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Abstract—Anomaly detection in electricity consumption data is
one of the most important methods to identify anomalous events
in buildings and electric assets, such as energy theft, metering
defect, cyber attacks and technical losses. In this paper, a novel
deep learning based approach is presented to detect anomalies in
electricity consumption data one hour ahead of time. We address
this challenge in two stages. First, we build an Long Short-Term
Memory (LSTM) based neural network model to predict the
next hour sample. Second, we use another LSTM autoencoder to
learn the features of normal consumption. The output of the first
stage is used as an input to the LSTM autoencoder. The LSTM
autoencoder will learn the features of normal consumption and
the input will be similar to output when applied. For anomalies,
the input and output will be significantly different. The Expo-
nential Moving Average (EMA) is used as a threshold and two
types of anomalies are distinguished, local and global anomalies.
Several weather features are considered in this study, such as
pressure, cloud cover, humidity, temperature, wind direction and
wind speed in addition to temporal and lag features. A feature
selection method to find the optimal features that achieve good
results is also implemented. We validate the proposed approach
by comparing the detected anomalous consumption and the
normal consumption within the same period, and the results
demonstrate a drastic increase in electricity consumption during
the anomalous periods. The results also show that the temporal
and lag features have improved the efficiency and performance
of the proposed method.

Index Terms—LSTM autoencoder, Deep Learning, Anomaly
detection, Electricity consumption, Anomalous consumption.

I. INTRODUCTION

Anomaly detection is a common technique used to identify
unusual patterns in data that raise suspicions by differing
significantly from normal behavior. This technique is consid-
ered of high importance because detecting anomalous events
provides a decision making process with information on what
should be done to deal with a certain event. This problem has
been addressed in a variety of domains and within diverse
research areas [1]. For example, an abnormal credit card

transaction may indicate fraud and that the system should
prevent the transaction [2].

Anomaly detection in electricity consumption data is one
of the most important methods to identify anomalous events
in buildings and critical electric infrastructure facilities, such
as energy theft, metering defect, and technical losses [3].
Besides, this technique is useful to detect cyber attacks in
cyber-physical systems, such as power overloading attacks in
smart grids or microgrids [4]. To avoid running into power
failure problems, anomalous consumption should be detected
before it occurs, and therefore guaranteeing a normal operation
of electric assets and networks and avoiding power outages.

Several anomaly detection methods have been proposed
in the area of energy analytics and smart grids that aim to
find patterns in data which do not conform to the expected
behavior. For example, the authors of [5] presented a multi-
agent based unsupervised anomaly detection method to detect
abnormal energy consumption in a smart campus. The method
is applied in two steps. First, they used an ensemble model to
label the unlabeled dataset. Second, they proposed a method
for detecting anomalies based on combining LSTM networks
and autoencoder neural networks. The results obtained from
the ensemble model is used to evaluate the performance of
the proposed method in the second step. The authors in [6]
examined five models to detect anomalies in school electricity
consumption data. Finally, they presented a hybrid model that
combines polynomial regression and Gaussian distribution to
detect anomalies. A real-time detection method of anomalous
power consumption with the aim to reduce power consumption
in buildings has been proposed in [7] .The authors in [8]
employed density-based clustering techniques to detect un-
usual energy consumption, where clusters have been regarded
as normal behavior and noise points as anomalous behavior.
The work in [9] proposed a early fault detection method of
anomalous electricity load profiles using time series clustering
and decision trees.

In this study, we present a novel unsupervised deep learning
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based approach to detect anomalies in electricity consumption
data one hour ahead of time. We address this challenge in two
stages. First, we build an Long Short-Term Memory (LSTM)
to predict the next hour sample. Second, we use an LSTM
autoencoder neural network to learn the features of normal
consumption. The output of the first stage is fed as an input for
the LSTM autoencoder. The LSTM autoencoder will learn the
features of normal consumption and the input will be similar to
output when applied. For anomalies, the input and the output
will be significantly different since it will be considered as
unexpected data. The Exponential Moving Average (EMA)
is used as a threshold and two types of anomalies are dis-
tinguished in our method, namely: i) local anomaly, when a
single metric loss crosses a threshold, and ii) a global anomaly,
when the mean loss of all metrics crosses a threshold. Further,
external weather variables are considered in this study, such
as pressure, cloud cover, humidity, temperature, wind direction
and wind speed. The temporal and lag features will be created
from the historical electricity consumption data. Further, a
feature selection method is used to find the optimal features
that achieve better results.

