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Abstract—In this paper, a stochastic optimization model is 

developed for optimal operation of the active distribution 

networks. The proposed model is investigated on the transactive 

energy market in the presence of active consumers, local 

photovoltaic power generations and storage devices. The 

stochastic behavior of photovoltaic panel power generation 

units and load consumptions have been modeled using scenario 

generations and scenario reduction technique. Besides, the 

stochastic nature of the demand power as well as rooftop 

photovoltaic panels have been investigated in this paper. In the 

transactive energy market model, the distribution system 

operator is the main responsible for the market-clearing 

mechanisms and controlling the net power exchange between 

the distribution network and upstream grid. The proposed 

model is tested and verified on a radial medium voltage 

distribution network with 16 buses. 

Keywords—Demand response, distribution system, electric 

vehicles, parking lots, photovoltaic generation, transactive market. 

I. INTRODUCTION  

Operation of the distribution electricity network is one of 
the main activities of distribution companies (DisCos). The 
DisCos are the responsible entities in the power systems in 
both regulated and deregulated paradigm. Serving the end-
users’ demand, monitoring distribution network, asset 
management, and maintaining the power quality of electricity 
are the main roles of DisCos in the power system. The current 
smart grids benefit from active consumers, local power 
generations, like photovoltaic (PV) and electrical energy 
storage (EES) units. In the transactive energy (TE) markets, 
the distributed energy providers increase the reliability and 
flexibility of the network operations while reducing the 
operational costs by reducing the network power losses, 
shifting the controllable loads to off-peak periods, and 
strategic energy storing with EES devices [1]. The possibility 
of the data exchange between the entities in this area improves 
the interoperability of the mentioned transactive energy 
market. A considerable share of research works has been 
carried out in the field of optimal operation of power networks 
in the presence of local and onsite power generating units, 
EES devices, and demand response programs [1]-[4]. 

A framework for the day-ahead (DA) transactive market is 
proposed in [3]. In this framework, the distribution system 
operator (DSO) operates a transactive market, and it is 
responsible for the optimal and secure operation of its local 
distribution area. A DC power flow formulation is used for 
network modeling. Thus, distribution losses are neglected.  

In [5], the authors extend the previous work by adding a 
rigorous formulation of the diesel generators (DG) minimum 
on/off times, ramping, spinning reserve constraints, and 
distribution losses. Considering distribution losses in the 
transactive energy problem allows the DSO to achieve 
superior operational decisions and minimize purchasing 
power from the market. At the distribution operation level, in 
addition to conventional feeder relief and protection schemes, 
the need for new grid services such as phase balancing and 
grid-edge reactive and voltage support is emerging [6]. Hence, 
full nonlinear AC power flow equations need to be used to 
model power losses and reactive power more accurately. A 
distribution market that determines the real-time value of 
transactive energy enabling the power consumers of the 
distribution system to make energy transactions in real-time is 
proposed in [7]. 

The microgrid has been introduced to ensure the 
successful integration of renewable energy sources (RES) 
with the traditional distribution system [8]. Fitting microgrids 
in smart distribution networks provide the expected 
functionalities that improve power delivery's reliability and 
economy [9]. The transactive energy market concept is 
applied to a multi-microgrid scenario where each microgrid 
can trade its energy with neighboring microgrids [10]. 
Optimal scheduling of the distributed energy resources 
(DERs) is targeted with microgrids profit maximization under 
the TE management is reported in [11]. Microgrids can submit 
the hourly bids/offers in the DA market to specify their energy 
consumption/production for the next energy exchanging day. 
A stochastic framework for the energy management of a 
microgrid to minimize the energy cost from the grid has been 
developed in [12].  

In [13] proposes a two-stage robust stochastic 
programming model for optimal scheduling of commercial 
microgrids equipped with 100% RESs. Uncertainty 
quantifying was carried out by intending the fluctuations of 
RERs outputs, volatility of energy market price, and stochastic 
behaviors of consumers. A comprehensive review on the 
transactive energy market in the microgrids is investigated in 
[14], addressing architectures, distributed ledger technologies, 
and detailed market analysis.  

