in the 
amount of energy needed from the market in the first case and 
3,30% in the second case. This decrease occurs especially in 
the periods when EVs are supplying power to the grid, 
between the 11th and the 22nd hour of the day (as is shown in 
the black bars of Fig 5).  
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TABLE I: FINANCIAL RESULTS FOR THE THREE CASES 

 Revenue TVPP Cost Profit 
Case 1 16285.804 44091.619 28498.087 
Case 2 29791.099 44783.891 14992.791 
Case 3 29836.472 44783.891 14947.419 

 
Fig. 3. The energy mix for Case 2. 

 
Fig. 4. Energy mix for Case 3. 

It is to be expected that the continuous increase in EVs 
penetration in society will lead to an increase in the available 
power during discharging, which will mean an increase in the 
percentage of V2G power and, consequently, an increase in 
the flexibility of the entire system. 

V. CONCLUSIONS 

This paper has presented an operational model for a TVPP 
was developed. This TVPP considered the aggregation of 
small DERs and diverse energy sources in a specified power 
generation network. The model was formulated as a stochastic 
MILP model and was validated through simulations on the 
IEEE 119–Bus test system, considering the inclusion of DERs 
as solar power and wind power DG points, and the penetration 
of EVs that supply power to the distribution system through 
V2G interface technologies. A linearized AC optimal power 
flow model was used for the stochastic model. The results 
show that the use of DERs, in combination with EVs, provides 
a more efficient use of locally produced renewable generation.  
This increase in efficiency can also be seen from the economic 
point of view, where the profit of the TVPP, when these 
technologies are present, is higher. In general, the results 
showed that in the context of a TVPP there was an increase in 
flexibility from the combination of EVs and DERs, making it 
easier to manage the intermittency of these resources. 
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