The rest of this paper is organized as follows. Section II
provides a brief background on anomaly detection and the
relationship between electricity demand and weather variables.
Section III covers the unsupervised method being implemented
to detect abnormal consumption. In section IV the results of
research are presented. Finally, The paper is concluded in
Section V.

II. BACKGROUND

A. Anomaly Detection on Machine Learning

In the past, manual anomaly detection was a viable option.
There were only a few metrics to track and the data sets were
manageable enough. However, currently in the world of digiti-
zation, the amount of data exceeds the human ability to study it
manually [10]. Hence, automated anomaly detection becomes
a necessity where machine learning algorithms are widely
being used to automate anomaly detection. Anomaly detection
algorithms on machine learning automatically analyze datasets
and identify breaches in the data patterns that signal an
anomaly. Anomalous data can indicate critical incidents, such
as a technical glitch, fraud, or network intrusion. Detection of
anomalous data can help point out where an error is occurring
and quickly get tech support on the issue by informing the
responsible parties to act.

B. Time Series on Anomaly Detection

Time series data is a sequence of data points taken at
successive equally spaced time intervals, giving us the ability
to track changes over time [11]. In this study, we analyzed
a time series of electricity demand for a given consumption
over a certain period. Time series analysis is very useful
to identify and analyze the natural changes that occur in
electricity consumption, so that any significant deviation from
the natural change is most likely to be considered anomalous.
The electricity demand data used in this study are recorded

with hourly resolution for the period between 2017 and 2019.
Fig. 1 shows one week’s electricity consumption from Monday
to Sunday. As shown, consumption is highest on weekdays and
lowest on weekends. The data for one week contains 168 data
instances. In Fig. 1, each data point represents the electricity
demand in the current hour.

C. The Impact of Weather Variables on Electricity Demand

Many weather variables, such as solar irradiance, cloud
cover, humidity and wind speed, typically have an inter-
dependency with temperature. The interdependency between
weather variables could be very complex [12]. Hence, these
variables can lead to an increase or a decrease in the tem-
perature. An increase or decrease in temperature leads to
growth in the electricity demand due to cooling and heat-
ing requirements, respectively. The weather variables inter-
dependency may differ from one location to another [13].
Indeed, several works in prior literature have already shown
the influences of weather variables on electricity demand in
different locations. For instance, the authors in [12], analysed
the influence of climate variables on electricity demand in the
state of New South Wales, Australia. Their study showed that
climatic variables which are heating degree days, evaporation,
humidity, and wind speed greatly affect the electricity demand.
The authors in [14], concluded that daily electricity demand
in Niamey varies both seasonally and from year to year,
showing that temperature, humidity, and solar radiation have
significant influence on electricity consumption. They also
observed a very low coherence between wind speed and daily
electricity consumption. The authors in [15], highlighted the
impact of weather variables on electricity demand in Thailand.
Therefore, it is important to consider the impact of these
variables on this proposed method.

III. METHODS

A. Long Short-Term Memory Regular Network

Recurrent Neural Networks (RNNs) are powerful tools for
modeling sequences of data. They are extensible and capable
of learning order dependence in sequence prediction problems
[16]. RNNs can remember important features about the input
they received, due to the internal memory, which makes it
applicable to tasks such as natural languages processing and
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Fig. 1: Electricity demand over one week.



time series forecasting. In this study, when predicting the elec-
tricity demand ahead of time, the previous electricity demand
data are required. Hence, there is a need to remember the
previous inputs. RNNs are different from Feed-forward Neural
Networks (FNNs) because they include cyclic connections,
while FNNs have no cyclic connection between nodes [5].
RNNs use the same parameters for each input and the output
of the previous state will be fed as the input of the next state
(time step). A visual example of the architecture of an RNN
is shown in Fig. 2. For each time step, activation a<t> and
output y<t> are expressed using (1) and (2).

a<t> = g1(Waaa
<t−1> +Waxx

<t> + ba), (1)
y<t> = g2(Wyaa

<t> + by), (2)

where Waa,Wax,Wya, ba, by are coefficients that are shared
temporally, and g1, g2 are activation functions.