This paper presents a holistic model aiming at achieving 
optimal operation strategy for day-ahead distributing 
networks. The main contributions of this research are as 
follows: A TE management framework is proposed for 
optimal scheduling of DERs and DR in an active distribution 
networks in the DA market. DSO is responsible for the 
market-clearing mechanisms and controlling the net power 
exchange between the distribution network and upstream grid.  
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Uncertainty on photovoltaic panel power generation units 
and load consumptions are modeled using scenario 
generations and scenario reduction techniques. The maximum 
number of charge-discharge cycles during the day is 
considered to extend battery cycle life. The remainder of the 
paper is organized as follows. Section II describes the 
proposed transactive energy model. Numerical results are 
provided and discussed in Section III. Finally, Section IV 
draws relevant conclusions and suggests future research. 

II. MATHEMATICAL FORMULATION 

This section first describes the proposed TE problem 
formulation in detail. Subsequently, the load and PV 
uncertainty modeling and scenario reduction technique is 
presented. 

A. Transactive Energy Modeling 

The objective function in (1) minimizes the expected 
production, start-up, shut-down, BESS costs, and the 
revenue/cost of energy selling/purchasing to/from the 
distribution network. This problem is subject to generation, 
system, network, BESS, DR, and electricity exchanging 
constraints. The mathematical TE model is: 
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C Pg  is the total diesel generation cost, 

i
Pg  is the 

output power of the generator ,i  
i
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MinNP  and MaxNP  are the exchanged power limits, 
, ,i t s
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the shifted load power, and Max

i
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i
SL are the shiftable 

load limits. 
,Down Min
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i must be initially offline/online due to its minimum down/up 

time constraint, 
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first period of the time span, Down
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on off

i
Pg −

 is the initial commitment state of unit i.  

Constraints (2)–(3) represent the bus active and reactive 
power balance, respectively. Constraints (4) and (5) are 
system reserve requirements. Constraints (6)-(11) define that 
the generated power, ramp-up, and ramp-down rates should be 
within limits. Constraints (12)-(14) represent the minimum 
up/down times. Constraints (15) and (16) preserve the logic of 
running, start‐up, and shut-down status changes. (17) 
represents the non-anticipativity generation scheduling 
constraint. Constraints (18) and (19) are power flows in the 
lines. Constraints (20) and (21) represent the limitations of 
complex power and voltage magnitude, respectively. 
Constraints (22) and (23) represent the charging/discharging 
operational bounds of BESS, respectively. Equation (24) 
models the energy balance of BESS. The SOC limit is stated 
by (25). Constraint (26) indicates that the SOC at the end of 
the scheduling period would be the same as that at the 
beginning of period. Constraints (27)-(30) preserve the state 
of charge's logic and the maximum number of 
charging/discharging cycles, respectively. Constraint (31) 
represents electricity exchanging constraints. Constraint (32) 
represents load shifted limits and constraint (33) indicates that 
adjustable loads are shifted to other allowable periods. 

B. Load and PV Uncertainty Modeling and Scenario 

Reduction Technique 

Different uncertain parameters can adversely impact the 
operation of an active distribution network, e.g. the load 
demand as well as solar power generation by the PV panel. 
Among the available effective techniques to characterize the 
uncertainties, the scenario-based optimization approach has 
captured attention as an efficient method with the capability 
of accommodating probable scenarios. In this respect, the 
roulette wheel mechanism and lattice Monte-Carlo simulation 
are deployed in this paper to provide the decision maker with 
the required initial scenarios to start off solving the problem. 
However, it should be noted that the more the number of 
generated scenarios, the more precise the characterization will 
be obtained at the end. Hence, a relatively large number of 
scenarios are typically needed to properly model the behavior 
of an uncertain parameter. This number of scenarios would 
impose a huge computational load to the problem, which in 
some cases causes the intractability of the problem. Thus, an 
efficacious method should be applied to alleviate the 
computational burden of the initial scenarios by appropriately 
and accurately mitigating the number of scenarios to a rational 
number. Accordingly, the first step is to generate the initial 
number of scenarios by using the lattice Monte-Carlo 
simulation. First, a random value should be randomly 
generated in the interval {0, 1} and assigned to every uncertain 
parameter. Unlike the original Monte-Carlo simulation, using 
the uniform distribution, the lattice Monte-Carlo simulation 

deploying the N-Point lattice rule of rank r in dimension d 
would be implemented as [2], [3]: 

mod 1, 1,...., ; 1,...,
r U

p

u p

p up

k
v k U j r

n

 
= = 

 
   (34) 

