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Abstract—This paper presents a deep generative model
for capturing the conditional probability distribution of
future wind power given its history by modeling and
pattern recognition in a dynamic graph. The dynamic
nodes show the wind sites while the dynamic edges
reflect the correlation between the nodes. We propose a
scalable optimization model, which is theoretically proved
to catch distributions at nodes of the graph, contrary with
all learning formulations in the sector of discriminatory
pattern recognition. The density of probabilities for each
node can be used as samples in our framework. This
probabilistic deep convolutional Auto-encoder (PDCA), is
based on the deep learning of localized first-order approxi-
mation of spectral graph convolutions, a novel evolutionary
algorithm and the Bayesian variational inference concepts.
The presented generative model is used for the spatio-
temporal probabilistic wind power problem in a wide 25
wind sites located in California, the USA for up to 24 hr
ahead prediction. The experimental findings reveal that our
proposed model outperforms other competitive temporal
and spatio-temporal algorithms in terms of reliability,
sharpness, and continuous ranked probability score.

Index Terms—Deep Learning, Probabilistic Forecasting
, Variational Bayesian Inference, Spectral Graph Convo-
lutions, Evolutionary Algorithm

I. INTRODUCTION

Energy supply scarcities have emerged a severe chal-
lenge due to the rapid growth in the magnitude of
production and trade consumption [1]. Wind power is
considered to become one of the most attractive sectors
to address the energy shortage and has been welcomed
by its accessible source low pollution and cheaper cost

J.P.S. Catalão acknowledges the support by FEDER funds through
COMPETE 2020 and by Portuguese funds through FCT, under POCI-
01-0145-FEDER-029803 (02/SAICT/2017). G.J. Osório acknowl-
edges the support by UIDB/00151/2020 research unit (C-MAST)
funded by FCT.

[2]. Within the past few years, the wind power sector
plays a significant role throughout the global economy,
and the annual growth rate of worldwide wind power
has steadily continued to enhance. Nevertheless, the
natural fluctuations and generation capacity of wind
can induce the non-stationary and dynamic origin of
wind power, that further has a detrimental effect on
the performance of energy grid [3]. In particular, the
potentially diverse and large deployment of wind power
consequently possesses significant negative impacts on
the transmission of the power system which leads in
decreasing the performance of the power system [4].
The forecasting of wind power is considered to be a key
strategy to the solving of this issue. Thus the accurate
forecasting of wind power is considered to become a
key strategy for the wind farms and power generation
systems to establish the effective transmission, allocation
and installation paradigms for the sustainable perfor-
mance of the energy grid sectors [3], [5], [6].

Generally, the methodologies for wind power fore-
casting in the literature are segmented into three main
categories including persistence models, physical mod-
els as well as statistical and artificial intelligence (AI)
algorithms [7]. Furthermore, in the recent years, the
deep neural network technologies have raised lots of
attention by the researchers who are active in proba-
bilistic forecasting aspect of wind power due to their
excellent performance for prediction tasks [8]. The au-
thors in [9] proposed an improved deep mixture density
network of multiple wind farms for the short term wind
power probabilistic forecasting. To this end, the a deep
multi-to-multi neural network model is developed to
generate probabilistic forecasts in an end-to-end way,
which takes the beta kernel as an element to prevent
the difficulties of leakage. The study in [10] outlines
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a new efficient approach for probabilistic wind power
forecasting relying on deep spiking neural network.
For this strategy, an unique predicting methodology
is developed to compute the coverage probability and
sharpness with associated confidence levels. After this,
group search optimizer has been initiated to optimize
the parameters of the predicting model and effectively
start generating the prediction intervals for maintaining
the prediction robustness and reliability.