However, RNN suffers from short-term memory, which
hampers learning of long data sequences [17]. The problem
is that at each step, an RNN updates its state [5]. During
back propagation, gradients are values used to update a
neural network’s weights. Due to the many updates when
the sequence is long enough, the gradient becomes smaller
and smaller. The gradient also carries information used in the
RNN parameter update and when the gradient becomes too
small, RNN stops learning. Therefore, it will have a problem
carrying information from earlier time steps to later ones and
will leave out important information from the beginning. This
is a major drawback in RNNs, which is called vanishing
gradient. This problem is solved by LSTM networks. LSTMs
are an extension for RNNs (i.e., with short-term memory) and
also have a long-term memory. Therefore, it is well suited to
remember inputs over a long period of time. An LSTM cell
contains three gates: input, forget and output gate. With these
gates, LSTM has solved the vanishing gradient problem.

B. Long Short-Term Memory Autoencoder Network

An autoencoder is a type of artificial neural network,
which is mainly used to learn efficient data coding in an
unsupervised manner. It is designed to encode the input into
a compressed representation, and then decode it back such
that the reconstructed input is as similar as possible to the
original one [18]. The difference between the original input
and the decoded one is measured by the reconstruction error.
In this study, we used an autoencoder to learn a representation
of the data for normal electricity consumption. A well-trained
autoencoder will reconstruct the data that is coming from the

Fig. 2: RNN architecture.

normal electricity consumption such that the reconstruction
error is small. Regarding the data from the abnormal electricity
consumption, the autoencoder network may not be able to
reconstruct it well because it only saw normal instances
during training. This will lead to a higher reconstruction
error, enabling us to detect such high reconstruction errors
and label them as abnormal electricity consumption. When an
autoencoder is trained to reconstruct the original input data,
the data is processed through the following steps:
• The data will be fed by an encoder from a high-

dimensional input to a bottleneck layer, where the di-
mension becomes lower because the number of neurons
is the least in order to compress the input data and extract
the most important attributes out of it.

• The decoder fetches the compressed input data from the
bottleneck layer to convert it back to the original input
data shape. In other words, reconstructing the original
input data.

• The previous steps are repeated until the autoencoder
network is able to best reconstruct the original input from
an ”encoded” state.

The autoencoder network architecture is shown in Fig. 3. As
soon as the data is reconstructed, it is possible to compare the
reconstructed data with the original data, compute the differ-
ence, and calculate the loss, which can then be minimized.
The loss function of the autoencoder network is calculated by
(3):

L(θ, φ) =
1

N

N∑
i=1

(xi − fθ(gφ(xi)))2. (3)

According to (3), the loss function depends on θ and φ,
which are the parameters that define the encoder and the
decoder, xi is the i-th feature, the encoder is represented by gφ,
and the decoder is represented by fθ. Equation (3) sums up the
difference between the original data x, and the reconstructed
data fθ(gφ(xi)) over N which is the number of input features.

In our case, the electricity consumption data are time
correlated, thus to handle these data we used an LSTM based
autoencoder. Stacking LSTM networks in an autoencoder
fashion enables the method to learn more complex patterns
inherent in the data [5]. The LSTM encoder learns to map

Fig. 3: Autoencoder architecture.



compressed representations of the normal time series and
the LSTM decoder uses this representation to reconstruct the
normal time series. This is particularly useful in scenarios
when anomalous data is not available or is sparse, making
it difficult to learn a classification model over the normal and
anomalous sequences [19].

C. Model Design

The proposed model consists of two major components
mentioned previously: i) an LSTM regular network and II)
an LSTM autoencoder network. This model uses the LSTM
regular network for predicting the sample’s electricity demand
one hour ahead of time, while the LSTM autoencoder network
is used to address the predicted values from the LSTM regular
network to detect if the electricity demand sample will be
anomalous or not. In this study, the steps of the method for
detecting anomalies are outlined as:

1) The first step is to preprocess the electricity consumption
data. The data preprocessing includes two procedures:
i) data standardization, and ii) feature selection. Data
standardization is a crucial part of the data preprocessing
where the features have drastically different ranges. This
method rescales the range of the features to a similar
scale. Having features on a similar scale can help our
algorithm to converge faster and reduce training time
[10]. The features can be normalized using (4):

X′ =
X− µ
σ

, (4)

where X is the matrix of the feature values, X′ is the
matrix of the normalized feature values, µ is the mean of
the feature values and σ is the standard deviation of the
feature values. On the other hand, we applied the feature
selection procedure to find the optimal and the most
important features for electricity demand prediction. Se-
lecting the optimal features improves the performance of
machine learning algorithms and reduces the complexity
and computational cost of the problem [20].