It is noteworthy that uv shows the vectors associate with 

dimension d derived by utilizing the Monte-Carlo simulation. 
The number of random values in every scenario is expressed 
by dimension d. Any of the lattice Monte-Carlo simulation 
scenario comprises a vector associated with dimension d of 
the random values mapped on the interval {0, 1} formed by 

utilizing a set of values pk . It is worth mentioning that the 

lattice Monte-Carlo simulation better and more uniformly 
characterizes the uncertain parameter compared to the Monte-
Carlo simulation. It is also noteworthy that the uncertainty of 
the load and solar power generation would be characterized by 
using the error specified by the probability distribution 
function. In this regard, a continuous probability distribution 
function would be discretized to be used for the modeling the 
load demand and solar power generation [4]. The detailed 
procedure is available in [3].  

The probability distribution function is mapped on the zero 
mean and the distribution function is discretized to several 
intervals, each with the width equal to the standard deviation 
and a specific probability value [15]. Accordingly, with 
respect to each interval and its associated probability, the 
roulette wheel mechanism would be used for scenario 
generation. The probabilities, associated with each interval 
should also be normalized such that their aggregate value is 
equal to 1. Furthermore, as any of the intervals holds an 
accumulated value of the normalized probability, every 
scenario, generated by this technique includes a binary 
parameter vector showing the solar power generation and load 
demand at any of the time slots of the operation period. As 
mentioned before, the uncertain parameter would be more 
accurately described by a large number of scenarios, which in 
turn causes a huge computational load. As a result, an 
effective scenario reduction method should be used to make a 
trade-off between the accuracy and the computational burden. 
In this relation, this paper employs the backward scenario 
reduction method as mentioned in [2], [3] to alleviate the 
number of primarily generated scenarios, highly relying upon 
the preciseness needed for the problem. 

III. NUMERICAL EXAMPLES 

The proposed approach is tested with the IEEE 16-bus 
radial distribution system [16]. Fig. 1 shows the IEEE 16-bus 
distribution system single line diagram. The simulations were 
carried out on a PC with an Intel Core i5, 2.40-GHz, 8 GB 
RAM, and 64-bit Windows 10 PRO using DICOPT solver 
under GAMS [17]. For this case study, DICOPT was run with 
default parameters; the relative optimality gap tolerance was 
kept at 0.0001. It is assumed that 20% of the forecasted load 
is shiftable. 

Fig. 2 and Fig. 3 show the hourly PV generation and 
hourly demand profile, respectively, over a 24-hour horizon. 
The total demand is proportionally divided by each load bus. 
10 scenarios in the cases of solar PV and load demand are 

considered. Each scenario has a probability of 
s

ρ  = 1/10.  
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Fig. 1. IEEE 16-node distribution network. 

 
Fig. 2.  Hourly PV generation pattern [19]. 

 
Fig. 3.  Hourly demand level in p.u. of the system peak [19]. 

We use the backward scenario reduction method to obtain 
10 groupings of the scenarios of PV and demand from the 
1000 scenarios produced by the lattice Monte-Carlo 
simulation [18]. For reproducibility purposes, system data can 
be downloaded from [19]. 

To investigate the proposed model's effectiveness, two 
wholesale electricity market price cases are considered at the 
exchange point. The hourly electricity prices depicted in Fig. 
4 are from California Independent System Operator (CAISO) 
of days February 6, 2019, and March 02, 2020. It can be 
observed that in Case 1, the electricity market price is much 
higher than in Case 2. 

Three DGs are connected in buses 7, 12, and 15, 
respectively. Three PV systems (0.70 MW) are connect in 
buses 9, 12, and 14. Three BESSs are connected in buses 2, 5, 
and 10. Discharging and degradation costs of BESSs are set at 
0.02 and 5, respectively. The unit’s DG and BESS data are 
shown in Table I and Table II, respectively. DG costs are taken 
from [20] and scaled-down. The maximum number of charge-
discharge cycles is set to 1.  

Table III shows the on/off DG optimal solution. The 
differences in the start-up and shut-down for the generating 
units are in bold. DG 3 was operating all the time in both 
scenarios since it has the lowest production cost. 

In case 1, during periods 17 to 24, DG2 is in service, and 
energy is exported. Although the price is high during periods 
6 to 9, there is no energy exported because other constraints 
(i.e., reserves, ramps, and minimum times) prevent taking 
advantage of the high prices. After period 9, power cannot be 
imported, even when the price decreases substantially, due to 
previous operational constraints, which makes it challenging 
to reduce the output power of the DG. 