In this study, to highlight the spatiotmporal wind
power pattern recognition in a probabilistic wind fore-
casting setting, we develop a novel deep generative
model that learns the underlying conditional probability
distribution function (PDF) of future wind power of
multiple sites given their historical data. The proposed
approach defines an encoding-decoding neural architec-
ture. The encoder is presented as a graph convolutional
neural network that captures the significant spatiotem-
poral features of the wind data while the decoder applies
a feed-forward neural network with Rough neurons to
map the captured spatiotemporal wind features to the
wind power forecast values. The Rough neurons enhance
the reliability of the framework by capturing interval
knowledge corresponding to the weights and biases of
the encoder as well as the decoder.

In addition, we design a novel efficient evolutionary
algorithm based on two enhancement modifications over
the competitive swarm optimizer algorithm (ECSO) to
efficiently optimize the weights and biases of the pro-
posed NN. This strategy is named as neuroevolution
which efficiently optimize the NN architecture [1], [11]–
[13].

This paper is organized as follows: In Section II, the
roblem formulation is presented and proposed PDCA
model is described in details in Section III. Also, the
enhanced evolutionary algorithm is presented in Section
IV. The experimental results are discussed in Section V
and the paper is finally concluded in Section VI.

II. PROBLEM FORMULATION

We collect spatioemporal WP time series from M =
25 site locations in California for the year 2006 by
National Solar Radiation Data Base [14]. The locations
of the sites are depicted in Fig. 1. The data collected
on each site incorporates the 5-min interval WP time
series. Let us describe the weighted undirected WP
graph, G = 〈NG, LG〉, where NG is made up of
ni, i ∈ {1, 2, ..., 25} nodes. i.e., WP site locations,
and LG is the collection of edges between graph nodes.
The present mutual knowledge (MI) and geographical
distance within nodes across the graph are used to
generate the edge weight matrix, W . More technically,
we interpret the i-th and j-th components of weight
matrix denoted by W as following:

wij =

{
e−Dij MI(i, j) ≥ λ
0 MI(i, j) < λ

(1)

Dij repreents the geographical distance among i and j
nodes, whereas MI(i, j) standardizes the MI between

these two nodes. For this study, we assigned λ = 0.5
as the sparsity of the edge. We have Stni

as a WP
time series in the ith node at the time of t. Here, we
represent the task of estimating S∗(t

′
= t+h) for future

time series values for a predicted horizon of h > 0. In
order to predict the mentioned values among all graph
points G we have to continue to learn the conditional
probability density function (PDF), P ∗

(
S∗(t

′
)|ψ
)

in
which ψ is the context of all nodes of WP generation.
We can further calculate future WP values for each site
once we ’ve learnt P ∗.

Fig. 1. Locations of 25 underlying WP sites in California, USA.

To select the historical features, we observe that s(t̃)
is more associated towards the most current WP values.
As a result, throughout this research, we select historical
WP values with MI > 0.4 as our input for each wind
site in order to forecast the future wind power s(t̃+ h)
with forecast horizon h > 0.

III. SPATIOTEMPORAL DEEP GENERATIVE
FORECASTING

A. Graph Convolutional Neural Network

In our proposed model, we generally intend to obtain
the PDF of the wind power (WP) to forecast the future
values of the time series. Thus, in order to acquire the
related spatio-temporal features (F (G)) with the graph’s
nodes, we utilized graph convolutional networks to pat-
tern the WP locations into an undirected weighted graph.
The spectral graph convolution for G is determined for
time t by:

Fθ ∗ St = V FθV TSt (2)

where St denotes every node within graph G during
time t. The matrix V includes the eigenvector of the
normalized Laplacian L = V ΩV t, and the vector θ ∈
Rn is the set of parameters for the frequency domain
convolutional filter Fθ = diag(θ). As a function for
the L matrix, the Fθ feature is considered to be the
proprietary vector, the Fθ(Ω) is signified in the filter.
By calculating Fθ(Ω) with Polynomials Chebyshev, Tj ,
we need Fθ(Ω) ≈

∑J
j=0 αjTj

(
2

ϑmax
Λ− I

)
for which

j-th Chebyshev coefficient of αj and ϑmax denote to
the maximal eigen value for L. The new expression for
the Spectral Graph Curvolution Function of G gives us
a replacement for this Fα(Ω) (2) approximation:

Fθ ∗ St ≈
∑J
j=0 αjTj

(
2

ϑmax
Λ− I

)
St (3)



The convolution formula can be further simplified in
(3) with the assumption that it is J = 1, ϑmax = 2 and
α0 = −α1. The abbreviated form of (3) is as follows:

Fθ ∗ St ≈ α0T0(Λ− I)St + α1T1(Λ− I)St = α0

(
I +B−

1
2WB−

1
2

)
St (4)

The proposed approach shown in Fig. 2 takes LG layers
into the Graph feature extractor (GFE) block to extract
the spacial-temporal features of the nodes in Graph
G through a convolutional (4) process. The k-th level
performance of GEF, Ok, is achieved with the following:

Ok = f(MOk−1βk) s.t. M = B̃−
1
2 (W + I) B̃−

1
2

(5)
where W represents the graph weight matrix specified
in (1), βk is the weights of the k-th layer of a neural
network (NN), andB̃ij =

∑
j (W + I)ij . The GEF

network input is the raw data of the historical time series
and the output of F (G) are spatio-temporal features for
graph G.

B. Time Series Approximation by PDF Learning

The aim of this Section is to acquire the P (X)
for large dimensional data points X ∈ X . Afterward,
in Section III-B2, we apply the mathematics to our
problem, revealing the P ∗ (S∗|ψ). With P ∗, we can
produce future values of time series, S∗, that are as
similar to the observed samples, S, while feasible during
the training process.

1) Learning Probabilistic Representation of the Data:
As the size of the input space X increases, thus does
the great difficulties of accurate P (X) estimation. As a
result, we project the inputs through an implicit random-
ized domain, Z , in order to reflect the most noticeable
advantage of P (X). In this case, we can assure that
by scraping via an unspecified distribution P (z) within
a high-dimensional domain Z , we can obtain certain
samples X̂ that match the original PDF P (X). Consider
a range of deterministic functions f(z; θ) including
parameters θ ∈ Θ for converting data points from Z
to X domains, for example, f : Z × Θ → X . Our aim
is to explore a selection of optimal parameters θ∗ ∈ Θ
for f ensuring that whenever z ∼ P (z), the possibility
of producing samples X∗ that are as similar to X as
possible by f is greatly increased. As a result, this
optimization model is given as follows:

θ∗ = arg max
θ

{
P (X) =

∫
f (z; θ)P (z) dz

}
(6)

While Z represents a generalized vector of the input
space X , f(z; θ) is a randomized matrix in the space X
for a given array of parameters θ. As a result, P (X) in
(6) can be expressed in the following form

P (X) =

∫
D (X|z; θ)P (z) dz (7)

where D represents the decoder NN in variational auto-
encoder (VAE) algorithm.

We interpret conditional PDF D (X|z; θ) and
subsequent PDF P (z) as Gaussian distributions,
N (X|f(z; θ), σ2 × I) and N (0, I), accordingly. The

first layer of the decoder network translates parameters
z ∈ Z through unidentified problematic functions ζ
using variational neurons, and then ζ offers samples
X ∈ X . With the stated definitions, then let reform the
optimization technique in (6),(7) as follows:

θ∗ = arg max
θ

∫
N (X|f(z; θ), σ2×I)N (0, I)dz (8)

We have to settle on the effectiveness of z ∈ Z arbi-
trary when making new observations of X (8) in order
to address the optimization problem. Therefore, we set
the E(z|X) distribution of the conditional probability.
Kullback–Leibler (KL) divergence is derived from the
expectation value D(X|z) w.r.t. z, Ez∼E [D (X|z)]:

KL [E (z|X) , D (z|X)] = Ez∼E [logE (z|X)− logD (z|X)] (9)

Using Bayes rules over D (z|X), Eq.(9) can be rewritten
in:

KL[E (z|X) , P (z|X)] = Ez∼E
[
logE (z|X)− log

(
P (X|z)P (z)

P (X)

)]
=

Ez∼E [logE (z|X)− logP (X|z)− logP (z) + logP (X)]

(10)

where P (X|z) represents a decoder NN; Thus, we
represent it using D(X|z). The aforementioned equality
is written in the following form:

logP (X)−KL [E (z|X) ‖P (z|X)] =

Ez∼E [logD (X|z)−KL [E (z|X) ‖P (z)]] (11)

For our purpose, i.e., generating X∗ ≈ X ,
we have to maximize log (P (X)) and minimize
KL [E (z|X) ||P (z|X)] on the left side of the (11);
Therefore, we maximize the right side of (11) by
stochastic gradient descent (SGD) approach. We can
technically describe this optimization problem as fol-
lows:

θ∗ = arg max
θ

EX∼X
[

Ez∼E [logD (X|z; θ)]
−KL [E (z|X; θ) ‖P (z; )]

]
(12)

Notice that E is a NN encoder to encode input samples
X in z (11), and D is a NN encoder from z to X . We
adjust E by:

E(z|X) = N (z|µ(X; θ),Σ(X; θ)) (13)

where µ and Σ are the deterministic functions obtained
by a NN with tuanable parameters θ. Since D and E
both are multivariate Guassian distribution, the KL term
in (11) can be simplified by:
Where the deterministic functions of µ and Σ are NNs
by the tuanable parameters θ. The KL expression (11)
can be simplified as follows because the D and US are
based on multivariate Guassian distribution:

KL[E (z|X) ‖P (z)] = KL [N (z|µ(X; θ),Σ(X; θ)),N (0, I)]

=
1

2

[
− log (det (Σ))− d+ tr (Σ) + µTµ

]
(14)



Fig. 2. Proposed Deep Generative Model for Probabilistic Spatiotemporal Forecasting

The trick fpr z Using reparametrization for obtaining
D (X|z; θ) can be replaced as following:

θ∗ = arg max
θ

EX∼X

Eε∼N (0,I)

[
log[D(X|z = µ(X)
+Σ1/2(X) ∗ ε; θ)]

]
−KL [E (z|X; θ) ‖P (z)]


(15)

The NN encoder receives input and outcome data
from µ and Σ (refer to 13) during training procedure.
E NN error is calculated in (14). When µ and Σ have
been obtained, we can achieve z and generate D for the
decoder’s network to produce X∗ ≈ X . Notice D NN’s
error function is ||X −X∗||2.

2) Convolutional Graph Rough VAE: This section
extends the model for P ∗(S∗|ψ) learning procedure
explained in III-B1. Our aim is to derive Ŝ(t

′
) ≈ S∗,

therefore let us formulate the computation phases of S∗

inside an estimation of S∗. Thus, the z ∼ E as the
Bayes rule is assumed to be applied log[P (S∗(t

′
)|z, ψ)]

by:

Ez∼E [logP (S∗(t
′
)|z, ψ)] = Ez∼E [logP (z|S∗(t

′
), ψ)−

logP (z|ψ) + logP (V ∗(t
′
|ψ))] (16)

(16) can be rewritten as:

logP
(
S∗(t

′
)|ψ
)
−KL

[
E
(
z|S∗(t′), ψ

)
‖P
(
z|S∗(t′), ψ

)]
=

Ez∼E
[
logD

(
S∗(t

′
)|z, ψ

)
−KL

[
E
(
z|S∗(t′), ψ

)
‖P (z|ψ)

]]
(17)

As the same as (11), our goal is to make maximum
of the left side of (17). Thus, we learn the optimum
Rough encoder/decoder in order to grab the conditional
PDF P ∗(S∗|ψ) through addressing similar optimization
problem in (12). With this ideal encoder/decoder, we
can create the precise S∗ values for future t

′
values. It

should be mentioned that the cost function per adjusting
the encoder and the decoder framework is similar to
(14).