2) After the preprocessing step, the LSTM regular network
is trained on the electricity consumption data in order
to predict future changes in electricity demand. In addi-
tion to predicting the electricity demand, the important
features of the electricity demand are also predicted.

3) Then, we will train the LSTM autoencoder network on
the normal electricity consumption data. The objective is
to learn the attributes of the normal electricity consump-
tion. After that the LSTM autoencoder network will be
able to reconstruct instances of normal time series well.

4) The LSTM regular network predicts the electricity con-
sumption sample one hour ahead of time. Then, deter-
mining the likelihood of a point in a time series being
anomalous or not is done by the LSTM autoencoder net-
work. Mean Square Error (MSE) is used as a metric for
the model evaluation. The proposed model architecture
is illustrated in Fig. 4.

Fig. 4: The general model of the proposed method.

IV. RESULTS AND DISCUSSION

A. Predictor Variables

When dealing with time sensitive data, there is a collection
of useful engineered features that describe the time series
index of a time based data set. When predicting time series that
contain common seasonal and trend patterns, the engineered
time-related features can improve the model performance.
Fig. 5 depicts the electricity consumption in May 2017.
It clearly shows daily and weekly seasonality in electricity
consumption. Much less energy is consumed on the weekends
while weekdays are the busy days where the consumption is
highest.

Fig. 6 shows the hourly electricity consumption over the
period of March 2017 – December 2019, which clearly ex-
hibits a yearly seasonality. It can also be shown in Fig. 6
that the electricity consumption in the considered dataset
is splitted into two clusters, one with oscillations centered
roughly around 1.3 megawatt, and another one with more
scattered data points centered roughly around 1.1 megawatt.
Another important point that becomes apparent is the drastic
decrease in electricity consumption in early January and late
December, during the holidays.

Since our electricity consumption data have daily, weekly
and yearly seasonality. Hence, the hour of the day and the
day of the week will be important features. In Table I, all the
features that we considered in our study are summarized.
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Fig. 5: Hourly electricity consumption during May 2017.



Fig. 6: Hourly electricity consumption during the considered
period of March 2017 – December 2019.

B. Optimal Features Selection

Pearson correlation coefficient has been applied in this study
to measure the strength of association between the electric-
ity consumption data and the considered predictor variables.
Pearson correlation is used to calculate the linear correlation
between two variables [21]. Thus, the correlation between
the electricity consumption and each predictor variable is
measured independently. The correlation results are shown in
Fig. 7, where the correlation lies in the range between -1 and 1.
A value of 0 indicates that there is no association between the
electricity consumption and a certain variable. A value greater
than 0 indicates a positive association. A value less than 0
indicates a negative association. From Fig. 7, it can be noticed
that more than one variable affects the electricity demand. As
shown, CC(t) has a low correlation with the electricity demand,
followed by P(t), Month, AL(M-12) and AL(D-365). Thus,
these features are dropped out and not included in the training
process, while the other features are kept.

TABLE I: Predictor variables considered in our anomaly
detection method in electricity consumption data.

Category Number Acronym Description

Weather

1 P(t) Pressure at t.
2 CC(t) Cloud Cover at t.
3 H(t) Humidity at t.
4 T(t) Temperature at t.
5 WD(t) Wind Direction at t.
6 WS(t) Wind Speed at t.

Temporal

7 HoD Hour of the day.
8 DoW Day of the week.
9 Month Index of the month.
10 WD Weekend day.

Lag

11 AL(D-1) Average Load one day ago.
12 AL(D-7) Average Load same day last week.
13 AL(W-1) Average Load last week.
14 AL(M-1) Average Load last month.
15 AL(M-12) Average Load same month in the last year.
16 AL(D-365) Average Load same day in the last year.