 
Fig. 4.  Hourly electricity price at a wholesale market for the two cases. 

TABLE I.  PARAMETERS OF DIESEL GENERATORS 

DG i
RU  

MWh 

i
RD  

MWh 

i
RSD  

MWh 

i
RSU  

MWh 

Min

i
Pg  

(MW) 

Max

i
Pg  

(MW) 

Min

i
Qg  

(MVA) 

Max

i
Qg  

(MVA) 

1 1 1 1 1 1 4.12 -4.026 4.026 

2 1 1 1 1 1 3.53 -3.3065 3.3065 

3 1 1 1 1 1 4.83 -4.4715 4.4715 

TABLE II.  PARAMETERS OF BESS 

 
m

Cap  
Min

m
SOC  

Max

m
DP  

ax

m

M
RP  

S

m

BES
η  

1 1.5 0.3 0.5 0.5 0.94 

2 1.5 0.3 0.5 0.5 0.94 

3 2 0.2 0.4 0.4 0.94 

TABLE III.  ON/OFF STATUES OF DIESEL GENERATORS 

DG  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Case 1 

1  0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 

2  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

3  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Case 2 

1  0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 

2  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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DR seeks to eliminate the maximum peak of demand. This 
allows increasing the demand in periods of minimum demand 
for later periods of maximum demand, flattening the demand 
profile, but the total consumption remains unchanged. 

Charge and discharge optimal statues of BESS are 
reported in Table IV and V, respectively. As can be seen, 
BESS charged in off-peak and discharged in peak hours. 

The voltage profile is shown in Fig. 5. The voltage limits 
are considered as 0.95 p. u. and 1.05 p. u. It can be seen that 
the median of the voltage profile is similar in both cases. 
However, in case 1, there is a higher spread, which means that 
the voltage presents a more significant fluctuation compared 
to case 2. 

Voltage density over the time horizon is depicted in Fig. 
6. A similar voltage profile and deviation for both cases are 
observed during the first 13 hours. After hour 13, for case 1, 
there is an increase in voltage magnitude, resulting from the 
increase in generation for export purposes, since the 
generators also provide reactive power. On the other hand, 
there is an import in case two, which means a greater flow 
from the power system, increasing the voltage drop, and a 
decrease in the DG units' generation power. 

TABLE IV.  CHARGE STATUES OF BESS 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Case 1 

1  0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 

2  0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 

3  0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 

Case 2 

1  0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 

2  0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 

3  0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 

TABLE V.  DISCHARGE STATUES OF BESS 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Case 1 

1  0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 

2  0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 

3  0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 

Case 2 

1  0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

2  0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 

3  0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 

 

 

Fig. 5.  Voltage profile for both cases. 

The average real power distribution locational marginal 
prices (DLMPs) for the two cases are reported in Fig. 7. As 
can be seen, the DLMPs are highly influenced by the LMP at 
the exchange bus. When the LMP at the exchange bus is 
higher than the corresponding DLMP, local onsite DG units 
in the distribution network increase their power generation to 
export. In each case, the DLMPs are similar because there is 
no congestion in the system. The difference between the 
DLMP of each bus is due to the distribution losses, which in 
essence, are small. 

Table VI shows the total expected costs for the two cases. 
As can be observed, the lowest expected cost is achieved in 
Case 1 because the market price at the delivery point is much 
lower concerning Case 1; hence no energy is exported. 

 
Fig. 6.  Hourly voltage profile for both cases. 

 

 
Fig. 7.  DLMP for both cases. 

TABLE VI.  TOTAL EXPECTED COSTS  

Case 1 2 

Costs ($) 49,061.1999 64,537.2177 

IV. CONCLUSION 

This paper presented a stochastic transactive energy model 
considering uncertainties of solar PV generation and load 
demand. The resulting model is cast as an instance of mixed-
integer nonlinear programming. The proposed model was 
analyzed through numerical studies on a 16-bus distribution 
system. Results show that the proposed model can assist DSOs 
to optimally schedule local DERs and power interchanges 
with the bulk system for the day-ahead market. We suggest 
that future research should use a linearized AC power flow to 
reduce the computational burden. 
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