ErrorE = KL[E(z|〈F (G), S∗〉‖N (0, 1))]

ErrorD = ‖Ŝ(t
′
)− S∗(t

′
)‖

(18)

Thus the overall error for the proposed model is
Errortotal = ErrorE + ErrorD.

As mentioned before, in our proposed model, the
Rough encoder/decoder NNs are implemented. The
rough neurons of the framework contain dynamical
interval weight and biases activation functions. The

encoder and decoder networks are LD and LE Rough
layers, respectively. The feedforward on the used Rough
network between two layers i and i + 1 can be also
written here by:

ZUi = WU
i+1Oi + bUi+1

ZLi = WL
i+1Oi + bLi+1

Oi+1 = αi+1Z
U
i + βi+1Z

L
i

(19)

where the upper bound and lower bound (interval
weights) of the Rough NNs are respectively denoted
by
〈
WU
i+1, b

U
i+1

〉
and

〈
WL
i+1, b

L
i+1

〉
. In encoder/decoder

models, our primary reason for using the rough set
theory and rough neurons is to increase the strength of
the framework over established uncertainties throughout
the WP datasets.

IV. THE PROPOSED ENHANCED EVOLUTIONARY
ALGORITHM

In this section, we design an advanced evolutionary
algorithm to tune the weights and biases of the NN.
This novel approach is named as enhanced competition
swarm optimizer (ECSO) in which the basic version of
CSO algorithm [15] has been improved using two op-
timization perorations including levy flight and chaotic
map.

First, we begin introducing the CSO algorithm. In
CSO, per each iteration, based on the particle positions,
two particles are assigned randomly when the particles
using the lower fitness value are upgraded towards a
better fitness value. The CSO regularly updates the
particles using the given equations mainly at t-iteration:

vt+1
u =Qt1v

t
u +Qt2

(
xtw − xtu

)
+ λQt3

(
x̄t − xtu

)
(20)

xt+1
u =xtu + vt+1

u (21)

where Qt1, Q
t
2, Q

t
3 represent randomly the uniform dis-

tributed vectors within the range [0, 1], xtw and xtu,
respectively denote to the winner and loser particles and
the iteration number is represented by t. In t generation,
the swarm position average is represented as x̄t, while
the λ parameter covers x̄t particle effectiveness.

For CSO, A is needed to control search agents’
step scale that appears to be sequentially reduced with



iterations. We employ the strong features of the levy
flight strategy in this modifying step to adjust the a
parameter. This adjustment continually increases the
efficient exploration and exploitation of CSO algorithm.
Consider the parameter ∞ uses the following step size:

∞⊕ Levy(β) ∼ 0.01
p

|q|1/β
(
Xk
i −Xk

best

)
(22)

where the values of p and q are defined by:

p ∼ N
(
0, φ2u

)
, q ∼ N

(
0, φ2v

)
(23)

φu =

[
Γ(1 + β)× sin(π × β/2)

Γ[(1 + β)/2]× β

]1/β
, φv = 1 (24)

where Γ represents the default gamma function at [0, 2]
range. The A parameter with Eq. (25) is amended as
follows:

A = Levy(X) ∗ u (25)

where X represents the position of wolves and u is a
random value between [0,1] range. These concepts are
used to improve the global exploration as well as local
exploitation capacity of conventional technology and to
deepen the searching advantages of CSO.

The consistency of the preliminary population will
also greatly affect the convergence speed and accuracy
of the solution by evolutionary algorithms, which are
continuously optimized by means of population iter-
ation. The basic CSO often randomly initializes the
population and makes it difficult to promise the diversity
of the population, due to poor performance efficiency.
Consequently, it is vital to increase the diversity of the
preliminary population in order to improve the efficiency
of the CSO. By applying chaos-theory, the algorithm to
local optimal solutions can ideally be eliminated while
addressing function optimization problems to maintain
the diversity of the population and improve global search
effectiveness. There are several strong chaotic maps
in literature for various function optimization. In this
work, we utilize the great power of Circle map as a
one-dimensional chaotic strategy which is an element
of probability theory and described by Andrey Col-
mogorov. For CSO population initialization, we use this
map according to the following formula:

xi+1 = xk + b−
(
P

2π

)
sin(2πxi)mod(1) (26)

In the above formula, chaotic numbers are generated
between [0,1] interval with the default configuration as
P=0.5 and b=0.2. Both P and b denote to the control
parameters.