−0.2 0.0 0.2 0.4
P(t)

CC(t)
H(t)
T(t)

WD(t)
WS(t)
HoD
DoW

Month
WD

AL(D-1)
AL(D-7)
AL(W-1)
AL(M-1)

AL(M-12)
AL(D-365)

Fig. 7: Pearson correlation between the electricity demand and
the predictor variables.

C. Anomaly Detection Results

In this proposed study two different anomaly detection
techniques are considered: global and local anomaly detection.
Fig. 8 shows all the anomalies detected, local and global, in
a sample month of the dataset, April 2018. Local anomaly
detection looks for anomalies in one metric and is triggered
when the mean loss of the single metric crosses a threshold,
while global anomaly detection introduces interaction with
all the important features considered and is triggered when
the mean loss of all features crosses a threshold. Either way,
the anomaly in the energy consumption data is a sign of
energy waste whether due to user behaviour, human error or
a technical problem that caused loses. Therefore, anomalous
consumption should be identified to reduce peak power con-
sumption or change undesirable user behavior. In this study, a
baseline of anomaly detector was based on reconstruction error
and was constructed by the following steps. First, calculate
reconstruction error for each sample in time series which is
evaluated to decide what is abnormal. Second, calculate the
mean µ and standard deviation σ of the single metric in the
case of local anomaly, while of all metrics in the case global
anomaly. The mean and standard deviation are calculated over
the monitored time series. Third, calculate the corresponding
µ± 3σ which measures how far standard deviations are from
the metric average. Fourth, classify points whether they are
anomalous or not. For any given xi, if xi /∈ (µ+3σ,µ− 3σ),
then xi is classified as anomalous.

In Fig. 9, the estimated bounds defines the range of accept-
able deviation, which represents the bounds of the anomaly
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Fig. 8: Local and global anomalies detected in April 2018.



Fig. 9: The estimated bounds for the anomaly detector using
the dynamic threshold.

detector. Any actual value that is outside of the upper or lower
acceptable range is flagged as anomalous.

The mean that has been calculated in this study to estimate
anomaly detector bounds is a moving average which is called
EMA. The aim of using a moving average is to use a dynamic
threshold which is sensitive to the behavior of data and
changes more smoothly over time considering that the noise is
seasonal and therefore anomalies are better classified. Fig. 10,
illustrates the difference in electricity consumption between
a day containing anomalous consumption and a random day
with the same weekday value does not contain anomalous
consumption. It shows a large gap between the normal and
abnormal electricity consumption where a drastic increase in
electricity consumption is noticed in the day that has a global
anomaly period.

V. CONCLUSION

This paper presented an unsupervised deep learning based
two-step approach to detect anomalies in electricity consump-
tion data one hour ahead of time. An LSTM regular neural
network was used to predict the next hour sample and an
LSTM autoencoder was developed to learn the features of
normal consumption. The output of the LSTM regular is fed
as an input for the LSTM autoencoder. The two-step approach
combines two different anomaly detection techniques: global
and local anomaly detection. Several external features were
considered and a feature selection method was applied to find
the optimal features that achieve better results. According to
the evaluation, the temporal and lag features have improved

0 5 10 15 20
Hour

0.975

1.000

1.025

1.050

1.075

1.100

1.125

1.150

El
ec
tr
ic
it
y 
Co

ns
um

pt
io
n 
(M

W
)

1e6

Abnormal
Normal

0 5 10 15 20
Hour

1.0

1.1

1.2

1.3

1.4

El
ec
tr
ic
it
y 
Co

ns
um

pt
io
n 
(M

W
)

1e6

Abnormal
Normal

0 5 10 15 20
Hour

0.9

1.0

1.1

1.2

1.3

1.4

1.5

El
ec
tr
ic
it
y 
Co

ns
um

pt
io
n 
(M

W
)

1e6

Abnormal
Normal

0 5 10 15 20
Hour

1.1

1.2

1.3

1.4

1.5

El
ec
tr
ic
it
y 
Co

ns
um

pt
io
n 
(M

W
)

1e6

Abnormal
Normal

Fig. 10: The difference between the normal and abnormal
electricity consumption.

the efficiency of our method to identify anomalies in the data
due to the seasonality in electricity consumption data.

In the future, proposing another method for evaluating the
performance of anomaly detection needs to be considered.
Such a method should be able to label the data. By labeling the
data, the quality of the general model will likely to improve
and hence a higher accuracy could be obtained.
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