V. EXPERIMENTAL RESULTS

In order to evaluate the proposed PDCA, we comapre
the model with Extreme Learning Machine (ELM),
Kernel Density Estimation (KDE), Quantile Regres-
sion (QR), Persistence Prediction (PP), Spatiotempo-
ral Copula (ST-Copula), Spatiotemporal-QR-Lasso (ST-
QR-Lasso), Spatiotemporal Support Vector Regression
(ST-SVR), and Conditional Spatiotemporal Forecast
(CSTF). Fig. 3 indicates the average reliability met-

Fig. 3. Reliability measurements averaged over all wind farms

Fig. 4. Average reliability with different look-ahead times

rics for all wind power sites with different nominal
coverage rates between 10 and 90 percent. As can be
seen from this figure, the proposed PDCA results in
the least average deviation in comparison with other
spatio-temporal and temporal algorithms, which shows
the superior reliability of this method. Fig. 4 reflects
the average reliability of various temporal and spatio-
time benchmarks for different lookahead periods which
shows that the reliability benefit of PDCA grows with
the extension of the forecast time horizon.

Fig. 5 indicates the 10% -90% average nominal cov-

Fig. 5. Sharpness evaluation using normalized PIAW

Fig. 6. CRPS outcomes from one-hour to 24-hr ahead forecasting
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Fig. 7. Probabilistic forecasts and the actual value (red) of 144 wind
power samples in March 4th 2006. Blue shows 50% and purple shows
90% confidence intervals of our probabilistic forecast for 24-hr ahead
predictions.

erage rates normalizing with the highest observed wind
power data points. Among all the models, PCDA offers
medium sharpness that is not too significant to guide
to wrongly limited quantiles, yet not too small to start
losing information regarding potential wind power data.
Fig. 6 shows the average Continuous Ranked Probability
Score (CRPS) for all wind power predictions from one-
hour to 24 hours. The smaller the CRPS of the model,
the greater the accuracy it offers. As seen in this dia-
gram, the PDCA model outperforms all other benchmark
algorithms. Fig. 7 shows the probabilistic forecasts and
the actual value (red) of 144 wind power samples in
March 4th 2006. Blue shows 50% and purple shows
90% confidence intervals of our probabilistic forecast
for the 24-hr ahead predictions. This figure reveals that
real wind power values are followed excellently via
our proposed model offering towards highest accuracy,
sharpness and reliability.

In overall, compared to previous benchmarks in the
literature, experimental findings indicate greater reliabil-
ity, sharpness and Continuous Ranked Probability Score
are obtained by our proposed PCDA framework.

VI. CONCLUSION

This paper addressed the problem of spatiotmeporal
wind power forecasting via deep generative model-
ing. The probabilistic deep convolutional Auto-encoder,
a novel deep generative model for graph-structured
datasets, is introduced towards nodal distribution learn-
ing problem within dynamic graphs. The nodes reflect
the wind power at neighboring wind sites while the
edges show their corresponding correlations. The pro-
posed framework determines the corresponding proba-
bility densities of nodes by capturing deep convolution
features from the underlying graph-structured data. The
spatial features of the wind power data are derived via
graph spectral convolutions, which are then employed by
an encoding and decoding ANN optimized by a novel ef-
ficient evolutionary algorithm to capture the distribution
of future wind power data points. When compared to
recently benchmark methods in the scientific literature,
experimental findings represent significant improvement

in terms of reliability, sharpness, and continuous ranked
probability score.
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